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The influence of the nonperturbative structure of the quantum-chromodynamic vacuum on the short-
distance behavior of hadronic currents is discussed. The dilute-gas approximation is systematically used. We
show how to calculate in this. approximation aribtrary Green’s functions and that the effects of tunneling
(instantons) are summarized by an appropriate effective Lagrangian. These meihods are applied to the two-
point current correlation function, which is explicitly calculated in the dilute-gas approximation. We estimate

the numerical size of the instanton effects for e te ~

annihilation and find them to be strongly momentum

dependent and large. The qualitative features of these corrections suggest an explanation of precocious

scaling.

I. INTRODUCTION

One of the unique features of non-Abelian gauge
theories is asymptotic freedom. The vanishing of
the effective coupling in these theories at short
distances leads to an explanation of scaling in deep-
inelastic scattering and has provided much of the
motivation for proposing quantum chromodynamics
(QCD) as a theory of the strong interactions.! The
standard analysis of the short-distance behavior
of hadronic currents in QCD has relied on the use
of the renormalization group and perturbation the-
ory, and has not taken into account the nonper-
turbative dynamics of @CD which must be the ul-
timate source of chiral-symmetry breaking and
quark confinement. Recently it has been proposed®
that the dynamics of QCD can be understood in
terms of the nonperturbative structure of the QCD
vacuum which arises due to tunneling between
classically degenerate vacuums, In this paper we
shall examine the effects of the vacuum structure
of QCD on the short-distance behavior of hadronic
currents,

Until now the study of the short-distance be-
havior of hadronic currents has relied solely on
the use of the renormalization group and perturba-
tion theory. Consider, for example, the analysis
of e*e” annihilation to hadrons.® Here one is in-
terested in the large-momentum behavior of the
two-point function of electromagnetic currents
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where II is related to the total annihilation cross
section by '

1l is asymptotic.
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g is the QCD coupling, m; are the quark mass pa-
rameters, and p is the renormalization scale pa-
rameter. By using the renormalization group
equation®
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one deduces that
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where g(2) [m())] is the effective coupling con-
stant [mass]. Now as x—«, 22()=0((lnr)?),
m(\)~x(Inn)’. Thus the large-momentum be-
havior of I can be calculated from the weak-coup-
ling zero-mass theory. For spacelike P?, II should
have no mass singularities., It is therefore reason-
able to assume that the perturbative expansion of
Thus,
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This then leads to an asymptotic expansion for

tot .
R= oe*r*hadrons/o‘e*e'—'u'u"
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which allows us to measure the sum of the squared
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quark charges, EQ‘?‘, as well as the effective
QCD coupling g(-p?).

In the perturbative treatment outlined above the
power corrections to the leading asymptotic be-
- havior arise solely from the quark mass param-
eters and are of order m(p)~ (m/p)(InP) for large
p. If the quarks are massless then the perturba-
tive expansion of II,, can produce no such power
corrections. For this reason alone it is clear that
in QCD there must be important nonperturbative
contributions to II,,, at least for moderate values
of P.° This is because one can, to a good appro-
ximation, regard the light quarks (up, down, and
perhaps strange quarks) as massless, so that
chiral SU(3) X SU(3) is an exact symmetry of the
strong interactions. The quark masses then arise
- by a nonperturbative mechanism due to the dynam-
ical symmetry breaking of chiral symmetry.
These dynamical masses are renormalization
group invariants® of the form

M(g,u):uexp[—fg%]%uexp(b:;z)- (7

Thus one expects that there will be “mass cor-
rections” in QCD of the form [M(g, 1)/P]°. This
is clearly consistent with the renormalization
group equation, Eq. (3), due to Eq. (7). However,
it is clear from the above form of M(g, i) that
such terms will not appear in an asymptotic ex-
pansion about g=0. Indeed if one examines Eq.
(4) it is clear that inverse powers of A can only
appear in I(\P, g, m =0, u) if I(P,g(\), m =0, u)
contains terms of the form '

exp [‘ ?(gx)—] . (%) ” f

Recently it has been discovered that the struc-
ture of the QCD vacuum itself cannot be described
perturbatively. This is because of the existence
of an infinite number of classically degenerate
vacuum states. The QCD vacuum consists of a
coherent superposition of these states labeled-by
a continuous parameter 6.”’® The properties of
this vacuum can be easily studied, for weak coup-
-ling, in the semiclassical or WKB approximation
by taking into account the tunneling between the
classically degenerate vacuums. Here one uses
the instanton solutions of Yang-Mills theory® which
give the dominant contributions to the sum over
path histories that tunnel from one classical
vacuum to another.

The consequences of this vacuum structure are
far-reaching. In addition to providing a solution
of the U(1) problem™?® it has been argued that
instantons provide a source for dynamical chiral-
symmetry breaking.” Furthermore when one con-
siders the interaction between quarks one finds

that the effects of tunneling are very large. They
give rise to a substantial coupling-constant re-
normalization® and have an important effect on the
heavy-quark potential®!!»!? Finally, it has been
argued that quark confinement itself is a con-
sequence of the structure of the vacuum due to
tunneling via “meron” configurations, which be-
come important at distances of the order of had-
ronic size.?

What is remarkable is that all of the above mech-
anisms are believed to set in when the effective
coupling is still relatively small. The effects of
instantons of a size p, or tunneling that takes place
in a space-time region of size p4, is of order

const X (—81-12—>6 ex (— i)
Z() FPFE/

This is a typical tunneling amplitude. The reason
that it can be substantial for small values of g%/
87° is that there exist many distinct tunneling paths
(degrees of freedom for instantons) in QCD. This
is the origin of the term (872/g*)°. Consequently
the effects of instantons and ultimately of merons
are important even when g*/87* ~-&— L. This
ensures that even on a hadronic scale the effective
coupling of QCD remains small and semiclassical
methods may be employed.

In this paper we shall explore the consequences
of this nonperturbative vacuum structure of the
short-distance behavior of hadronic currents. We
expect that at sufficiently small distances only
small-size instantons will be relevant. Asymptotic
freedom guarantees that the effective coupling is
small enough so that the density or the probability
of tunneling of such instantons vanishes rapidly,
in which case the “dilute-gas approximation” can
be used. The instantons will then lead to calculable
power corrections to the standard high-energy be-
havior, .

These corrections are calculated explicitly for
e*e” annihilation in the dilute-gas approximation
(DGA). Unfortunately we find that this approxima-
tion is not totally adequate for quantitative pur-
poses. It turns out that the instantons responsible
for these corrections are sufficiently dense that
one cannot neglect their interactions. However,
we do believe that the DGA does provide a qual-
itative, order-of-magnitude, description of the
nonperturbative effects of instantons as well as
providing the starting point for a more quantitative
study of these effects.

What is clear already from the DGA approxima-
tion is that the instanton effects are very substan-
tial,- even for values of the momentum for which
the effective coupling constant is very small.

This we believe provides a qualitative explana-
tion, together with the picture developed in Ref.
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2, of precocious scaling. For large momentum
one has almost free field behavior with small per-
turbative corrections and even smaller nonper-
turbative instanton corrections. As we decrease
P the effective coupling remains small all the way
down to hadronic momentum, M, whereas the
nonperturbative instanton-generated effects turn
on rapidly, dominating the perturbative correc-
tions at P~Mjy. Thus the logarithmic perturbative
corrections to asymptotic freedom are always
small, whereas the powerlike nonperturbative cor-
rections turn off rapidly for P>M, leading to
“precocious scaling.”

We start, in Sec. II, by discussing in some de-
tail the dilute-gas approximation. We show how
one can calculate in the DGA the vacuum expecta-
tion values of products of local operators, and
that the effects of instantons can always be sum-
marized by an effective, nonlocal Lagrangian.

As specific examples we consider the quark pro-
pagator and four-point functions, and derive an

- effective quark self-energy and four-fermion in-
teraction vertex due to instantons.

In Sec. III we apply these methods to calculating
the instanton contributions to e*e annihilation to
hadrons in the DGA. Here we make use of the ex-
plicit form of the massless quark propagator in a
background instanton field'*!* to derive an explicit
analytic expression for II,, for light quarks.

In Sec. IV we discuss the implications of the
above calculation. We present some estimates of
the magnitude of the power corrections for e*e”
annihilation, emphasizing however the limitations
of the DGA. In addition we discuss some of the
possible theoretical implications of these results,
noting that they may be used as input into Migdal’s
scheme®® for calculating hadronic masses.

Section V contains some concluding remarks and
in the Appendix we discuss the dependence of a
fermion determinant (which enters into the instan-
ton density) on the quark mass.

II. THE DILUTE-GAS APPROXIMATION

In this section we shall describe how one cal-
culates the expectation value of local operators in
the dilute-gas approximation. This approximation
is valid as long as the analog gas of instantons and
anti-instantons is sufficiently dilute, We shall see
that in this approximation the effects of multiple—
instanton-anti-instanton configurations can be
easily calculated from the properties of the single-
instanton configuration. We shall show that the
effects of the instantons can be summarized by an
effective Lagrangian.

Consider the vacuum expectation value of an
operator O(A, ,¥), which is a product of gauge

or quark fields. In the 8=0 vacuum this is writ-

, ten as®

o

.Z.;w J[DA, DYDY}, e-S4uH 04, 3, )
>3 [ [DA,DyDT],e-54:5,5) :

Nawcw

(vac|O|vac) -

@)

The sum in Eq. (8) runs over the discrete sec-
tors of function space corresponding to different -
values of the topological charge @ =#. In the semi-
classical approximation, valid for small coupling,
one evaluates the functional integral by perform-
ing a Gaussian integration about the saddle point
in each topological sector. These saddle points
can be taken to be superpositions:of well-separated
instantons and anti-instantons since the instanton
“gas” for small coupling will turn out to be very
dilute. Thus in the topological sector with @ =,
we expand the gauge field about A%+"™ which is taken
to be a superposition of #, (n_) instantons (anti-
instantons) where n=n,-n_:

n, - ) n, .

Azw-:’ZA:,”<x,,Ri,p,>+‘ZA;“(x,,Ri,p,). 9)
=l =1

The instanton fields must be superimposed in the

singular gauge where :

R:bnauv(x - xi)v piz

_ b /
S - x) G- xp)7 40,7 T. 10

A;(;”(quu Pi)

These configurations are parametrized by their
position x,, scale size p, and group orientation
RY. ‘

Such a superposition of instantons is only an
approximate saddle point of the classical action.
A careful treatment requires introduction of con-
straints in order to fix the collective coordinates
of each instanton. In addition one must take into
account the interaction energy between an instanton
and anti-instanton, S,,,(x}, R}, p}), which repre-
sents the difference between the action of the field
given in Eq. (9) and (n* +%7)(87%/g2). It has the
structure of a dipole interaction which falls off as
the fourth power of the instanton—anti-instanton
separation.? As long as the instanton gas is suf-
ficiently dilute the dominant contributions to the
functional integral will come from well-separated
instantons and S,,, can be ignored. Furthermore
in such an approximation the quantum fluctuations
about a superposition of well-separated instantons
is easily calculated. Thus in calculating the
vacuum-to-vacuum amplitude, the contribution
of a single instanton yields™

- d
f[DAM]n*BI,n;noe S(A)szBSQD(p)’ (11)

where®
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D(p):O.l(%%)sexp (—%) (12)

denotes the density of instantons of size p (in units
of p=*) and V is the volume of space-time. In the
above approximation the saddle-point integration
about a multiple-instanton—anti-instanton con-
figuration is

[ (oA,

In performing the functional integration in Eq. (8)
we must also integrate over the quark fields .
This involves, in the semiclassical approxima-
tion, calculating the determinant of the operator
(i = m - A), where A, is the background classi-
cal field,

N(v)n’m_ dp* .
~ I/ Esoen.  a3)

nn_!

fdll)dg_b eldx sUd-m-Arp =det(if —-m -4A)=Aa(4). (14)

In the dilute-gas approximation, where A is a
superposition of well-separated instanton fields,
the determinant factorizes into a product of the
determinants for each individual instanton. Thus,

J

dxid
n,ln! [H x‘ p, dR3D (p})A(mpj <O>.4
-o

A, HA(m Pp ), (15)

where A(m, p, p) is the fermion determinant in a
background instanton field of size p. It is a dimen-
sionless function of the fermion mass, 'm,‘ of p and
of the renormalization scale parameter . It has
been calculated by 't Hooft in the limit mp - 0.
For large values of mp the fermions should de-
couple completely.'® We have calculated the large-
mp limit of A(mp). The results can be summarized
as follows (for details see the Appendix).

For a single fermion (after renormalization),

=(2/3) Inou
Almp) = {1.338(pm)e ,
1-0.16/(mp)?, pm>1. (16)

The determinant in the case of N, fermions of mass
m,, simply factorizes and is thus equal to

N
ﬁ Almyp) .

We are now in a position to evaluate the vacuum
expectation value of O. In the dilute-gas approxi-
mation as outlined above we will have

.pm<<1

(vac|O|vac) = Lt

‘where O)ap,
field (4,),,

dxldpi + A
nnwn*ln'./‘n dRD(p)(mp

is the expectation value of the product of fields represented by O in the background instanton
Since this will in general be a function of the instanton coordinates the integration over

, (17)

instanton posmon (dx%) and group orientation (dR;, normalized so that f dR;=1) must be performed after

the evaluation of (0),

When the density of mstantons is small this can be expanded in a power series in the den51ty, yielding

(vac [0 |vac) =)+ T f d(’:;jf* AR, D(p,) AMP,Y(O) pis, pmyr = (O] +0 D), (18)

where (0), is the ordinary vacuum expectation value of O. The higher-order terms, which are proportional
to higher powers of the density, can easily be evaluated. For example, a contribution to the D* terms is

fdx ax. p, F)); dR dR D(p-v)D(p-)A(mp+)A(mp-)[<O>A(x+,ﬂ.,,R,,x_,p_.R )‘<O>A(x*,0+.R*

The integration over instanton positions is ex-
pected to be convergent. This is because the
expectation value of a product of local operators
in a background instanton field will approach the
ordinary vacuum expectation value when the
instanton is centered about a point very far away
from the local operators. Consider the second
term in the density expansion of (vac |O ]vac).
When x, is very far away from the positions of
the local fields contained in O expects that

<O>A* (XpPpRy) - <O>0

<O>A(x_.n_.R.) +<O>o] .

(19)

r .
will vanish as a power of (x,) In all of the cases
we shall consider below this will be sufficient to
render the f dx, integrals convergent.

Finally we must consider the integration over
instanton scale sizes. For small p,

-1

F20)~
In(1/pu)’

and thus the density D(p) vanishes rapidly, justi-
fying the dilute-gas approximation. However as
p increases the density increases leading to a
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smaller mean instanton-anti-instanton separation
and to increasing corrections to the DGA. For
large p one must include the corrections to the
DGA arising from instanton-anti-instanton inter-
actions. In addition other configurations, merons,
become important for large p. Thus the DGA
to the evaluation of (vac|O |vac) will be reliable
only if the p integrations are peaked at sufficiently
low values of p. This can be achieved to some
degree by considering O to be a product of local
operators at short distances, ‘since one expects
that (0) 45,0, ) — {0)o Will vanish, for p>d, asa
power of (d/p), where d is the largest scale size
assoc1ated with O [i.e., if O =J,(x)J,(y), then
~lx-y|].

We shall now consider some special examples
of operators O, and show that the effects of in-
stantons in the DGA can be summarized by an
effective Lagrangian. Consdier first the fermion
propagator O =T{J(x)¥(v)}. We must evaluate
this propagator in a background instanton field,
A, o, as given in Eq. (9). Thus

(O>A"+'n_ =(x|(z¢—m _An+,n_)-%iy> )
Esn.,.,n-(x’y’ﬂi) ’ (20)

where §; =(x;,R;, p;) labels the instanton coordi-
nates. In the DGA the functional integral will be
dominated by well-separated instantons. In that .
case S, ,. can be calculated in terms of the prop-
agator in a single instanton or anti-instanton
field,

S0, y;92,) = (x [ = m = A(]|p) . (21)

Since A, ,,_ is a sum of fields localized at well-

separated positions S,,,,. can be expanded as fol-
lows:

n,_,n = 0+ E[S(” 0]

+ ‘zﬁ:[sm -5, so'l[s(i) —Sg] 400

>

i#ig0 o dn an.

[S4 -85, e[S men - 5(],

(22)

where S, is the free fermion propagator Sy(x —y)
=(x|(G# - m)™t|yy, S is the propagator in the
background field given in Eq. (10), and matrix
notation has been employed so that

s©8;7159 = [ dudo e |[iF - m - L@ |
X (u | (i —=m)|v)
X (v |[ii§—m —4; Q)] |y) . (23)

This expression has a simple diagrammatic

X \ y = x———y

A
+X

. E : . m)(i

X y X y x Y

FIG. 1. Leading contributions to the propagators.

representation as illustrated in Fig. 1. The terms
we have neglected are those where the fermion
interacts with say the instanton localized at x,
both before and after interacting with the instanton
localized at x,. Such a contribution will be neg-
ligible if ]x -x | is very large. Its inclusion in
S™ will lead to corrections which will be of higher
order in the instanton density (see Fig. 2).

We now insert this expansion into Eq. (17).
After some algebra one then derives

(vac|T[P()¥(y)] | vacy =S —)

= <x| Zﬁ‘_:n—_z |y> ,
. (24)
where
wlzlyy- 3 [ Bats D(p,)A(p,m)
X (x |SO'1[S(x*, Puy R =So) S ) .
(25)
Thus in the DGA the effect of the instantons on the

fermion propagator is contained in a self-energy

term Z, which is proportional to the instanton
density. The terms that we have neglected in
S,,,n. would contribute terms of order density
squared to Z. Note that to lowest order in Z, or
equivalently in the density of instantons, we could
have derived Eq. (24) directly from Eq. (18).

In a similar fashion we can derive effective
fermion interaction terms that summarize the
effect of instantons in the DGA when O is a product
of many fermion fields. Consider a product of

X -y
FIG. 2. Nonleading contribution to the propagator.
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four fermion fields,

mBO7’5(xlx2x3 x4) = Z_/)‘a (xn)aB(xz)zpv(xs)Zpﬁ(xq) ‘
We then have, in a background A,,+, . field,
<O>An“ s -[S, L (e, %55 Q‘i)]‘ay [Sn*. n-(xz’ X4 Qi)]sﬁ

+[ Ny N (xv a5 i)]uﬁ [sn+,n_(x2,x3; Qi)]B'y .
(26)

—

(vac |a5075(x1x2, X3Xs) ]vac) =Sy(X, = %) oy

Sy(%, =% ,)gs

If we now replace S, , by its approximate ex-
pression in the DGA and insert in Eq. (17), we
will find that the effective fermion four-point
function is that generated by a theory with a
fermion propagator given by Eq. (24) plus a four-
fermion interaction term. This interaction can
most easily be derived by using Eq. (18).

Thus,

. E f dx*dp*dR,v D(p,)A(mp,)

(0,)°

X{[st(xuxs 3 ) = Solx, "x3)]ow Sol%, =% )gs

+ SO(xl "xa)w [si-(xv %45 Q:t) - so(xz - x4)]85

+ [st(xuxs; Qt)
+O(D) = (x, —

- SO(xl _xa)]a:-r [S (xzs X45 Y ) So(xz —xq)]aﬁ}
X, ¥=0), (27

where we have separated explicitly the terms corresponding to the instanton self-energy corrections to
the fermion propagator. This expansion is represented in Fig. 3. We thus deduce that instantons in the
DGA generate an effective four-fermion interaction term, given by

G op, 46 (%, %0, X3%4) = ) (o)

X[S.(x, x

27749

Note that this vertex (which incidently is not
irreducible) is nonlocal. Thus even though it is
an effective four-fermion vertex it will not lead
to ultraviolet divergences. Indeed as x,—~x, the
leading singularities in S,(v,, ¥,,$,) and in
So(¥, —x,) will cancel.

If we were to keep all the terms in the expansion
of O in the DGA to S, ,., we would simply find
that they are given by the sum of all diagrams
generated by the connected vertex G and the fer-
mion propagator S [Eq. (24)]. The higher-order
corrections to S, , would lead to terms in G
proportional to tﬁe square of the instanton density.
In a similar fashion one can derive effective 6,

8, ...,2N, fermion vertices by evaluating in the
DGA the vacuum matrix elements of products of
6, 8, ..., 2N fermion fields. Thus it is suffi-

FIG. 3. The four-point function.

3 92,) = So(x, =% ,)]gs = [%4

3 [ e (o)A, [S, 0,5 R2) =Syl =)

— X, Y=0]. (28)

cient to calculate the fermion propagator in a
background instanton field in order to evaluate

the vacuum expectation value of a product of an
arbitrary number of quark fields in the DGA. This
approximation will be valid as long as the f dp
integrations in Eq. (17) are dominated by instantons
of size p such that g%(p)/872 is sufficiently small.
In principle corrections to the DGA which arise
due to the instanton interactions, proportion to
D(p), as well as higher-order quantum corrections,
proportional to g%(p)/872 can be systematically
calculated.

III. THE CURRENT TWO-POINT FUNCTION IN THE DGA

In this section we shall calculate the vacuum
expectation value of products of hadronic currents
in the DGA. In particular we are interested in the
two-point function of the electromagnetic current,

1, —y)=(vac|T[J, (x)},(y)] | vac), (29)

J,=¥Qvy,¥

As demonstrated above this can be calculated by
summing all Feynman diagrams generated by the
fermion propagator and four-fermion interaction
as given in Eqgs. (24) and (28).

This propagator and vertex can be calculated
in terms of the propagator, S,(x,v,p,), of’a fer-
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mion in a single-instanton field, A,(p,). This can
be written as

S.(x,50,) = ZE: el Q3. ) (30)

E-m

where ¥ (E) are the eigenfunctions (eigenvalues)
of the operator iﬁ-—fxﬁ(ﬂi) ’

i, (x) =E¥ 5 (x),

(1)
fd4X|\1/E(X)|2=1.

Jackiw and Rebbi'® have explicitly constructed
the solutions to the Dirac equation, Eq. (31), on
the five-dimensional sphere, as well as the ex-~
plicit propagator in the case of m=0. A simpler
expression for this propagator has been derived
by Brown et al.'* using an O(4) formalism. We
shall calculate S, in an expansion about m = 0.
This will be useful for discussing the large-mo-
mentum behavior of I1,, where terms of order
(m/p)?* may be neglected.

Now, when m =0 there exists a zero-energy solu-
tion to the Dirac equation in the instanton field,

9 1/2 o
(Ty)y. ;= (——)
0/a, ¢ 2 [(x —x*22+p*2]3/2
. X 1+’}/5>
X |iye =— 2
(W [xl 727 2 ai (32)

where a (i) is a Dirac (color) index. Separating
this term from the ¥ ., eigenfunctions we then ex-
pand in powers of m, so that

‘I’r,(xy)n\lig(th V()T (y)

E#0 E

S*(X,y; Qg) ==

+m Zﬁ—(%\gg—(ﬂ+0(mz)' (33)

E#0

It turns out that the terms of order m in S, must

. 2\=-1/2 2
S*(x,y;Q*)=So(x—y)(1+p ) (1+~p——z—}§§42)<1+p

2 \=1/2 .
_f)

A (x — 2\=1/2 2 1i
_M(up—z) (?P_M.M*.W*.A%.y Y

x2

be kept when calculating the m -0 limit of 11,
since they can combine with the 1/m terms to
yield a finite result.

Now we can use the explicit expression for

5.6c,9,8,)= S22 ONE0,0) . (34)
E#0

derived from Brown et al., who show that'*

8,9, Q) =v*D,A,k,y, )51 %)
+ 8,06, QD 317 7,), (35)
where D, =8/8x, —iA, (x —x,,p,;) and A, (x,v, &,)
is the propagator of a spinless particle (which is

a triplet under color). It has the explicit form (as
always we work in the singular gauge)

A i 1 Pf «1/2
03,00 g (L2 )

p.lo,*(x = x,)0, (¥ -x,)
X <1+ (x=x)%(y-x) )

X (1 +——*———(v‘i;)2>-l/2 (36)

and (0,,), = (R,,0y, Fi).
The full propagator, up to terms of order m?,
is then given by

S, y;8,)=~ II)O(xy)j)f(y) +8,(x,y, R,)

+m/ a‘zS,x,z,9,)S,(z,y,Q,).

(37)

It is instructive to examine the éxplicit form of
S,. For an instanton or anti-instanton located at
the origin

x%y® % +X 2
¥ - 17 2\-1/z
+p2p—+y2—0*'xo;-Aa¢-yc&-y 275) (1+%) s (38)

where S, = —4£/27%A% A =1/47°A% A=x -y,

Note that as A-0, S, approaches the free quark propagator S,. This will guarantee that instantons will
not affect the leading short-distance behavior of hadronic currents and that their contribution for large
momentum, p, will be suppressed by at least 1/p®. Also one easily verifies that S, —S, vanishes rapidly
when the instanton is very faraway from x or y, which ensures the convergence of the integral over instan-
ton position when Z or G is calculated. We also note that S, contains P and T violating terms. These will
vanish, however, when we sum over instantons and anti-instantons in a =0 vacuum. However if 6#0
we must add S, with different phases, ¢*'’, and the P, T violating terms will survive.

We now proceed to calculate II,, in the DGA. To lowest order in the density we can use Eq. (18) direct-
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ly. We must therefore evaluate II,, in a background instanton field. Clearly,

Huv(x’y9 Q*) = <Ju (x)Jp(y))A(Q*) = Z Qizn‘{;y == Z Tr('y“S:(x, Y, 9,)‘)’,,3:(3’; X, Q*))Qiz ) (39)
)

where the sum runs over quark flavors labeled by i, and the trace is over color and Dirac indices. We
can calculate II ,, explicitly if we expand St in power of the quark mass m ; In particular we shall ecalcu-
late II,,, in the limit of vanishing quark masses, in which case the first three terms in the expansion of S!
will suffice. Owing to the fact that J, is a vector current the 1/m? as well as the 1/m terms vanish when
the traces are performed. This would not have occurred incidentally if we considering scalar currents.
In fact it is precisely these terms that give rise to the effective vertex, first discussed by ’t Hooft,'°
which has been used to probe for chiral-symmetry breaking in Ref. 2. ‘

Keeping only terms which survive as m;~0, we find

b, y; Q) =~Tr[7,S,(, v, 2,)7,5.(y, %, @ )]+2Tr[yu o) (y)y, fd 2S,(x,2; Q,)S,(2,y; Q, )] (40)
the second term arising from the interference of the O(1/m) and O(m) terms in the quark propagator. Using

the explicit form of S, the first trace is easily evaluated yielding [we have averaged over instanton group
orientations for G =SU(3)]

‘h.h
=Tr{y,S,(x,v; 2,)7S.(v,x; Q)] = -Tr(yu o¥oS0) FSTotr 2(2” 3 h’v(suavs'&x‘f—i‘ (2428 _ g8 A?)

2
+EA%-(hy(A°‘yB+Aaya)—hx(A°‘xB+ABx°‘)) »

- 9snna L, 0%~ 205%)) @
where h,=1/%%+p?, A=x -y, T= x+y, and S, .8 = g,mg,,ﬂ Suv8as +8us 8va» and we have chosen the instanton

to be located at x, =0.
The second term can be easily calculated by using the identity (14) —(yD)*3(1 + ;) =D?3(1 +7;), yielding

3 2
'F(hxh‘y)z 'Z-Z{(pz +X °y)guv + (yuxv - Xp yv):t €pavs Xa ya] . (42)

Finally we add these contributions and sum over instantons and anti-instantons and subtract 1,,), to ob-
tain

ol =3 s ) - 21,

:Zle 34(hh )2 2(_ 222A4u.Av+ ZZ'A(EMAU+A:;ZV_Z°Aguv) + Z(Az uv_AuAu:AuzL_ szu)>
4 A A A ’

my=0

43)

where of course (II,,), =125****A, 4 /(27°)°A%, the 3 arising from the color trace. A check on the above
calculation is provided by current conservation 8I1,,(x,y)=281,,(x,y)=0.
Note that this expression vanishes when p=0, as it must since then the instanton is a pure (singular)
gauge. Also note that the light-cone singularity is softer than that present in (I1,,), £ 1/A%, In fact it is
"suppressed by afactor of A‘as A— 0. It will imply that the instanton corrections will be suppressed by 1/p%.17
Alsonote that 8I1; behaves as 1/(x ,)® for large instanton positionx . so that the integration over instanton posi-
tions in Eq. (18) will converge. We also observe that it was absolutely necessary to keep the order-m termsinS,
inorder to obtain the correct zero-mass I, . If wehad dropped these terms the resultingII, , would not evenbe
conserved. Thus the zero-quark-mass 11m1t mustbe treated very carefully and one should only setm =0 after
a complete calculation of gauge-invariant Green’s functions.
Our final expression for II,, in the DGA is then

M -3)= 350, (12,650 + [ L3LIDOIA(m )01, 5,332, )+ 0m ) 4e)

Since II,, is conserved, it is sufficient to calculate its trace I1(A)=1II}(A). We find that
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BIT: (x, 3 2, p) =—mr 2 - m>2p4{3A4_2 [A(S+22) - (2 +22)24%. ' . (45)

The integration over instanton position, z, can now be explicitly performed yielding

36 p* 8

8II(4, p) = fd 2610, (x,952,p) = = zz P aAz(Az &ln

1+¢& . A7
e e )

In the following section we shall use this expression to discuss the magnitude of the instanton correction

to 11,, for large momentum.

IV. e*e” ANNIHILATION

In this section wé shall discuss some of the theoretical and phenomenological implications of the in-
stanton contributions to the e*e” annihilation cross section. First we shall estimate the numerical value
of these corrections. We start by calculating the Fourier transform of dII(A,p):

We shall be interested in 8II(P, p) for large values
of the momentum. In this region we can safely
neglect the second term of Eq. (47), which de-
creases more rapidly then exp (=Pp). The error
thus made turns out to be less than 10% for the
range of momentum we shall consider.

Inserting Eq. (47) into Eq. (44) we calculate the
-net value of I (P) [as defined in Eq. (1)] including
the first two perturbative contributions and the
contribution of instantons,

1 2
“‘(—zczﬁ))

nE) = g ZQ [ ( )

16
Ay SOOI

(48)

To estimate the instanton contribution we make
the following approximations: (a) As discussed
in the Appendix the fermion determinant for light
quarks suppresses instantons of size p=<p,,
whereas for instantons of size-p>p,, A(m,p)~ 1.
Thus we shall approximate A(m;, p) by ©(p —pa).
(b) For large p the DGA surely breaks down. First
as the density increases instanton-anti-instanton
interactions can no longer be neglected. Also we
must include meron configurations, which become
important once x(p) = 872/g*(p)~ 16. Thus the con-
tribution of instantons in the DGA approximation
must be cut off at some value of p=p,, and the
above integral becomes

dP -8m2/E Xp)
167 [ 0. 1(g (p)) e

~16722: lf dxxeexp( Tx), (49)

where we have used the perturbative value for

(47)

dx
— & -1
din(1/pu) ’

neglecting the instanton contributions to the coup-
ling-constant renormalization. To estimate X,

we consider the net fraction of space occupied by
instantons and anti-instantons of size less than p,

f)=7 [ " Lo.1[x(0) expl-x(p)]. (50)

When this fraction is of order 1 the DGA surely
breaks down. We shall take as an estimate for
%, =x(p,) the value of p for which f(p,)=1. This
yields x,= 14, p,~ 0.28u.~'. Finally since the in-
tegrand in Eq. (4a) is a rapidly decreasing func-
tion of x, for x >14, we can let x,~«. We then
obtain for the above integral the value (8.1u)%.
This value is relatively insensitive to the choice
of x,= 14, indeed if we had taken x, =17 or 15, we
would have obtained the value (6.6u)* or (7.8)%
However, if no cutoff had been imposed, i.e.,
%, =0, then we obtain (20.2u)%.

Let us now compare the instanton contribution

II;, to the free field theory value II,. The ratio
of these terms,
m, (8. 1u> 1
Bz, ( ATz (51)

is given in Table I for various values of P. We
have expressed P in units of 44, since a rea-
sonable estimate of the hadronic mass scale
(M, or My) is given by My~ 4u (Ref. 2) (i.e., we
take p~ 0.251~! corresponding to x~ 16, to be an
estimate of the size of a hadron). We note that
R, is very small until the momentum is of order
2M 4 and then it increases rapidly. In Table II
we compare the instanton contribution II; to the
second-order perturbation theory contribution
I1,. Here we have made the arbitrary choice for



TABLE I. The ratio of the instanton contribution to
the free-field value, R =I;/Ilj= (8.1n/p)"/In(p%/ ).

2
R, p/an - x(p) 1)
7X 1078 20 48 0.021
2.4X 1075 15 45 0.022
1.2x 1074 10 41 0.025
2.4X 1073 5 33 0.03
0.007 4 30.5 0.033
0.025 3 . 27.3 0.037
0.14 2 22.9 0.044
0.55 1.5 19.7 0.05

the value of g%/8n% in Eq. (48) to be equal to e/x,
~0.19. Again the ratio

Rz=%'1 =(8_~1%)£)“(% 1n%(")) o C(52)

is very small until P~ 3M ,, and then it increases
rapidly.

The above estimates are clearly very crude and
quite sensitive to the large'p cutoff. An improved
treatment would take into account instanton

"interactions, the effect of instantons on the coup-
ling-constant renormalization and would treat the
mass dependence of the fermion determinant more
precisely. The most glaring shortcoming of our
calculation is, however, the fact that we have not
taken into account merons which presumably are
responsible for the dominant vacuum fluctuations
on a scale larger than p,. Thus the above calcu-
lation, which is reasonable for instantons in the
DGA, probably underestimates the nonperturbative
contributions to I, .

We have calculated II,, in the Euclidean region
(P? spacelike). To compare with experiment it
is necessary to continue to the Minkowski region
(P? timelike), say by expressing Il (p) using a

TABLE II. The ratio of the instanton contribution to
the second-order perturbation theory contribution, R,
=1;/1;= (6.80/p)*{4$ Inlex (p)/X J}".

2

7 X109 20 48 0.021
2.4 X10™ 15 45 0.022
1.2 X107 10 41 0.025
2.4 X1072 5- 33 0.03

6 X102 4 30.5 0.033

0.19 3 27.3 0.037

0.43 2.5 25.3 0.04

1.1 2 22.9 0.044

4.1 1.5 19.7 0.05
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dispersion relation in terms of ¢,+,=_, pagrons - ThUS
the powerlike corrections to Il , for spacelike
momenta would be related to moments of . There
is however little point in attempting such a com-
parison at present.

We can however draw some eonclusions from
our calculation which we believe will not be al-
tered by an improved treatment.

1. The magnitude of the nonperturbative in-
stanton contributions to Il p,,(P) is a rapidly varying
function of P [~(CM,/P)*, where C= 1]. These
corrections are negligible for P = CM,, but in-
crease rapidly for P<CM . Since the effective
coupling g%P)/8n* remains small down to P~ CMy
one expects that there will be a sharp transition
from the region of asymptotic freedom (Pz CMy),
where there are.small logarithmic corrections
to free field behavior to the region (P<CM)
where there are large nonperturbative effects.
This could explain precocious scaling.

2. The nonperturbative effects become com-
parable, and then rapidly overwhelm, the per-
turbative corrections for values of the momentum
which correspond to very small couplings. In
our calculations we find that this occurs when
g%/8n®~% . Thus, one cannot trust perturbation
theory once the effective coupling, g*/8n%, is of
order .

Finally we note that the large-momentum be-
havior of I1,,(P) could be used to calculate meson
masses. Migdal®® has proposed a scheme where
one attempts to match the large-Euclidean-mo-
mentum behavior of the vacuum expectation values
of products of hadronic operators O, = (say
$yu1¢“2. .. 1,,¥) with a sum of meson poles. He
has developed efficient techniques for deriving
the resulting meson spectrum. This method ap-
pears to fail if one only takes into account the
perturbative corrections to free field behavior.'®
It would therefore be very interesting to include
the nonperturbative corrections in Migdal’s scheme.
Note that (0|T[ O; (x)O; ()]|0) can be calculated in
the DGA using exactly the same procedure dis-
cussed in this paper.

V. CONCLUSIONS

In this paper we have analyzed the effect of
vacuum tunneling (instantons) on the short-dis-
tance behavior of hadronic currents within the
dilute-gas approximation. In particular we evalua-
ted these corrections for e*e~ annihilation. We
have seen that these nonperturbative effects are
substantial and overwhelm the standard pertur-
bative corrections to asymptotic freedom at
values of the momentum which correspondto rather
small couplings.
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There are, however, many problems which re-
main to be resolved. The dilute-gas approximation
is insufficient for a truly quantitative treatment
of instanton effects. One must improve upon this
approximation taking into account instanton in-
teractions and the contribution of meron con-
figurations. Given such an improved treatment
it would then be worthwhile to confront these cor-
rections with experiment, as well as to use them
to get a handle on the hadronic spectrum.

In addition one would like to extend this analysis
to deal with deep-inelastic scattering, where one
directly probes the spacelike region and where
the experimental information is so rich. The
analysis of the instanton corrections to deep-
inelastic scattering, however, is much more
involved than that of e*e~ annihilation.

In the standard analysis of deep-inelastic scat-
tering one utilizes in addition to the renormaliza-
tion group plus perturbation theory the existence
of an operator-produce expansion. This ex-
pansion, however, appears to break down once
tunneling is taken into account. This is perhaps
to be expected if one recalls the intuitive physical
motivation for a local operator-product expansion.
Namely the product A(x)B(y) of local operators
for values of [x —y| much less than the charac-
teristic length scale of a local theory should be
indistinguishable from a local operator. Thus,
it is quite plausible, and can be proved to be true
to all orders in perturbation theory, that an
asymptotic expansion exists as |x — y| -0,

~ _ Xty '
AWBG) = T Ck-y0, ( s ) . (s3)
The Wilson coefficients C, are c-number functions
whose x — y dependence can be determined by use
of the renormalization group and O, are a com-
plete set of local operators.

In the presence of tunneling the above intuitive
picture breaks down. 'Given a finite density of
instantons and a finite |x - y| there is always a
nonvanishing probability that a tunneling event
(instanton) occurs inbetween the sﬁace-time events
x and y. Therefore, there is a clean distinction
between the effect of a perturbation on the system
by means of a local operator A(x,¢ ,) followed by
a perturbation by means of B(x,t,) and a per-
turbation by means of a local operator

o= 54)

no matter how small ¢, — ¢, is, as long as one can
tunnel between two degenerate vacuums in the time
interval ¢, —¢,. To be sure as {, —¢,~ 0 this re-
quires instantons of sizes p st¢, ~{, and thus the
vanishing density of these instantons as p-0

ensures that such events will be rare. However,
we have reason to expect that such tunneling events
will invalidate a local operator-produce expansion.

Indeed if we analyze deep-inelastic scattering
in the DGA, using the effective nonlocal Lagrangian
which summarizes the net contribution of in-
stantons, we find in addition to nonperturbative
corrections to the Wilson coefficients of the
standard operator-product expansion new con-
tributions that appear not to be describable in
terms of local operators. To be sure we can
determine the ¢® dependence of the instanton cor-
rections (1/¢%), however, it is not clear that the
coefficient of such corrections can be estimated
in the absence of explicit hadronic wave functions.
This problem is currently under investigation.

Notes added in proof. After submission of this
paper we received a paper by L. Balieu, J. Ellis,
M. K. Gaillard, and W. J. Zakrzewski, CERN Re-
port No. TH-2482, 1978 (unpublished) dealing with the
same subject. They evaluate 6II,, due to a single
instanton, obtaining a result identical to ours.

(We would like to thank them for bringing to our
attention certain typographical errors in our origi- .
nal manuscript.) They integrate over the dilute
gas instanton density, with small bare quark
masses, without taking into account dynamical
mass generation. They then attempt to deduce
prediction for the behavior of 8I1,,, and thereby
OR, in the timelike Minkowski region. Since the
first term in Eq. (47) has no cut, and the cut of
the second term is dominated by p 0, they con-
clude that ImdIl, , is calculable as Q®— =, falling
rapidly to zero like @ *"¥¢/3 (up to logarithmic
corrections, where N; is the number of quark
flavors). We disagree completely with this analy-
sis for the following reasons:

1. The DGA cannot be used to discuss the analyt-
ic properties of Green’s functions. In this approx-
imation one does not obtain confinement and the
elimination of the zero-mass states. Thus, for
massless quarks, 0I1,,~1/p%+ +++ and contains a
pole at p>=0. An improved treatment will surely
remove this pole from the physical spectrum re-
placing it with a cut at p?=4M_ 2. However, this
requires control over the infrared dynamics of the
theory, which is beyond the domain of the DGA.

2. Even within the spirit of using the DGA, there
are corrections to Eq. (47) arising from perturba-
tive gluon corrections of order (Inp?)"/p? which
have cuts at p*=0. Furthermore the appearance
of 1/p? in Eq. (47) is due to the fact that one has
expanded about zero mass in the quark propaga-
tors. If one keeps the mass finite in these propa-
gators then the pole at p?=0 in 011, , is replaced
by a square-root branch point at p2=4M2. This is
irrelevant for large spacelike p2, however, it
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X/VWQMX
Ap Av

FIG. 4. The second-order-in-A contribution to the
fermion determinant.

clearly affects the discontinuity of 8II,, for time-
like p2. Another way of saying this is that mass
corrections to 611, ,, of order (m?)¥/(p?)¥*!, can
only be neglected as p%— = in the spacelike region.

Thus, even within the spirit of the DGA the cor-
rect conclusion would be that

AR c

~~

R A

where c is a constant which cannot be calculated
without making assumptions regarding the instan-
ton density.
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APPENDIX: THE MASS DEPENDENCE OF THE FERMION
DETERMINANT

In calculating the density of instantons in the
DGA one must evaluate the determinant of the
operator (if +A —m) for a background instanton
field A,

Det(ig +A—-m) = exp[Tr In(if +4 - m)]. (A1)

Here we shall discuss the mass dependence of
the determinant.

The determinant whose logarithm is simply
the sum of all connected one-loop fermion dia-
grams in the background field, is divergent. The

divergence is canceled by the appropriate coupling-

constant counterterm. The renormalized de-
terminant is then a dimensionless function of m/p
and pu where pu is the renormalization scale pa-
rameter and p the instanton size.

This determinant has been evaluated explicitly
in the limit of zero mass by ’t Hooft.!° Using
Pauli-Villars regulators he derived

A(m/p, pp) =~ 1.338 pm exp(-2 Inpp). (A2)
m=0

The factor of mp arises due to the existence
vof the zero-energy mode for vanishing fermion
mass in a background gauge field of topological
quantum number one. The factor —ZInppu is
exactly the correct magnitude to combine with
the gauge field determinant to yield, after renor-
malization the value 872/g 2(pu) for the instanton
action where g 2(ppu) is the effective coupling
including the effects of renormalization due to

fermion loops. Both of these factors are thus
derivable from general principles. The remaining
part of the determinant (1.338) requires explicit
calculation. "
On the other hand in the limit of large masses,
m —~, we expect that the fermions should decouple
completely. Indeed the decoupling theorems!®
imply that as m — the total effect of the fermions
(to order 1/m?) in the theory can be summarized
by a coupling-constant renormalization. We shall
show below that, after making the appropriate
coupling-constant renormalization,

A(m/u, pu)m; 1- (—%’%GF . (a3)

To illustrate the above consider the contribution
to In A of the diagram in Fig. 4 which is

A,(P)1I, (P)A(-P
G AP L, (PYAL(-P),
where Au(P) is the Fourier transform of the

instanton field and II, ,(P) is the standard vacuum
polarization tensor

1
(P = 57 (PP, £, P?)

x[lln‘m“ f daa(l-a)
x1n<_m2+i’;i(21‘°‘))]. (A4)

The logarithmic divergence is removed by the cou-
pling-constant renormalization. In other words,
the gauge field action

fd“x Tr(F,,)%(x)
1 2
= g——2—0 fAu(P)(Pqu_g‘“,P )

«A,(=P) (‘;—ﬂ? +0(AY)

contains a piece precisely equal to the above pole
term. )

Thus after renormalization this diagram con-
tributes to In A the term

InA= f

A (P)A,(-P)(g,,P*-P,P,)

1 ! m2+a(l—a)P2
X W‘/; da oz(t;\z—l)ln———-—————‘mu2
Feens (A5)

When m — 0 the integral can be evaluated and will
yield alnpp +b. The alnpp term, together with

similar terms from the diagrams in Fig. 5, yields
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A
X

X A ) XA
A X A X~r~r

XA XA
FIG. 5. Other divergent contributions.

he -2 1lnppu in Eq. (A2). These are the only di-
agrams that diverge as p—~0 [note that A (P)~(1/
P3),. ., exp(-pP)] and indeed the only diagrams
that depend on pu.

For large mass, however,

Hfbevn(P) ~ (guvpz_Pqu)

1, m O(PZ)]
X 1—'—2_”2 1’1—4_”“2+ —njl-z“

Thus, in the limit of large mass this terms, .as
well as similar terms from the divergent graphs
in Fig. 5, will yield

1
InA 12z,_/‘TrF‘“, (x)dxln_+o<mp>

(A6)

The 1/m?p? terms arise from the O(P2/m?2) terms
in the divergent graphs as well as from all the
convergent graphs in Fig. 6. It is clear from
dimensional analysis that the coefficient of In(m/
1) must be the gauge field action, and thus this
term could be absorbed in a finite renormalization
of the coupling. We shall indeed perform this
finite renormalization by adding a term,

1 m?
13,7 I (1 * 411“2) ’

to 872/g? that does not affect the zero-mass theory.

In that case, InA~,..0(1/m?p?), and we shall
now proceed to evaluate the coefficient of the
1/m? term. This is easily done by recognizing
that the coefficient of 1/m? must be the integral
of a local gauge-invariant operator, constructed
out of the background field, of dimension six.

In other words, when we pull out factors of 1/m
from the appropriate Feynman diagrams the
remaining m -independent contribution arises
from large internal momentum compared to the
momentum carried by the external field. Thus,

InA= (aln—+bln —) fd"xTrF

+ i( )Z d*x 0P [A,)], (A7)

i=0

A A
X X
AXx XA AXx XA
A X XA AX x A
X
A

FIG. 6. Convergent contributions to the fermion
determinant.

where O{’) are gauge-invariant local operators
of dimension 4 +2¢.

The coefficient of 1/m? is expressible in terms
of dimension-six operators. It would seem that
there are three such operators, Tr{D,F D F,,},
Tr{D,F,, D,F,}, and Tr{F,,F,,F,,}. However,
when integrated over space only one of these is
independent if one recalls that D*F,, =0 (since
the background instanton field is a solution of the
equations of motion) and that [D,,D,]=F,,. Thus
the 1/m? term in In A is given by (c/m?)

Xf d* Tr(D,F,,D, F,5). The value of the con-
stant ¢ is then easy to calculate in terms of the
1/m? term generated by the Feynman diagram in
Fig. 4,
P2
= fAu(P)(guuPz_PuPu) 30m2 ‘

ap

XA, (=P) 5 (PTR

+O(A?)
- ;-Z—zfA”(P)(ng2—PuP,,)
x A, (-P)P? (il;.+o(:43) (A8)

We conclude that ¢ =1/6072
In A is given by

. The 1/m? term in

6011’21‘}’12 fTr{Du aBDaFuB}7

which for an instanton field is equal to -4/
25(mp)2. Therefore, after renormalization

. 4 1 - 4 1
B e P (‘ % <——mp)2> =1= % Gmpr - A9

We conclude that the net affect of a fermion of
mass m is to substantially supress the contribution
of instantons of size p<<1/m. On the other hand,
for instantons of size p~1/m the fermion con-
tribution to the density of instantons can be ig-
nored.

Until now we have treated m as a constant pa-
rameter. This is true of the quark-mass pa-
rameter, i.e., the explicit mizp term in the La-
grangian. However, there can also be a mo-
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mentum-dependent dynamically generated mass.
Indeed we believe that the light quarks (whose
mass parameters are very small ~10 MeV) derive
their mass from the dynamical chiral-symmetry-
breaking mechanism discussed in Ref. 2. How do
we interpret Eqs. (A2) and (A9) when m is mo-
mentum dependent, i.e., when the quark prop-
agator, in the true chirally noninvariant vacuum,
is 1/[P+m(P)]? Since the background instanton
field falls off rapidly for P> 1/p the dominant
contributions to In A are from quarks of mo-
mentum ~1/p. Thus crudely speaking, m in Egs.
(A2) and (A9) should be replaced by m(1/p).
According to the picture described in Ref, 2 we
expect that the light quark dynamical masses are
strongly momentum dependent, vanishing rapidly
for large momentum and conversely becoming
very large as the momentum is reduced. The
precise form of m(1/p) requires control over the

chirally asymmetric vacuum, which is not yet
available in the case of two or more light quarks.
However a reasonable approximation, given the
above picture, is to say that

-1
A (ﬁ—(-g—),p@ =0, for p<p,

where m(p ')« 1, and
m -1
A (~—(5—)- ,pu) ~1, for p>p,

where m(p™')=1. Thus in this approximation the
effect of the light quark is simply to suppress
instantosn of size less than p,, and for instantons
of size greater than p, the effect of the quarks

on the density of instantons may be neglected. We
may then replace D(pp) A((m/p) pu) by
D(pu)d(p - p,) for the purpose of estimating, in
the DGA, the density of instantons.
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