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Consetluences of gauge-Sxing ambiguities in non-Abelian gauge theories in axial anil Coulomb
gauges
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We consider a pure SU(2) non-Abelian gauge theory in a first-order canonical quantization scheme, and
show how the proper treatment of zero modes in solving the constraint equations for the dependent variables
leads to certain conditions on the physical states. In the axial gauge this leads to a result of Schwinger's. In the
Coulomb gauge this leads to previously unknown conditions on the physical states, and to the conclusion that
the theory does not describe a free radiation field under circumstances for which Gribov has shown that the
vector potential becomes non-unique.

I. INTRODUCTION

The reasons why non-Abelian gauge theory is
considered to be the leading candidate for the
theory of strong interactions are so well known
as to not need repeating here. Recently, Gribov'
observed that in the Coulomb gauge the gauge-
fixing condition does not necessarily lead to a
unique potential. In the present work we are
principally concerned with a related problem.
Namely, we consider a pure SU(2) non-Abelian
gauge theory in a first-order canonic+»luantiza-
tion formulation in both the axial and Coulomb
gauges, and examine under what conditions the
constraint equations may be solved for the de-
pendent variables. These conditions turn out to
be nontrivial owing to the existence of zero modes
of the operators one must invert. Indeed, we
show that in the Coulomb gauge the physical states
cannot be those of a free radiation field for suf-
ficiently large fields. Rather, the physical states
must obey certain constraints. We do not show
how one may construct states which obey these
constraints, but we conjecture that the construc-
tion of such states may be related to the question
of confinement. Our results are of a nonper-
turbative albeit formal nature.

Ne first consider, in Sec. II, theA, =O gauge.
Here we rederive a condition Schwinger' found
some time ago from considerations of the finite-
ness of the energy density, but our method of de-
rivation allows us to understand how similar re-
sults may be obtained in other gauges. In Sec. III
we discuss the Coulomb gluge and derive the fact,
mentioned in the foregoing, that the physical states
must obey certain conditions whenever the fields
are sufficiently large so as to lead to the existence
of a zero mode of a particular operator. We also
consider the relationship between the canonical
quantization formulation and the path-integral
formulation. Then in Sec. IV we make some

where the 7' are the usual Pauli matrices. Note
then that

8'8' = ——Tr [88].a a

II. AXIAL GAUGE

In matrix notation the pure Yang-Mills field
Lagrangian, in a first-order formulation, has
the form

TrQE""E„—- 'E (S "A,"—S"A-"+[A",A"])],
(2.1)

and the derived Euler-Lagrange equations are

E„„=e Q„-gA„+ [A „,A„]. (2.2)

tt"E„„+[A",E„,]=0. (2.3)

We now wish to implement the axial gauge con-
dition'

(2.4)

to eliminate dependent degrees of freedom. Ap-
plying (2.4) to (2.2) and (2.3) yields the constraint
equations

e/os= -&»Eo» (2.5)

comments about the connection between the I orentz
transformation properties of the theory and the
existence of gauge-fixing ambiguities in axial
gauges. Finally, in Sec. V we summarize our
results and speculate on their significance.

Throughout we use both the three-component
notation and the two-by-two matrix notation.
Given a three-component object 6', we define

&a
6 =—g —.6'

2i

1&
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as well as the equations of motion

(2.6)

0= dx,ug E„(x,') . (2.18)

A,.=E,+D,A (2.7)

Oi D+Ji 3 3i l Ol Oij0 (2.8)

where D,. is the covariant derivative, and in this
section indices i,j run from 1 to 2.

With these two equations we can, in principle,
eliminate the dependent variables E„and A,.
However, we must carefully consider the conditions
under which we can solve (2.5) and (2.6) in terms
of well-defined Green's functions. For this pur-
pose it is convenient to put the system in a box
of length 2L, so that -L & x, (L. Then the spectrum
of the operator 8, is discrete, and the orthonormal
functions

That is, the "source terms" in (2.5) and (2.6) must
be orthogonal to the zero mode of 9,, since other-
wise no solutio~s for F03 and A, will exist in terms
of the finite Green's function 2q~.

Now we want to take the continuum limit L-~.
It is easily seen that

(x3-x3 )

lim —,'c~(x, —x,') = .P disci
J~ 00 W~ ~C0 QP

=-,'e(x, —x', )

= —,
' [e(x, —x,') —8 (x,' —x,)], (2.19)

whe~e the Cauchy principal value is indicated.
Then the infinite-space versions of (2.15)-(2.18)
are

with

et con+3
t (2 9) E„(x,) =— dx,'-,'e (x, —x,')D,.F„.(x,'), (2.20)

'urn
&u„=—(n integer}, '(2.19}

A, (x,) =— dx', —,'e(x, —x,')F„(x,'), (2.21)

obey

sn ~nn (2.11)

0= dx,D,E„(x,), (2.22)

and the periodic boundary conditions

u„(L) =u„(-L) .

We then define the function

~,u„(x,)u„*(x',)
n gQPn

(2.12)

(2.13)

dxg„(x,)

dx, dx,'-,'e(x, —x,')D,.F„(x,')
~ C0 a OO

dx', x,'D,F,, (x,') . .
a 00

(2.23)

8 32 6~ (x~ —xs) = 6 (x3 —x3) —uou f q (2.14)

owing to the completeness of the eigenfunctions.
Then the solutions of (2.5) and (2.6) for F» and
A, are

E„(x,) =—
L

dx,'-,'e ~ (x, —x,')D,F„(x,') (2.15)

where the prime on the summation symbol in-
dicates that the term n=0 is omitted. Since uo
= 0, omitting n =0 is obviously necessary to define
a finite inverse to the operator 8,. This function
obeys

We now recognize the constraint (2.22) as just
the condition that Schwinger found long ago by
requiring that no spurious infinity occur in the
equations of motion. ' The present derivation of
this condition allows us to see its fundamental
origin. When solving constraint equations for
dependent variables, one must properly treat the
zero modes of the operators one is trying to invert.
In the A, =0 gauge, this automatically produces the
Schwinger condition (2.22).

Note 'also that the inverse derivative —,'a(xs-xs)
is not unique, but that we may make the replace-
ment

0= dxsuo D,F„(x,)

L
A, (x,) = — dx', —,'e~(x, - x',)E„(x',),

"L

Provided that

(2.16)

(2.17)

(2.24)—,'e(x, —x',)——,'e(x, —x,') + A(x„x„x,),
where A is an arbitrary function independent
of x,. But if the conditions (2.22) and (2.23) hold,
then the values of 8, and E» given by (2.20) and
(2.21) remain unchanged by the substitution (2.24).
Thus, the uniqueness of the solutions for 4, and
E» is guaranteed by the conditions (2.22) and
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Q = dx,dx,A'(xo, x„x2) dxsD(~F~~~, (2.26)

A arbitrary, is the generator of infinitesimal gauge
transformations which stay within the A, = 0 gauge,
as illustrated by

6A;(x, t) =i(A;(x, t), eQ(t)) =eD;~it{', , (2.2V)

where we have dropped a surface term. Thus,
the condition (2.22) arises because of the
gauge arbitrariness inherent in the AS=0 gauge.
The reader will recall, though, that we also de-
rived a second constraint (2.23). To see the mean-
ing of this second condition we define the operator
R by

{{= dxdxA {x„x„x)f 'dxgD F,', . {2.28)

Then we see that R generates transformations

6A;.(x, t) =i(A;.(x, t), eR(t)) =ex,D;'A . (2.29)

This is also an infinitesimal transformation which
respects the A, =0 gauge condition, though not a
gauge transformation. Notice, however, that this
is a transformation which is singular at x3=+~.
Hence, by a choice of finite boundary conditions
at xs=+, we may eliminate the possibility of
making such transformations, and, therefore,
eliminate the necessity of enforcing the condition
(2.23). Another way of saying the same thing
is to note that taking the derivative of (2.6) we
obtain

83 Ao =D]EO, (2.30)

But the inverse of 83' is not well defined since
83 has zero mode s of the form

0 1(

tlat

O2) 3~2( 0$ ll +2) ' (2.31)

However, we may impose the boundary condition
of finiteness at xs= a~ on the eigenmodes of 8,'
so that A, =. 0. Then a unique solution of (2.30)
exists if and only if (2.22) holds.

As is well known, the condition (2.22), or its
equivalent Q = 0, is not consistent with the
canonical commutation relations, as shown by
(2.2V). So A. , and F„are not the independent
dynamical variables. Qne can try to deal with
this in two ways. The condition Q =0 may be
interpreted as a constraint on the physical states,

(2.23).
Let us now introduce the equal-time commuta-

tion relation

(A;.(x, t), F,', (8, .t)) = i6„6'(x-x') . (2.25)

Here the slightly unorthodox notation f,) is being
used for an operator commutator to distinguish
it from a matrix commutator [, ]. Then, as
Schwinger pointed out, the operator

Q ~g)=0, (2.32)

III. COULOMB GAUGE

In this section we will consider the canonical
quantization scheme in the Coulomb gauge, and its
relationship to a path-integral formulation. As
Gribov' has pointed out, the Coulomb gauge con-
dition

sP,.=0

does not fix the gauge uniquely. (In this section,
indices i,j run from 1 to 3.) For, if we consider
a gauge transformation

A„-A' =U"'A„U+ U '8„U

such that U obeys

D,.8)UU '=0, (3.2)

then 8+,'=0. What will be of interest to us will
be the case in which U is an infinitesimal trans-
formation

U = e'"=1+&8,

A,'. =A,. + gD]h.

(3.Sa)

(3.3b)

Under such a transformation the Coulomb gauge
condition is maintained if

D]8,h =0. (3.4)

The existence of normalizable zero modes of the
operator D,8,. for sufficiently large A, has been
discussed by Gribov. In the present paper, we
are interested in the formal consequences of
such zero modes, and, hence, we will simply
assume the existence of such normalizable solu-

as recently attempted by Mandelstam. ' Or, on
the other hand, one may attempt to use the large
gauge arbitrariness inherent in the A, =O gauge
to enforce supplemental gauge conditions until
all gauge arbitrariness is eliminated, and, hence,
all necessity for additional conditions such as
Q = 0, as recently attempted by Chodos. '

It is our point of view, though, that the very
large gauge arbitrariness of the A, =O gauge, which
is present even in QED, makes it difficult to see
the essential differences between Abelian and
non-Abelian theories. The Coulomb gauge, however,
has the advantage that it is the gauge in which,
in @ED, the independent physical variables can
be most readily identified. For this reason,
we now turn our attention to the Coulomb gauge,
and try to see whether conditions analogous to
(2.22) and (2.23) may arise owing to zero-mode
problems in solving for dependent variables.
We will, however, have a little more to say about
axial gauges in Sec. IV.
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tions of (3.4). Pictorially, the condition (3.4)
means that the hypersurface defined by the Coulomb
gauge condition intersects the gauge orbit with
zero "angle. "

As in the usual Coulomb gauge formulation, '
we introduce the transverse and longitudinal com-
ponents of the canonical momentum Fpg according
to

Notice, also, that G is not uniquely defined, but
may be replaced by G+ chh, where c is an arbitrary
constant. But the conditions (3.12) and (3.13) en-
sure that the solutions for A, and f are unique.

Using (3.11}we may rewrite (3.13) as a restric-
tion on the independent variable E,, viz. ,

28 = ——Tr d3xh(x)V2GD(E(

F„=E(-8j (3.5) =0, (3.14)
where

8,.E,. = 0. (3.6)

Now considering 8 (F«, and using (3.1) in (2.2),
we obtain the constraint equation for A„

D,8+o = .V'f. (3.V)

Substitution of the condition (3.1) into (2.3) yields
the constraint equation for f,

D;8 f=D(E(

—0 (3.15)

An alternative way of deriving the restrictions
(3.12) and (3.14), is to first solve (3.V) for f,

f= ,D,8+—,. .
1

(3.16)

or, less symbolically, and in component notation,

8 d Xh (XqV d ~ Gaa(x&x )D s E (X )

= [A(, E(]. (3.8) The operator &', of course, has no normalizable
zero mode. Then, using (3.16) in (3.8), we obtain

To solve for the dependent variables A, and f,
we must invert the operator D,.8, Since, by
assumption, this operator has a normalizable
zero mode, we must introduce a generalized
Green's function G, ' which obeys

Daa8 G c(x -X()=6 6 (X -X() —ha(X)hc(X() . (3,9)

If the operator D,.8,. has more than one zero mode,
we must sum over them in (3.9). For the sake
of notational convenience, we will assume the
existence of only one such mode. %e also assume
that it is real, but this is inessential. The solu-
tions of (3.7) and (3.8) are then given, symbolical-
ly, by

D(8, 2D,8+a.—=D,E, ,
1

(3.1V)

which defines Ap. To solve this last equation, we
can use (3.10) and (3.11) to write

A, = GV2GD,.E, , (3.18)

A (X) = dsX(f)a&(x X(}D(bcEc(X ) (3.19)

where

f)a (X X )= d X Gac(X X )V Cc (Xa X ). (3.20)

or, less symbolically, and in component notation,

A, = GV'f

f=GD(E(.

(3.10)

(3.11)

Now let us compute

1
Dj8 j 2D]8].V

However, this can only be true if the "source
terms" lie in the subspace of functions orthogonal
to the zero mode. That is we must have

2
Q =———Tr d'xh(x)D(E((x)

We find, recalling (3.9), that

dan D ca8 /&&(X X()
1

4mlxx«-x~ l

= 6„6'(x—x') —h'(x) h '(x')

=0 (3.12) h'. (x')
+Dg 8$ EPPES

4 (««g
j

It =———Tr d xh(x) V2f(x)
2

=0. (3.13)
So for

&& Xd'%'( )XVa'"'0"(X"' X') . (3.21)

Otherwise, (3.V) and (3.8) cannot be solved in
terms of the nonsingular Green's function G.

A.p
=GD]E,. (3.22)

to be the solution of (3.17}, we see again that the
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conditions (3.12) and (3.14) must hold. Here it
might be added that in the presence of an external
source Z„(3.12) and (8.14) are modified by re-
placing D,E, by D,.E,.+J,.

To see the connection between the restrictions
(3.12) and (3.14) on E, and the possibility of making
an infinitesimal gauge transformation of the kind
indicated in equations (3.3), let us first introduce
the canonical commutation relation,

fA.;(x, t), Ej~(x', t))
= i5„[5,.~p(x —x')]r
= i5,~[5,&5'(x x)-—8,8~&(4.v (x -x'

~
) ']. (3.23)

We see then that the operator Q is just the generator
of infinitesimal gauge transformations which stay
within the Coulomb gauge, as illustrated by,

jugate, and interpret (3.12) and (3.14) as con-
straints on the physical states

Q~P)=0 (3.28a)

aA~
Ea & g' et (3.29)

with

g & (Ea 8 ya)2 L(Ea)2 (3.30)

R ~g)=0.

It is beyond the scope of this paper to attempt
to actually construct such states

~
g).

Next we wish to construct the Feynman path
integral for the vacuum-to-vacuum transition
amplitude. The Hamiltonain density is

5+4(x, t) =i@;.(x, t), eQ(t))
—zD"h'

Clearly, the c-number transcription of 5P; obeys

8,5+;=0. (3.25)

where

g 1
2e gulp fN

~

From (2.2), (8.5), and (3.10) we have

(3.31)

The operator R generates infinitesimal field
transformations of the form

5Q;(x, t) = i(A;(x, t), eR(t))

= E,. - (8
&

—D&GV )f . (3.32)

Because G obeys equation (3.9), the right-hand
side of (3.32) is not explicitly transverse unless
R =0. Then we find that

= &D'~ d x'h' x' V 'G~' x x' —&e.h'

h"x",-g8, d'x' ' ', d'x"h'(x" )V"
4g)x-x')

xh~(x') . (3.26)

eA'
d xE' '= d.'x[(E')'+ E'O' G 'V'f']i et

d'x[(Ea)2 faVy (S.33)

This is not a gauge transformation because of the
gradient terms. However, as is readily seen,
it obeys, if considered as a p number,

To obtain the second line, we have used integra-
tion by parts, (3.8), (3.9), and the condition R =0.
We then obtain the usual result for the Hamiltonian

8,5+;=0. (3.27) H = —,
' d'x[(E;)'+ (84)'+ (8 j')']. (3.34)

If we now compare the conditions (3.12) and (3.14)
with the results (3.24) and (3.26), we see that,
with an integration by parts, (3.12) and (8.14) state
that E,. is orthogonal to 5g, and 5Q, .

Since 5P,. and 5Q, are not identically zero,
it is clear from the foregoing that the conditions
Q = 0 and R = 0 are not in general compatible with
the canonical commutation relations. It follows
that (3.23) must be false. A, and E, are not
canonically conjugate variables. We see then
that, when the field strengths become large enough
so that zero modes of the operator D,e, exist, the
independent dynamical variables cannot be those of
a free radiation field. This is the central result
of this paper.

Of course, one may, paralleling the treatment
of the electromagnetic field in Lorentz gauge, '
treat A,. and E& as if they were canonically con-

(measure) —(measure) 5(Q)5(R) .
Then the transition amplitude is

W= d[E;]d[A)]5(8,E;)5(8';)5(Q)5(R)

(S.35)

x exp j

Now we want to change variables from E, to F«,

In order to now write down the vacuum-to-vacuum
transition amplitude, ' we must restrict the set
of admissible functions in the functional integrals
to those which satisfy the constraints Q =0 and
R =0. So compared to the usual case we should
make the replacement
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so we insert

b g Dabe b DacEc (3.37)

into the functional integral. Since in the'functional
integral b, will multiply the factor O(D, Bf—D&E&),
we need only evaluate 4 for fields E, which satisfy
(3.8). So we write

1
dP']O(D''B, f" -D~&'E&),

W= d A'„exp i d4x ——,
' Fa„' (3.43)

and insert

obtain the standard expression for S' in the
second-order formulation. Evidently, the canonical
and the path-integral formulations are not equiv-
alent.

As is well known, "if we start from the expres-
sion

and let

f' =f+ Of,

where

D,B,f= D~E) .

(3.38)
where

with U = U(g), then

(3.44)

(3.45)

The key point then is that, since D,.E, must be
orthogonal to h, i.e. , Q =0, f must lie in the sub-
space orthogonal to h. Hence, the integration
variable f', or Of, may be taken to lie in this
same subspace. So we expand Of in terms of the
orthonormal eigenfunctions u„which satisfy

Here

Dab(1) Q 8 +g~ g c(&&)
i ab i actf -i

-1
46

(3.4V)

Die i"n= &n&n ~

viz. q

(3.38) and U, =U(g, ) obeys

D;(B~U,U, ') =0,

Of =g'c„u„. (3.40)

—= limN
pe'

d[Of']exp — d'x(Df'B, Of')'

=limN
gvP

= 1/j~'~„

= [det'(D, B,)]'. (3.41)

That is, 4 is the product of the nonzero eigen-
values of D,e,. In the absence of the condition
Q =0, the integral expression for 1/4 would be
ill defined. Then it is easy to change variables
from E, to Fo, , do the f i.ntegration, and introduce
A.p and E,~ as dummy variables in the usual way,
to obtain, finally,

tv= d[A ]d[F ](ap;)5) 'f„d'x'„h„'D"E'.)
d xhae,.Fapi ex i d'xZ, 3.42

where 2 is given by (2.1).
If it were not for the two 5 functions involving

0, one could perform the integration over F„„to

The prime on the summation symbol indicates that
the zero mode is excluded. Then we find

IV. MORE ABOUT AXIAL GAUGES

As everyone knows, the gauge condition

A =03

does not fix the gauge completely, but one can
make additional gauge tr ansformations

A -A' =U"'A U+U '8 Up 7

so long as U is independent of x3.

(4 1)

Qn the one hand, starting from the canonical
formulati. on it is not easy to see how one can obtain
this factor in (3.46) which is the inverse of a sum
of inverse determinants, while, on the other hand,
in the case in mhich one of the operators D,'. "8,
has a zero mode, it is not clear how one is to
make the expression for W mell defined in the
path-integral formulation. It may be that there
exists some overview which allows one to handle
both the multiple intersections of the gauge-
fixing condition with the gauge orbits and the zero-
mode problem discussed in this paper. If so, the
author does not know of it. Alternatively, it may
just be possible that the multiplicity of gauge
equivalent fields which satisfy the Coulomb gauge
condition is an irrelevant mathematical pathology,
and that the construction of states which satisfy
the conditions (3.28) yields the relevant physics.
Whether or not any of this has anything to do with
the question of confinement is an open question.
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A, )„,,=0,

A, f„, „~=0,
(4.2a)

(4.2b)

It would appear then that by appending additional
gauge-fixing conditions such as

ansatz

U &iS fy(n) (4.10)

where p is the two-dimensional radius vector,
and P = p/p. This leads to the equation

p'y" + py' = ,' si—n(2y), (4.11)

(4.2c)A =00 gg, @2~ x3W

that one fixes the gauge completely ceithout any
Gribov type gauge ambiguities arising. However,
as Yao" pointed out long ago in QED, the axial
gauge condition is not compatible with Lorentz
invariance if we assume reasonable boundary
conditions. To rephrase his argument, consider
an infinitesimal Lorentz tr ansformation,

y = ~ sin(2y) . (4.12)

There exist solutions of this equation with the
properties

0 (4.13)

which upon introducing the variable t = Inp becomes
the equation for an undamped pendulum

X X =lX= X+&X
q

along with a simultaneous compensating gauge
transformation,

(4 3)
P.p+ yy F ~

Such a solution will have the properties

(4.14)

A„(x)-A'„(x') = U'A„(x)U+ e'„U'A„(x)U+ U '8 ~U.

(4.4)

Then we should have

A, ,0

A,. „=is (2P'p' —5„.)p ',

(4.15)

(4.16)

0 =A,'(x')

=e,"U"'A,(x)U+ U '83U. (4.5)

where i =1,2.
Hence, we see that in axial gauges one must be

careful about concluding too hastily that no gauge
ambiguities exist.

U '83U = 0.
l~ l-~

3

In this case, at ~x,
~

=~, (4.5) reads

O=e,"U 'A„Uii„ i

But, since e is arbitrary, either A„=O at ~x,
~

= ~, which is too restrictive in general, or A,
40 when ~x,

~

= ~. This contradiction is not rec-
tified by imposing further axial-like gauge con-
ditions such as equations (4.2). However, as Yao
pointed out, one can fix the gauge, without having
a conflict with Lorentz invariance at ~x, ~

=~, if
one imposes the condition, for example,

(4.6)

(4 I)

(4.8)8+,. =0 (i=1,2)

at
~
x,

~

= ~ to replace A, = 0 there. In QED this
eliminates all the residue gauge freedom, but
in a non-Abelian theory we can make additional
gauge transformations with transformation ma-
trices which obey the two-dimensional Gribov
condition,

If we assume the boundary condition that A„be
finite at ~x, ~

= ~, then in order that the transverse
components (p, =1, 2) of A„be well defined at

~
x,

~

=, we must have

V. SUMMARY AND CONCLUSIONS

In the present work we have concentrated on the
problems which arise, in a first-order canonical
quantization procedure, owing to the existence
of normalizable zero modes of the operators that
must be inverted to eliminate the dependent vari-
ables in the axial gauge and in the Coulomb gauge.

We first. rederived a condition that Schwinger
found to be necessary for the finiteness of the
energy density in the axial gauge. 0ur deriva-
tion of this condition shows that its origin lies
in the existence of zero modes of the operator 83.

Then we showed how in the Coulomb gauge
similar conditions (3.12) and (3.14), arise owing
to the fact that, as Gribov showed, there can
exist zero modes of the operator D,.B, In both
gauges these conditions are connected with the
possibility of making infinitesimal field trans-
formations which stay within the gauge. However,
it should be pointed out that in the axial gauge
this possibility of making infinitesimal field
transformations arises trivially from the fact that
one can make a noninfinitesimal transformation
which respects the gauge condition, viz. ,

D( (8;UU') = 0 (i = 1, 2) . " (4.9) A -A' =U 'A U+U '8 U

For example, in the case A„=0 we can. try the with U any unitary matrix independent of x,. In
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the Coulomb gauge the situation is much less
trivial, and, therefore, we speculate that the
Coulomb gauge may be more physically relevant.

The principal conclusion of this paper is that
when field strengths become large enough so that
normalizable zero modes of the operator D,e,
exist the physical states are not those of a free
radiation field. The situation is reminiscent of
an order-disorder transition in a crystal, where
when the temperature rises to a certain point
there is a discontinuous change in the symmetry
properties of the crystal.

Our results, obviously, have been of a formal
nature. The problem then is to construct states
that obey the conditions (3.28), which is seemingly
a quite nontrivial task, and which may or may
not be related to the question of confinement.
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