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A systematic large-mass expansion of the quark-antiquark effective Hamiltonian due to instantons is
develop'ed. The O(m ) spin-spin and spin-orbit contributions are evaluated in the dilute-gas approximation.
These can be expressed in terms of difFerential operators acting on the spin-independent potential. The three-

quark effective Hamiltonian (in a color-singlet state) is shown to be a sum of quark-antiquark Hamiltonians.

The structure and numerical value of the effective Hamiltonian is discussed.

I. INTRODUCTION

It is by now widely appreciated that the instanton
solutions of Yang-Mills field theories describe a
new and important aspect of vacuum physics: large
semiclassical flustuations of the gauge field asso-
ciated with tunneling between different realizations
of the vacuum. ' These new fluctuations are quali-
tatively quite different from the more familiar per-
turbative zero-point oscillations of the field and
yield different physical effects. The physical ef-
fects due to instantons have been discussed in de-
tail in Rqf. 2 where it was argued that they are re-
sponsible for much of the dynamics of quantum
chromodynamics (QCD). '

One of the effects of instantons is to contribute
a new term to the interaction energy of quarks. In
Ref. 2 the static (spin-independent) quark-anti-
quark potential due to instantons was calculated,
using the dilute-gas approximation for the analog
instanton gas. It was found that as one increased
the separation of the quarks this potential in-
creased rapidly, soon becoming larger than the
ordinary Coulomb energy which describes quark
interactions in the short-distance, asymptotically
free, region. In a recent Letter, two of us have
given arguments that the instantons are also re-
sponsible for a large spin-spin interaction between
heavy quarks, which might be of phenomenological
importance in the context of -heavy -quarkonium
spectroscopy. ' The argument relied on a heuristic
extension, to include spin, of the Wilson loop
treatment of the instanton-induced interaction of
static quarks and did not extract all possible spin-
dependent terms in the potential.

In this paper we shall give a systematic treat-
ment of the heavy-quark potential which succeeds
in extracting all the interesting spin-dependent
effects. Our method allows one, in principle, to
expand systematically the effective quark Hamil-
tonian due to instantons in powers of the inverse

quark mass. This is analogous to the Foldy-
%outhuysen' transformation, which we shall indeed
use. In this paper we shall restrict our attention
to the O(m ') spin-dependent terms in the effective
Hamiltonian, although higher-order terms could
be evaluated. %e shall also, just as in many of
the applications in Ref. 2, use the dilute-gas ap-
proximation, ignoring correlations between neigh-
boring instantons. This means that we include
only the effects of instantons smaller than some
maximum size, since the density of instantons in-
creases rapidly with seal. e size, leading to the
breakdown of the dilute-gas approximation. In par-
ticular we have not included the large-scale fluc-
tuations, due to merons, which we believe respon-
sible for quark confinement. ' Nevertheless, the
dilute-instanton-gas contribution to the heavy-
quark potential should provide a qualitative de-
scription of tunneling effects at not too large dis-
tances, and might be of use in phenomenological
descriptions of heavy-quark bound states.

In the following section we shall develop a meth-
od for the large-mass expansion of the quark-anti-
quark potential and determine the leading, O(m '),
spin-dependent terms. The end result is a quite
elegant form for the spin-dependent interactions
which can mainly be expressed (in a fashion reminis-
cent of the Breit interaction) in terms of the spin-
independent potential.

In Sec. III we discuss the precise, form of the
spin-independent and spin-dependent potentials.
For large or small quark separation these can be
determined analytically, while for intermediate
separations we must evaluate the potential nu-
merically.

Finally, in Sec. IV we discuss the interaction of
three heavy quarks in a color-singlet state. Quite
remarkably, the three-quark potential turns out to
be just.the sum of two-body interactions, each
equal (including spin terms) to half the quark-
antiquark potential.
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II. A LARGE-MASS EXPANSION OF
THE QUARK HAMILTONIAN

We are interested in those aspects of Euclidean
vacuum physics which are accounted for by widely
separated, uncorrelated instantons. In such a
"dilute-gas approximation" the full effect of the
medium on a quark is given by an appropriately
weighted average (over location and scale size) of
the effect of a single instanton. ' To be specific,
we look at the Euclidean A.,= 0 gauge time history
described in Fig. 1. The instanton is in region II
and we have placed an artificial sharp cutoff on
the instanton E and B fields so that regions I and
III are characterized by a vacuum gauge field.
The vacuum in region III is topologically inequiva-
lent to I and characterized by the mapping U(x) of
three-space into the group. For a standard SU(2)
instanton of scale size p centered at r,

U= exp(ter'(x —r)/[(x —r)'+ p']'~'] (~)

and clearly carries information about the insQn-
ton which caused the transition. Eventually we
shall see that U contains all the information needed
to construct the instanton-generated quark inter-
actions. In the case of. SU(3), U has the same
form, except that 7 matrices are replaced by Gell-
Mann A. matrices.

This prescribed, time-dependent gauge field
causes the quark wave function to change with
time, and to follow this evolution w'e just use the
Dirac Hamiltonian for a fermion in an external
non-Abelian gauge field. Since the quark is very
massive, it is convenient to use the systematic
expansion in powers of m ' provided by the Foldy-
Wouthuysen transformation. The transformed
Hamiltonian is H= H, + H„where [to O(I/yn')]

(p —eX)'
H, = + eA02m

e - e
H, = — u'B- 2 e'E x(p -eA) —,D'E

2m 4m 8m'

rr'(D x E},am'

A'=
—; U VU

where A, , =A;X'/2, 8,= ~e,&~E&~X'/2, and D, is the
covariant derivative. The Hamiltonian of course
acts on color variables and is just the color tran-
scription of the usual Foldy-Wouthuysen transfor-
mation.

The quark wave function [a function )t(q) = g, (x)
of color, two-component spin, and space vari-
ables] evolves in time under the action of the prop-
agator

(3)

In considering the propagation from time g, in re-
gion I to time t, in region III we use the composi-
tion law

S(q,t„q,t, ) =J dq dq'S(q, t, ; q7')S(qr, q' —7')S(q' —r, q, t, )

(4)

where of course f dq means integration over po-
sition coordinate and summation over spin and col-
or indices. The propagator through region I is,
since A, = 0, just the ordinary Schrodinger propa-
gator S,(x', —r;x„ t, ) times unit spin and color
matrices. The propagator through region III is
just a color gauge transform of the Schrodinger
propagator

S(q,t„qr) = 5, ,[U(x,) U '(x)], ,S,(x,t;, x~) . (5)

The color matrix U '(x) we combine with the non-
trivial region-II propagator S(qr, q' —7) to obtain
the net effect of the instanton on the quark color
and spin degrees of freedom. The matrix U(x, )
will be absorbed by the next instanton and serves
to transform its gauge field back to standard one-
instanton form. In summary, the net effect of the
instanton on spin and color variable's is given by a
quasi-local (in time) propagator U '(x)S(qv, q' —7)
and propagation between successive instantons is
given by the spin- and color-independent Schro-
dinger propagator.

In region II we expand the propagator of H=H,
+H, in powers of H,. To obtain the leading spin-
dependent effects, it suffices to keep the first two
terms in the expansion, and we set

U '(x)S(xv; y —7) = U '(x)S,(x7",y —7'}

dt Jl d 'e U '(x)S,(xr; zt)

x H,(z, t)S,(zt; y —v) .

FIG. 1. Representation of the gauge field and heavy-
quark trajectory discussed in the text. The hatched
area is the region of non-pure-gauge field.

In this expression, S, is the spin-independent prop-
agator of H, and the spin and color indices are im-
plicit. Since H, and U are known explicitly, our
only problem is to evaluate 8,.

We proceed from the path-integral expression
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S,(x'f', xt) = [Dy] exp — ) dT
t

+i dy'A

Since m is large, the path integral is dominated
by the straight-line path between x and x' and S,
factorizes,

XP

S,(x t xt)=''S',
(,
x't', xt)P exp te dy A), (8)

~x

where S, is the Schrbdinger propagator and the
path-ordered integral from x to x' is taken over
the straight-line path. Since we are interested in
short-time propagation, S, restricts x' to be close
to x and we may characterize the path by a small
velocity v = (x' -x)/(f' —t}.

To evaluate the path-ordered integral in (8} it is
convenient to transform A from the A0= 0 gauge to
the "standard" gauge eA' = 2q, „„xg(x'+p'}. This
is effected by the time-dependent matrix U(x, t)
= exp [i&(x, f)v' x], where Q(x, f) = ~m+ tan ' [i/(x'

+ p')'t '] [note that for f=+~, U(x, f) becomes iden-
tical to U(x) as defined in (1)]:

w
X'

U '(x', f')P exp ie dy A U(x, t)
t X

I

)'x' I

exp te ' dg~'1~'g~~„g„g + p
X

For a straight-line path, y„(t) = x + u„t, and one
easily sees that because of the antisymmetry of
the q symbol, the new form of the integral is
Abelian. Explicitly,

p
&X'

U '(i', t')P exp ie dy'A U(x, t)
"X

-7'x+ T'v x X= exp
~g (x, + v)'+(x+vv')'+ p'-

Since v is O(m '), and we are constructing a sys-
tematic expansion in powers of m ', we must ex-
pand this integral. in powers of v. In practice we
need only keep terms of at most first order in v,
and we find

r x'

tr '(x', t )p exp te J
'dy A) U(x, t) '((t-v xx e=)U '(xt )U(xt)), ',

I X

(10)

Further, since m is large and the time interval over which S, is evaluated is finite, we may replace S0
6(x -x) and, of course, set i'=i in the integral. Our final form for the expansion of S, to O(m ') is then

S~(x'f', it) = U(x, f')(5(x —x') + [(1/m)(xx V) U (x, f') U(x, f) ] ' V„5(x —x')J U '(x, t) .
We now are in a position to evaluate (6). Consider first the term U(x)S,(xr, y —r) Since U(x., -v)=1 and

U(x, 7) = U(i), (11) implies that

U '(x)S,(xr, y —v) = [U '(x) + (1/m)(x x V) U '(x) yp'„] 5(x —y) . (12)

Next consider the term in (6) in which H, appears. We will first deal with the O(m ) part of H„-(e/
2m}(T B. Since we wish to evaluate (6} to O(m '), we need to keep the O(m ') terms in S,. The rather com-
plicated expression which results can be simplified considerably if we remember that U '(x, t)B(x, t)U(x, f)

= B(x, f), the instanton magnetic field in the "standard" gauge, and that B(x, f) actually depends only on x'
so that it commutes with the operator x x V. This allows us to rearrange the various derivatives and re-
cast the expression in the form

X'v I2 2 2 2 2 7'X U Zest xyt, 9t. +x +p t +x2+p

(It should be kept in mind that x, the quark position coordinate, is measured relative to the instanton. )
In the rest of this paper we shall work out the interaction terms due to the term in the first set of curly
brackets, eventually showing that they can all be expressed in terms of the spin-independent heavy-quark
potential. The term in the second set of curly brackets leads to terms which are not related to the spin-
independent potential and, fortunately, quantitatively much less significant. The corresponding heavy-
quark potential will be given below, although we shall not present the detailed derivation. '

The path-ordered integral in (8) is multiplied by the Schr5dinger propagator, S,(x'f', xt) ~ exp[-m(i' —x)'/
2

~

f' —t
~
]. This means that v, wherever it appears, may be replaced by a quark momentum operator

0 r 0 @SO'
(x —x) 1
(f'-f ' m

dt U '(x) o 'B(x, t)5(x-y)+ dt U '(x) &x B(i, t) V5(x-y).
2m m 2m
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Since 8 is the instanton magnetic field in the A, = 0 gauge, B= -E = -A, and the time integration may be
done explicitly converting (13}to

2tH
((r V)U (x)S(x -y)+, (x x V)(o'V)U (x) Vs(x-y).2m'

Finally, we must include the O(m ') part of H,. To the order we are interested in, we may replace g, in
(6) by &(x —z). We also keep only the o'(E xp) term in H, because the gauge field actually satisfies the

Yang-Mills equations. Again, since in the Ao 0 gauge E=A, we may do the time integration, and the
end result is

, [o x VU '(x)j Vs(x -y) . (15)

We now combine (12)-(15) to obtain the net effect of the instanton on the heavy-quark wave function. Propa-
gation across the time slice occupied by the instanton causes the transformation

y(x)-y(x)= U '(x)g(x)+ —[xx VU '(x)] Vg(x)+ [o'vU (x)]y(x)

+ ', ((xxV)[a'VU '(x)]j Vg(x) ', [oxVU '(x)j Vgx). (16)

This can be more compactly written as

gx) = [O(x, p, o)U '(x)]g(x),
~

q

z z' - 1
O(x, p, o') -"1——L V — o' ' V —,L' Vo' ' V

m 2m 2m2

, g (pxv), (18)

(19)

The effective Hamiltonian is identified by -Hg= g
—p, which amounts to repiacing U '(1}SU(2}r by

[U '(1)g U(2)r —1s1]. Since we are in practice
interested only in color-singlet states we may per-
form a trace over color variables, obtaining (for

where of course I =x xp and we have made a dis-
tinction betWeen V, which operates only on U '(x),
and p, which operates on the x coordinate of g.
%e note here that the corresponding expression
for an antiquark is obtained by replacing U ' in
(17) by [U] r. It should also be said that we have,
in order to simplify formulas, at various stages
dropped some O(m ') terms in 0 which are not of
direct phenomenological. interest: some are spin-
independent and some would only appear in the 8

0 vacuum, giving rise to P- or T-violating ef-
fects.

Now we are ready to construct the effective Ham-
iltonian for the qq system. The wa,ve function is

(x„x,) where a, n, and x are color, spin,
g~ al~ & g2O2

and space indices, respectively, and the effect of
the instanton is given by the tensor product of sin-
gle-quark expressions.

y„., „.,(x,x,) = O(1). .O(2). .. U-'(x, )...

H'"""=O(x,p, ~,)O(x@,c,) V(x, -x,), (21)

where

V(x, -x,)= -2 —,D(p)
p

d'r-tr Ux, -r U ' x, -r -1
(22)

is the spin-independent heavy-quark potential which
has been discussed previously. ' The factor of 2
in (22) comes from adding the effect of anti-in-
stantons. We shall see that in a 8= 0 vacuum, the
two contributions are equal. There is one minor
complication which must be mentioned. In the pro-
duct O(l)o(2), there are terms depending explicit-
ly on the quark-instanton coordinate difference x
-xI. This dependence comes entirely from the
terms involving L and is at most linear in x -xI
if O(1)o(2) is evaluated to O(m '). Thus, in in-
tegrating over the instanton coordinates we appear
to encounter a new potential V, defined by

(x, -x,),V(x, -x,)

+ ( instanton - anti -instanton} .

l

SU,)

H'"I"t = O(x,p, o,)o(x~o,)( ——,'tr[U(x, ) U '(x,) —1]j.
(20)

The last step is to integrate over the instanton
spatial position and scale size with the appropriate
density function D(p), obtaining
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Fortunately, straightforward manipulations show
that V= 2 V, V being the spin-independent potential
defined in (22). Therefore, in the expansion of
O(l)O(2) appearing in (21) we must understand that

1
L, = —,(x, —x,) x p, and L,= =,(x, —x,) x p, .

Our main concern here is not the precise form
of V, but the fact that spin-dependent corrections
to it can be expressed directly in.terms of its de-
rivatives. The expansion of O(1)O(2) contains
terms of O(m ') and O(m '). The terms of O(m ')
are explicitly CP violating and survive only if we
construct a 8WO vacuum. The reason is that if we
go through the same arguments, replacing instan-
ton by anti-instanton, the only effect is to change
the sign of the O(l/m) terms in O. Then when in-
stanton (anti-instanton) effects are weighted by
e'3 (e '3) and the two terms summed, the CP-vio-
lating terms appear multiplied by sin8. Since ex-
periment constrains 8 to be essentially zero, we
may restrict our attention to the O(1/m') terms.
They are of two varieties: spin-spin and spin-or-
bit (the latter defined rather loosely as a term in-
volving spin of one particle and momentum of the
other) T.he spin-spin term is

complicated,

j
H — —

2 L1 V1o1 V1+ „2&1 (p1 x V1)
mg mg

L, V, o, V, +(1—2) V(x, -x,),
2m/ m 2

(24)

where, as mentioned in the discussion of (21), we
must take

L, = 2(x1 —x2) xp1, L2= -2(x, —x2) xp2.

At this point we note that the neglected terms in
Eg. (S) can be shown' to give rise to a spin-orbit
term of the form

1
H,'0= — 2 oi' L1+ 2 o'2' L2 V(X1 —x2),

I 2

where V is a new potential function unrelated to V.
A rough estimate' suggests that H,', is small (=10~/0

of H„).

m. THE STRUCTURE OF THE EFFECTIVE HAMILTONIAN

H,.= — (v, V, )((x2 V,)V(x, -x,)
1 2

~ l 2o1' 0'2 3V V(x1 —X2)
4m, m,

+ (r', o2(V,V.
/

—36.,,V2}V(x, -x,). (23)
1 2

(We have separated the tensor force from the spin-
spin force. ) These expressions are superficially
quite similar to the usual Breit potentials, but,
since V is not a Coulomb potential the r dependence
is quite different. The spin-orbit term is more

We have shown that to order 1/m' the heavy-
quark effective Hamiltonian can be expressed in
terms of the spin-independent potential V(x) given
in Eg. (22). In this section we shall discuss the
form and magnitude of this potential, as well as
the limitations of the dilute-gas approximation.

The spin-independent potential is given by

V(x) =+2 —,D(p) W
dp x
P P

where the dimensionless potential W(x/p), due to
an instanton of size p, is defined by

d'rtr[U(x -r) U '(-r) —1]
p 3p

.j. 2 ", mr mix-rl
(r2+ p2)1/2 [(r x)2+ p2]1/2

r (r -x) . vr . v lx —r I

(25}

This integral cannot be analytically evaluated for
all values of x. However we can find analytic ex-
pressions in the limits x-0 or x-~. For small
z=x/p,

L

Thus

dp
V(x) 11.2Vx'

J —,D(p)+ O(x') .
x~o p

2 sin'g
R"(Z) ~ Z' d'r

z-o ~9(r'+ 1)'

+O(Z )
r'

=
S

[v/4-4J, (2w)]Z'+O(Z')

= 5.635Z'+ O(Z ) .

gr2

(26)

5635(
)

'dp~
) (26)

We then can deduce from Eqs. (28) and (24) the
small-distance behavior of the spin-dependent
terms,
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H«- -
2 (x&2 pz) oz (+2 xp2} ozs' m~ 2mgm2

+, (x» xp, ) o,+2 (x» xp, ) o, 11.27 —,D(p). (29)

For large values of x, W(x/p) approaches a constant. This is to be expected since the background in-
stanton field falls rapidly (in singular gauge) at large distances, so that when the quarks are separated by
a distance much greater than the instanton size only one quark at a time is affected by the instanton, lead-
ing to a mass renormalization for large x/p.

For large x/p, we can expand Was follows:

Wj —
(
=, d'r Tr([1+ U(x —r)]+ [1+ U '(-r)])—, d'r Tr([1+ U(x-r)] [1+U '(-r)]j

(p) 3p Sp

i
d'r 1+cos, 2 2p/2 3 i d'rP (r"-'x) sin, »,», sin „

x»p op

Therefore,

W —
~

— = —,
' v'[-«o(&) -~i(&)] — +0

~

2m'p f p l'l
p) ~. ' ' » i ~) j

(31)

and

V(x) = 3V —,D(p) —
i D(p)+—0dp 4w' I dp 1l

p 3x g p X )

(32}

As noted above, the first term corresponds to a
mass renormalization of 18.5J (dpi p')D(p) per
quark, . The second term is an asymptotic contri-
bution to the Coulomb potential. The standard per-
turbative Coulomb interaction for a color-singlet
quark-antiquark state is 4 (g'/4m)/x, so that this
additional. term can be interpreted as a renormal-
ization of the @CD coupling constant due to instan-
tons,

l

and in Fig. 5 we plot W~, defined by

tensor 4m m 2

O'1 O2
(r 'xo 'x- 2 ~

—Wz3 p p

W,(z) = —W "(z) .W'(z)
(34)

&0.5

To obtain finally a potential which could be com-
pared with experiment (in the form, say, of the
low-lying charmonium spectrum) we must do an
integration over instanton scale sizes. Needless
to say, our formulas only make sense for scale
sizes where the dilute-gas approximation is valid.
According to Ref. 2 this means that we must im-
pose an upper cutoff p, on our integrals, where p,

(33)

This is identical with the coupling-constant renor-
malization derived in Ref. 2 by evaluating the gluon
propagator in a dilute-gas approximation. Thus
we see that instantons induce a mass and coupling
renormalization. %ith reasonable cuioffs on the p
integration these are large but finite, thus showing
that instantons do not confine.

For intermediate values of g the integral in Eq.
(25} cannot be performed analytically. We there
fore present a numerical evaluation of W(x/p) in

Figs. 2 and 3, from which the spin-dependent
parts of the Hamiltonian can be derived. ' For ex-
ample, in Fig. 4 we plot W, , defined byi' 02

Q

X

7.5

4.5

0.5 ).5 2

( x/p)

W. .(z)=- 2 + W"(z)
w'(z) FIG. 2. The spin-independent heavy-quark potential

due to instantons of a definite scale size.
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taneously and may therefore only be qualitatively
characterized until one has a more detailed know-
ledge of the confinement mechanism.

IV. THE THREE-QUARK POTENTIAL

Using the methods developed in Sec. II we can
evaluate the instanton-generated effective Hamil-
tonian for any color-singlet system of quarks. In

addition to qq (meson) systems we might be inter-
ested in qqq (baryon) systems. In the nonrelativ-
istic approximation such a system will be de-
scribed by a three-body wave function

(x„x„x,) where a, n, and x are the
color, spin, and space indices of the quarks. As
we have seen, the effect of a single instanton is
given by the tensor product of the single~uark
operators O(x, p, o)U(x). Thus for a baryon state

= O(1) .O(2), O(3) .U(x,)...U(x,)...U(x,)...g, , ~ ..., ...,(x„x„x,) . (35)

(36)

The effective three-quark Hamiltonian arising from an instanton of given size and position is then ob-
tained by setting HP= g--g. We pick out the color-singlet state of three guarks by means of the projec-
tion (1/u 6)e. .. , thereby deriving

2 3

H;,';""=,' O(x—,p, c,)O(x, p,o,)O(x, p, o', ) [c...e,...,, U(x,)...U(x,}...U(x,)... —3] .

Thus, as in the case of the qq potential, the effective Hamiltonian can be constructed from a spin-inde-
pendent potential V(x„x„x,). After integrating over instanton positions and scale sizes and adding instan-
tons and anti-instantons, we obtain

H'„';I'"= O(x,p, v, )O(x, p, (r,)O(x, p, (x,) V(x,x~,),
where

(3'I)

V(x„x„x,)= -2
Jt —,D(p) d'~ d& [a. ..e...,,, U"(x-r). ..U~(x, -r), „U~(x, -r), , —6],

p

where R is an SU(3) rotation matrix which specifies the group orientation of the instanton.
Now we note an important special property of SU(3) instantons —namely that they are embeddings in

SU(3} of SU(2) instantons. Thus

U =R exp' "'" ' ~ R-=R("' R-, U=.xp& '"'("-'), '~.
[(x r)', p.~'~'&

" "~0 1
"

I, [(x -,) +p'1 j
Since Eg. (38) is invariant under the global rotation R, it is clear that

(38)

(39)

a. ..e..., ,, U"(x, -r). ..U (x, —r). ..U (x, —r). .. -6= g (Tr U(x, —r) Tr U(x& —r) —Tr U(x, -r)U(x& —r)) —2.
sd

(40)

3

V(@yx2px3)= 2 g V -(x; -x.). (41) .

The factor of 2 in this expression is strange, but
the following argument will easily convince the
reader of its validity. I et two of the quarks sit
on top of each other, i.e. , set x, = x,. The two
quarks then behave exactly like an antiquark so
that V,,(x, =x„x,) should equal V,,-(x, -x,), in

But for such two-by-two special unitary matrices
the following identity holds, TrU, TrU, —TrU, U,
= TrU~U2 = TrU2L „ therefore the three-body poten-
tial of Eq. (38) can be written as a sum of three
terms, each of which is recognizable as half of
the two-body quark-antiquark potential derived in
Sec. II,' Since the operator O(x, p, &r} reduces to the iden-

tity when acting on an x-independent function we
can therefore express the 3q Hamiltonian as a sum
(with a factor of ~) of two-body Hamiltonians each
of which is identical to the quark-antiquark Ham-
iltonian

3

H,",;""=-,' g O(x„p„(r,)O(x~, p~, (r~)

x V(x, -~,}. (43}

l
agreement with Eq. (42). Note that if we were
dealing with an SU(N) gauge group the analogous
equation would be

N

V„,(x„x„.. . , x„}= P V„-(x, -x,). (42)
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This remarkable simplicity is a consequence of
the fact that the instanton in SU(3) is embedded
within a single SU(2) subgroup. Thus a given back-
ground instanton field only affects two colors at
a time. In a baryon state, which is composed of
three different colored quarks, only two of the
quarks are affected by a given instanton. When
we average over instanton group orientations the
energy is then a sum of two-body interaction, en-
ergies. This additivity will be a feature of any
contribution to the potential due to a semiclassical
configuration which is embedded in an SU(2) sub-
group, for example, meron pairs treated in the
dilute-gas approximation. However, the group-

orientation-dependent instanton-anti -instanton
interactions' will induce true many-body forces.
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where Uz, =T(exp(ifA'dx~)) andL& (i=i, ... , 3) are
three paths in Euclidean space which run from the
point at which the quarks are created to the point at
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