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We introduce the concept of a real-photon spectral weight function for any cross section involving charged
particles as a simple approximation taking into account the soft part of photon emission to all orders in

perturbation theory. The spectral weight function replaces the energy-momentum conservation 8 function in

the elastic cross section. The spectral weight function is computed in closed form in space time and in the

peaking approximation in momentum space. We apply the spectral weight function description to the

imaginary part of vacuum polarization Im II and to electron-proton scattering. We derive a spectral
representation for Im II and compare its content with the known fourth-order result, showing in particular
the identity of the soft and peaking approximations in lowest order. The virtual-photon radiative corrections
are discussed in part, with emphasis on the threshold behavior of the vertex functions. A relativistic

generalization of the electric nonrelativistic vertex function is given, whose asymptotic behavior is

appropriate to use in conjunction with the spectral weight function.

I. INTRODUCTION

In recent years, much effort has been devoted to
building coherent spaces on which Feynman ampli-
tudes' are free from infrared divergences. Re-
cently, 2 a definite example, the scattering of an
electron by a weak external potential, has been
worked out using a modified Lehmann-Symanzik-
Zimmermann (LSZ) formalism. The result ob-
tained, when expanded in perturbation theory,
agrees with Schwinger's' result. We must note,
however, that in most of these approaches real and
virtual photons are not treated on the same footing:
Real soft photons (defined with respect to a cutoff)
are included to all orders, whereas virtual-photon
radiative corrections are included up to some or-
der. The consistency of the procedure when non-
perturbative effects are expected to be important
remains unclear. Viewed in the context of quantum
field theory, the early work of Bloch and Nord-
sieck4 demonstrates nonperturbatively the infrared
cancellation between soft-photon emission and virt-
ual radiative corrections. The prevalent field-
theory treatment of infrared divergences to all or-
ders rests on the work of Yennie, Frautschi, and
Suura" (YFS) and Jauch and Rohrlich. ' As is well
known, the prominent result is the exponentiation
in the cross section of the 1owest-order infrared
divergence when the emission of an arbitrary num-
ber of soft photons is included, and also in the
amplitude when radiative corrections are included
to all orders. Once this result is established, the
cancellation of the infrared divergence in the "in-
clusive" cross section (defined as the cross section
which includes the emission of an arbitrary number
of soft photons) is the same as in lowest-order
perturbation theory. One is left with an infrared-
finite cross section with nonperturbative effects

coming from both real and virtual photons.
The so-called exponentiation of infrared diver-

gence is rigorous only in the limit where all photon
momenta go to zero. To extract physical informa-
tion from this favorable circumstance, one separ-
ates hard and soft contributions (defined with re
spect to a noncovariant cutoff), sums up the soft
parts, and computes the hard contributions up to
some order in perturbation theory. The cutoff is
then related to the energy resolution of the experi-
mental apparatus. Taking into account globally the
contribution of real soft photons in this context has
been possible until now only in potential scatter-
ing" where only energy resolution is effective,
although the analysis of more complicated situa-
tions has been attempted. '

The first purpose of the present article is to pre-
sent a simple and attractive picture in which the
whole effect of soft-photon emission is described
by a real-photon spectral weight function. This
function replaces the energy-momentum conserva-
tion 6 function in the elastic cross-section formula
and contains as a factor ~ ", where ~ is the photon
mass regulator, e is the fine-structure constant,
and A =—2A is a conventional function which depends
on the momenta of the charged particles. Since we
do not use a cutoff on photon energy, we must say
what we mean by soft photon. In fact, we define
the soft Part of a cross section as the contribution
in which all matrix elements are approximated by
their soft limit (all photon momenta go to zero).
We note that the soft part receives contributions
from photon momenta which are large as well as
soft. The advantage of this definition is to avoid
the introduction of a cutoff. The hard part of a
cross section will be the difference between the ex-
act and the soft contributions. In this paper, we
shall not attempt (except in fourth order) to derive
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systematically the hard parts, which can be done
following the Grammer- Yenniee analysis. The role
of the spectral weight function is to sum up in
closed from the soft contribution to any cross sec-
tion.

The simplification brought by soft photons is the
fact that they are emitted independently with the
provision that they satisfy energy-momentum con-
servation. They are characterized by an individual
relative emission probability density which is
—&(2v') ~(j

~ 6+(k —X') ((j ~' =j"j„&0)for an emit-
ted photon of four-momentum k, where j" is the
classical spin-zero current

O'" P"
kg' k p

, (j('~, (k'- ~')-or, (p, p', k)

= o.'A. —[6'(k —ol)
y/2m

+5 (k —ol')],
which yields (1.2)

E,(P, P', K)-E„(P,P', K)
Jt'g2e2y)-nA ao

r '(nest) dodo'(oo') " '
I, 4m')

x5 (k —ol o'l)-

&X'e'"l ~ f'~ "" — 6'(K )8(K')8(K )
2~2 ) f' (~» (K2)1 exp

p and p' are the momenta of the charged particle
before and after scattering. The important feature
of the soft-photon probability density is the well-
known peaking of the emitted photon along p or p'
directions and the dk/k spectrum which leads to the
infrared singularities.

The rea1.-photon spectral weight function, which
takes the place of the energy-momentum conserva-
tion 6 function, will be called E~(p,.;K), where p,.
are the momenta of the charged particles and K is
the effective photon momentum. K is, of course,
the argument of the original 5 function. We shall
be able to compute in closed form E„(p,; x), the
Fourier transform with respect to K of E~(p, ;K).
Since Ez(p&, x) involves an exponential of Spence
functions with complicated arguments, it is unlike-
ly that one can compute the exact spectral weight
function E~(p, ;K). However, the frame-dependent
photon energy spectral weight function Ez(p, ;K,),
defined as the three-momentum integral of
E~(P, ;K), will be computed in closed form The.
use of Ez(p, ;Ko), is equiva. lent to the standard ap-
proach in potential scattering.

The function E„(p&,z) obeys the scaling equation

E~(p, ; px) = p "E„(p;,~) with p &0 and, conse-
quently, E~(p, ; pK) = p

" 4E&(O,;K). The origin of
this nonperturbative property (E~ sums up the in-
frared "lns" to a power) is the known dependence
of E~ on A. and the lack of a cutoff. Moreover,
Ez(P, p;K) = 1, corresponding to the fact that an un-
accelerated charged particle cannot radiate. We
thus are led to introduce an approximation to the
spectral weight function which retains the impor-
tant properties we just described and incorporates
the expected peaking of the emitted photons along
the directions of the charged particles. This will
be called the peaking approximation, the corres-
ponding spectral weight function being denoted
E,~(P,;K). Going from the soft (exact) to the peak-
ing approximation amounts to the replacement

where the second form is valid in the Breit frame.
Here l and l' are light-cone momenta, )'=&"=0
with l, f' &0 which are linear combinations of p and
p', y and I" are Euler's constant and function, re-
spectively, and nz is the electron mass. The nor-
malization of the scalar product l ~ l' is related to
the part of the infrared cross section which is as-
sumed to exponentiate. We have determined this
normalization in such a way that the photon energy
spectral functions E~(p, p', K, ) and E,~(p, p', K,)
coincide in tke Breit (c.m. ) for p-p spacelike
(timelike).

The second point we shall discuss is the rele-
vance of the peaking approximation to the actual
physical problems involving radiative corrections.
In this article, we shall exhibit the general formu-
las for two processes, the imaginary part of vacu-
um polarization ImII and the electron-proton scat-
tering cross section in the one-photon exchange ap-
proximation. We wi11 discuss very carefully ImII
to get a precise idea of the usefulness and limita-
tions of the peaking approximation, leaving the de-
tailed discussion of radiative corrections in e+p
scattering to a forthcoming article. Using the
spectral weight function E„we derive a nonper-
turbative spectral form Img„which is a functional
of the electromagnetic vertices Fy and E2 The
function ImII, contains the whole contribution of the
(e'e ) intermediate state to all orders in perturba-
tion theory with the infrared correlated arbitrary
number of photons emitted according to the peaking
approximation. We proceed to check this formula
by expanding up to fourth order using the known
expressions of the vertices up to second order.
We compute also the hard part of ImII to order
e4. The remarkable fact is that with the choice
of the normalization of l /' made as explained
above, the soft and peaking approximations
give identical results up to order e4. Adding the
soft and hard parts, we reproduce the Kallen-
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Sabry' "formula. We conclude from this compu-
tation that the hard part is very small near thres-
hold and behaves as Ins at high energy, the soft or
peaking contribution behaving as ln's while the tot-
al contribution is known"" to be constant.

In the third place, we discuss the nonperturbative
formula for ImII with emphasis on the threshold be-
havior where the formula is expected to become
exact. We point out that the use of the usual YFS
exp(nB) factor" which contains the correct X de-
pendence and the exponentiated leading In'q' terms
found by many authors" is incompatible with the
spectral representation of ImII and has to be mod-
ified somewhat. The reason is that exp(oB) ex-
ponentiates the lowest-order threshold singularity
o.'/4v, v being the relative volocity. This difficulty
is solved by emphasizing the nonrelativistic (NR)
nature of the vertex function I 0 near threshold
which can be obtained to all orders by solving the
Schrodinger equation for a truncated Coulomb po-
tential. The function I'0 has poles corresponding
to the NR positronium bound states. When expanded
in perturbation in the domain v «1 and o./v «1, it
coincides with the known terms of the threshold
expansion of the electric vertex function up to
fourth order. " Our analysis suggests the following
generalization of the NR result which possesses the
expected virtues

where A, is the analytic function whose real part is
A. We note that apart from the factor exp(&/2v),
whose origin is the normalization at zero momen-
tum transfer, Eq. (1.4) begins to differ from
exp(o.B) only at order n' and leaves the high-energy
behavior essentially unmodified. A similar form
is proposed for E, . The limitations of the peaking
approximation are also discussed in relation to the
real part of vacuum polarization.

This article is organized as follows. In Sec. II,
we introduce the general description of soft-photon
emission by a spectral weight function beginning
with ImQ, discussing similarly e+p scattering and
generalizing the result for any cross section. Sec-
tion III is first devoted to the detailed computation
of the spectral weight function E&,(p, ; x). We then
pause to derive the photon-energy spectral weight
function E~(p,.;K,), thus making contact with YFS
results. We then proceed to introduce the peaking
approximation, derive the genera1 spectral weight
function E,z(&», ;K), and fix the I ~ I' normalization.
In Sec. IV, we first derive the nonperturbative
formula- for Img in the peaking approximation.
This formula is expanded up to fourth order [this
is equivalent to using aI, (k) of Eq. (1.2)]; the hard
contribution is identified and computed. We then

derive the NR form of the vertex F„ the exact
threshold value of ImII, and the relativistic gener-
alizations for E, and E,. Finally, a formal expres-
sionfor II,(0) is derived which shows the limitation
of the peaking approximation. The e+p radiative
corrections, which are started in this paper, are
discussed in the context of the peaking approxima-
tion in a forthcoming article. '

II. SOFT-PHOTON EMISSION EFFECT ON A CROSS SECTION

We shall demonstrate how a cross section is
modified when an arbitrary number of real soft
photons is taken into account. The basic result we
shall establish is that the whole effect of taking in-
to account the soft photons is to "broaden" the en-
ergy-momentum conservation 5' ' function which
appears in the cross section. This broadened func-
tiori we shall call spectral weight function. As a
first typical example, we establish how the soft
photons modify the electron-positron pair inter-
mediate-state contribution to the imaginary part of
vacuum polarization (ImII) in QED. Owing to uni-
tarity, ImII behaves as an inclusive cross section
for timelike momentum q. We discuss next soft-
photon emission in electron-proton scattering (in-
cluding the deep-inelastic region) in the one-photon
exchange approximation with a spacelike momen-
tum transfer q. Our discussion incorporates the
Schwinger' problem as a limiting case in which the
electromagnetic potential created by the "heavy"
nucleon is considered as static. We finally give the
spectral weight function in the general case of scat-
tering which involves any number of charged par-
ticles.

A. Imaginary part of vacuum polarization including soft photons

We denote by II„„(&f)the proper vacuum polariza-
tion tensor in QED. From Lorentz and gauge in-
variance, its general form is

II&(-&&I g~„+ g&& g„)II(g ) .
The imaginary part of II(q') is given by the uni-

tarity rel.ation

Imii(&I') =
2 ~ m )& ol&,(0) ln)(', (2 2)

1

3q p( pg)

where (0(J„(0)~n) is the proper matrix element of
the current between the vacuum and the state

~
n)

of four-momentum p'"&. If we want to use Eq. (2.2)
nonperturbatively, then we must include with every
intermediate state ~n) containing e'e pairs an
arbitrary number of soft real photons. This is so
because the matrix elements are infrared diver-
gent due to radiative corrections and the infrared
cancellations occur between real and virtual pho-
tons. We shall concentrate here on the contribu-
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tions to Eq. (2.2) of the states ~n&, which contain,
in addition to one e'e pair, an arbitrary number
of soft photons, Later, it will be clear how the
present approach could be generalized to take into
account the contribution of intermediate states

with more pairs and an arbitrary number of soft
photons. By writing down explicitly the space sum-
mations and integra. ions implicit in Eq. (2.2), one
has

II( 2) g P+ P 6( 2 '
2)g(+P )5( I2 ~2)g(P )d: d d io

xg g [(Olgu(0)IP„P;k, . k &/ 5 (q-P -P -gk, )
polarizations

(2 3)

where p', s' and p„s are respectively, the mo-
menta and spins of the electron and positron, k„
e,. are the momenta and polarizations of the pho-
tons, and m is the electron mass. We have given
the photon a mass X since, although ll(q') is in-
frared finite, the separate terms of the right-hand
side of Eq. (2.3) are infrared divergent. In fourth-
order perturbation theory, the infrared finiteness
of II(q') has been shown by Zost and I uttinger, "
who computed the relevant Feynman graphs and by
Kallen and Sabry, "who. used Eq. (2.2). The can-
cellation of infrared divergences in the right-hand
side of Eq. (2.3) to all orders in perturbation theory
entails the general proof given by Jauch and Rohr-
lich' and by Yennie, Frautschi, and Suura'' (YES).

The basic result which permits the treatment of
the infrared divergence to all orders in perturba-
tion theory is that one knows the leading singular-
ities of the matrix elements for the emission of an
arbitrary number of soft photons in terms of the
matrix element of the same process without-photon
emission. Explicitly, one has

mass-shell values of the k, . Since we do not intro-
duce any cutoff on photon energies, the "soft part"
of ImQ clearly receives contributions from nonsoft
photons. The remainder of Im?I, which we call the
hard part, is infrared finite and can be computed
term by term in perturbation theory. Up to fourth
order in e, the soft and hard parts will be discus-
sed in Sec. IV, where the former is shown to dom-
inate at high energy. The splitting of ImII into
hard and soft parts, which we just introduced, is
convenient but not unique. Conventionally, for ex-
ample, "hard and soft parts are defined using a
cutoff on photon energies, the cutoff being related
to the experimental resolution of the detection ap-
paratus. In fact, as long as one discusses the
"inclusive cross section" ImII, no cutoff is neces-
sary.

Let us now demonstrate that the soft part of ImII
expopentiates and involves a spectral weight func-
tion. The sum over photon polarization is done us-
ing the relation

«l&u(o) lf „j', k, "k.& —«I&u(o) IP. , P'&e" polarizations
(e j)' =-j"j,. (2.6)

k -&P
$

x e, j(k, ) e„j(k„),
(2.4)

j"(k) =
k p' k p

(2.5)

Equation (2.4) expresses the fact that soft photons
are dynamically independent.

Let us define the "soft part" of ImII as the con-
tribution to Eq. (2.3) which uses (2.4) for all on-

where e is the electron charge and j"(k) is the clas-
sical current which is given by

In principle, since the photon is considered as
massive, the polarization sum is in fact —( j)
+(k j)/X' and k j is not identically zero since the
current is no longer conserved. The modified cur-
rent of Eq. (2.5) is

ju P'u(k. P +!(2/2)-~ pu(k. p +!)2/2)

However, it is known" that k j is proportional to
and the longitudinal polarization does not contri-

bute in the limit A. -o. One can also neglect ~'
compared to k p or k.p', the error being not lar-
ger than a/m. Using (2.3), (2.4), and (2.6), the soft
part of ImII is

(mt(„„(q')
2d g, f d P, d 0'il, ((i,' —I )il, (P" —na')g l(Old (O)ld„u'))' f/ d'&i(( ~ ()'i'-i')24' q' „, n! 2v '"

S%$ j-1

xl~d(), )l d ld d ( Pd, )
(2.V)
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The series (2.V) can be summed using the x representation of the 5 function, which makes the photons
look as if they were kinematically. independent:

5 Iq-p —p'-gk = e'" p+ p'&'"p(~[e' &',
(2v)'

and we obtain

(2.8)

1m~„„(q')=„.. d'p, d'p'~, (p, '-m')~, (p"-m')E, (p„p', q-p, -p')gi(0I;(0)ip„p')i' (29}1
24m'q' S,8'

We shall call E~(p„p', K) the real-photon spectral
weight function in momentum space where E = q
—p, —p'represents the missing four-momentum
due to photon emission. This function is the Fou-
rier transform of E„(p„p',x),

a4
/Ex+ at" &p+,p':x&

(2w)'

( )
e'x"E„(p, ,p';x), (2.10)

where n is the fine-structure constant and

E„(p, , p', x) is the infrared-divergent function

a=(p'+ p, }'~4m'. (2.13)

The vertices are normalized according to

E,(0) =1to all orders, F,(0) =1+0(&). (2.14)

The trace resulting from the spin sum is readily
computed and Eq. (2.9) becomes

ImII. , (q')

where g is the squared electron-positron energy in
their c.m. frame,

(2.11)
which is the Fourier transform of the relative
probability for one-soft-photon emission. It is im-
portant to note that Eq. (2.9) looks exactly like the
elastic unitarity equation [the term I=0 in Eq.
(2.V)] except for the fact that the energy-momentum
conservation. factor 54(q- p, —p') has been replaced
by the spectral weight function E„(p„p',q- p,
—p'), the argument of 5 and the (third) argument of
Ez being the same. One can think of the spectral
weight function E~ as a broadened 5 function due to
real-photon emiss ion.

Let us now perform the spin summations in Eq.
(2.9). The charge and magnetic-moment vertex
functions of the electron (to all orders in perturba-
tion theory) are introduced as usual by

'pa

&oI~,(0)IP„P') = (P') E,( )~, +

x(p'+ p, )'E,(a) v(p„),

(2.12)

d'p, d'p'e, (p" —m')5, (p,'-m')
6m q

xEi(p+ P'q-P+ —P)X~(a)&

(2.15)

where

x,(a) =IE,(a) I'(a+2m'}+ ae(E,E,*)

(2.16)

Of course, the A. dependence of E~ and X~, which
originates from real photons and virtual radiative
corrections, respectively, cancels. The full con-
tent of Eq. (2.15) can be exploited if one has a non-
perturbative knowledge of the I", vertices. This
will be the subject of Sec. IV.

8. Electron-proton scattering including soft-photon emission

As another example of where a spectral weight function appears, let us discuss electron-proton scatter-
ing including radiative corrections and real-photon emission. %e shall limit ourselves to the approxima-
tion in which only one photon is exchanged between the hadronic and leptonic vertices. Furthermore, we

shall neglect photon emission and radiative corrections at the hadronic vertex. We use conventional nota-
tion" and kinematics except that our spinors are normalized to uu =2m.

It is straightforward to w'rite down the hadron inclusive cross section with emission of r photons from the
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lepton vertex

1 2Mo. 2 d'p' " d k, 6, (k ' —A.') d'q
r' [((' p) -((('I']'~' 2E' ll (2w)' ( ')' (~ ~ ~ + ')

xw""(P, q) & p, s I J„(0)I
p', s', k„e&& & p', s', k„e, I

J„(0)I p, s&,

where

(2.17)

W"'(»q)=
2M &»~Id~(0)ln&(nlrb (0)lp»&(2«)'6'(p+q —1' ).1

gg, spin average

(2.18)

Here (p, s) and (p', s') are the momenta and spins of the incident and scattered electron, respectively, and

q is the momentum of the exchanged photon. Similarly, p and p„are the momenta of the proton and the
hadronic state ln&, S is the proton spin, and M is its mass. As before, k„e,. are the momenta and polariz-
ations of the emitted photons.

Let us compute the soft part of the cross section in the sense defined previously, the equation similar to
(2.4) being

(P, s, k), E&
' kr~ Er IZ(0) IP, s& ~ (P', s'ld[&(0) IP, s&e"c, j(k, ) ~„'j(k,),

A ~0

and where,

(2.19)

(2.20)

Using again the x representation of 6'(p —q- p' —Q k, ), summing over electron spine, photon-number, mo-
menta, and polarizations, one gets

where

2M+2
goft y p, p

2 2~2 1/2

d3 I d4

,E, , ). w""(p, q)x, .„„(p,p'@', (p, p', p-q p'), -
(q2 2 (2.21)

x&»„.=-.'g&p, sly„(0)lp', s'&&p' s'I&.(0)lp s&.
S %S

(2.22)

E„ is the spectral weight function which is defined by Eqs. (2.10), and (2.11) takes care of real-photon
emission. The infrared divergence of the tensor X'&~~„(g is the photon mass and not a tensor index) coming
from virtual soft photons is canceled by that of E~. This tensor is easily computed in terms of the I", ver-
tices for spacelike momentum p'- p,

«=(p' —p)' (0.
The calculation is simplified using the Gordon decomposition to write

~\

&P' s'l~, (0)lp s&=&&(p') F, r&
-

4 (p+p')[F. «(p)

(2.23)

(2.24)

where

F,=F, +(o./2w)F2.

Computing the trace over y matrices, Eq. (2.22) gives

—( e —s')„(( —u'). I.
~4

X g g

Q~ ig. =("*(&gt.+2PgP,'+2D. D&)+ —„("(",[&g„.—(P —0')„(P—P'). ) +(2

(p+p'). (p+p').
4m'

(2.25)

(2.26)

A more explicit form of Eq. (2.21) is obtained by introducing the conventional W, and W, structure functions,

W""(P,q)=, I'"- —,q" IP"- —,q' W, (q', v) — g"" — W(q' v) v=P q. (2.27)

The contraction between X&„z„and W"" using (2.26) and (2.27) is straightforward. However, the soft approx-
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imation violates somewhat current conservation, which implies

q X( k))&U q X( ) ))(v (2.28)

The violation involves terms proportional to K =p- q- p', the effective photon momentum. In the spirit of
the soft approximation, we shall ignore these terms, that is, we shall enforce Eq. (2.28) in the X)i')",&W„„
contraction. Moreover, we can include part of the hard-photon contribution by assuming that the electron
electromagnetic vertices are taken as functions of q' instead of a=(p' —p)', since the included photons are
emitted from external legs. One gets

X~(&&W„, =F,'[(a+4EE')W, —2W(a+2m')]+ —F,F, {[a-(E —E')']W, -3aW}
g

')

Q +8)))'
I

(2.29)

where we have used the lab system of reference to
write

E~( p, ; x) = exp[nl( p, ; x)],
with

(2.33)

p p=ME I P'=ME'. (2.30)
\

In this system, the variable a at high energy is 1(p,;x)=-, . d'u 6, (&'-)') ~j"(u) ~'e "'*,1

a = -4EE ' sin'(2 8), (2.31) (2.34)

where (9 is the electron scattering angle. One can
check Eq. (2.29) by noting that for F, =0, this equa-
tion reduces to the familiar form

where j"(k) is a generalized classical current de-
fined by

4EE ' cos'(-,' 8)[W, + 2W, tan'(-,' 8)]F,' (2.32)
.))(y) g i i Pi (2.35)

and F, is 1 if radiative corrections are neglected.
We shall discuss Eq. (2.21) in more detail in a
forthcoming paper. '

Using charge conservation,

z&9, =0, (2.36)

C. Contribution of real soft photons in the general case

The generalization of the above results is now
straightforward. 'Consider an arbitrary process
and let q be the sum of (ingoing) momenta of the
observed neutral particles (including hard photons
if any) in the initial and final states. Let p, be the
physical momenta of ith charged particle, boson or
fermion, and z; its charge (in units of e &0). We
associate also with each particle a variable 8,. =a1
according to whether the particle is outgoing (8,
=1) or incoming (8, =-1). The energy-momentum
conservation which appears in the cross section
reads 5 (q-Q, P, g, e, ), where e, =z,/[z, ~

is +1 for
a particle and -1 for an antiparticle. As before,
we define the soft contribution to the cross section
as the sum of the elastic cross section and the
cross section for emission of an arbitrary number
of soft photons. Using the same technique as
above, it is clear that the soft contribution to the
cross section is obtained by replacing the 5 func-
tion by a spectral weight function with the same
argument. This argument is of course the effective
momentum of the soft photons. The real photons'
spectral weight function in configuration space is

it is easily seen that Eq. (2.34) can be written' as
a sum of contributions from pairs of charged par-
ticles

I(P, , «)-- z,z, g, g, I,,(p„p„x),
&j

with

-1
E„(P„P,; x)=, d'~ 6, (~' )')e ""-

(2.37) .

P 2
Pi PI (2 38)

k P] k P~

The corresponding spectral weight function in mo-
mentum space is then E&(pi, q-+P, 8&@i), where
E&,(p, ;K) is the Fourier transform of (2.33)

4

Ei();,1))=f
(

"), e' Ei(p;g). '*,.(2.39)

Although an explicit expression for E&,( p, ; «) will be
given in the next section, it does not seem possible
to obtain a useful expression for its Fourier trans-
form E),(p„K) which is needed in practical applica-
tions. %'e shall, however, exhibit a simple, ap-
proximate form for E~(P,;K) and discuss its phys-
ical meaning and limitations.
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III. REAL-PHOTON SPECTRAL %(EIGHT FUNCTIONS where

This section is first devoted to the computation
of the spectral weight function E„(p,.; x) first intro-
duced in Eqs. (2.10) and (2.11) and generalized in

Eqs. (2.33) to (2.38). Since we do not introduce any
cutoff on photon energies, it turns out that it is the
x variable which compensates for the dimension of
the photon mass A. . Consequently, the known pow-
er-law dependence of E on ~ manifests itself as a
scaling property of E in the x variable. Since it is
unlikely that one can compute the momentum spec-
tral weight function in closed form, we pause to de-
rive the photon energy spectral weight function

Ez(P,.;Ko) which can be computed in closed form
This function is frame dependent and has its sim-
plest form in the Breit (c.m. ) frame for spacelike
(timelike) momentum transfer. The form of
E~( p,.;Ko) is quite similar to the YFS result in po-
tential scattering. We then introduce a Lorentz-
invariant approximation E,„(p, ;K) to the exact
spectral weight function which we call the peaking
approximation. It obeys in particular the scaling
property and has a clear physical interpretation:
The emitted photons are co11inear with the light-
cone momenta l or /' which are linear combinations
of p and p', the momenta of the charged particles
before and after scattering. The "scale" of the
function E,z( p, ;K), which is set by the scalar pro-
duct l ~ l', is fixed by identifying the photon energy
spectral functions Ej,(pj, KO) and E,z(pj;Ko) in the
Breit (c.m. ) frame.

p„=np, +(1 —n)p, (3.3)

With the charged particles being on the mass
shell, p&'=m, ' and E&) m„ the four-vector P~ is
timelike,

P„' =m,.'n'+m, .'(1 —n)'+2n(1 —n)p, pj

) [nm, +(1 —n)m, ]') 0 (3 4)

(we assume mj ) mj). We can evaluate the }'j integral
in a reference frame where P =0. Setting E =Pp
= (P„')'I' and r = ~x i, we obtain, after a, short cal-
culation,

where

x'I

, [e(x')I'+ e(-x')I ], (3.5a)
p cx

due '"
ux, —r(u' —X'x')'~' '

(3.5b)

e(ux, )e(u' —g' x')(u' —A.'x')'~'
u2 +~2/2

du—[cosu —e (S u)]u

Only the real part of these integrals is infrared di-
vergent. A convenient way to separate the A. depen-
dence is to introduce a cutoff S which will disap-
pear in the final result. Setting ~ =0 whenever pos-
sible, one obtains

A, Spectral weight function in space-time

It is clear from Eqs. (2.33) and (2.38) that a gen-
eral spectral weight function in space-time is the
product of spectral functions over all distinct pairs
(i,j) of charged particles with momenta (p, , p,.).
The logarithm of a spectral weight function pair in-
volves the integral

x' du
+ r ux, —r(u' —X'x')U2

ix' ' " sxnudu

u —xpu

I' =2 —[cosu- e(S -u)]du

0

(3.6a)

(pjt pj's ) 2
(y p )(y p )

y

(3.1)

where I' is I defined in Eq. (2.38) with the terms
p,. =&J suppressed. Using Feynman's formula to
combine the denominators and introducing u =k ~ x
one gets

+ ~ due(ux )e(u2 $2x2)(u2 $2x2 }&/2

J+2 u'+ z'X'

due(ux ) sinu
(3.6b)

The first integrals in (3.6a) and (3.6b) are related
to Euler's constant y =0.58 by

1
I'= "' "' de due '"

2
p

(3.2)

l du—[cosu —e ($ u)] = —(y+ lns) .
u

(3.7)

In the second integrals of Eqs. (3.6), it is conven-
ient to change variables u- v =Au. The third inte-
grals are trivial.

One obtains after some rearrangement
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I = -2 (y + InS) + 2 dv, - " d8 ~x

(~ 2 2)l/2 0 (u2 +r 2)(g2 2)1/2

7('(-x')e'~ ~x r+x0 ivx0
ln + ~ ln +

4 xo

In the same way, we obtain from (3.6b)

A,'x'e'& x x, +rI„' = — ln + a In +inc(x0)CY

xo

Using the covariant expressions for xo and r,
(x,p )/((p 2)l/2 r {[(x,p )2 x2p 2]/p 2], l/2

Eq. (3.5) becomes

(3.8a)

(3.8b)

(3 8)

P, P, f da 'x'(-x')e'&
0 CY

+
x P

CK ln
x P +[(x P )'-x'P ']"'

C CX

7(x P )' —x'P 7' ' P'P —7(x P) —x'P ''7"' }
(3.10)

where x, has a negative imaginary part (x, - x, —ie), so the logarithms read

ln(-x') = ln
~

x'
~

+ingle(x, )9(x')

and

x P +[(x P )' —x'P ']'2 x P +[(x P )' —x'P ']''
x P —[(x P„)'-x'P„']"' x P„- [(x P„)'-x P„']"',

(3.11a)

(3.11b)

(3.12)

The o. integration of the firat term of Eq. (3.10) is elementary. The second term leads to a large number
of Spence functions with complicated arguments. "' Subtracting from (3.10) the terms with p, =i)z, the ex-
plicit form of the function I of Eq. (2.38) is

m m 4 v P ' [(x P )' —x'P ']'' x P —f(x.P )' —x'P ']"'

~ ~

where P is defined in Eq. (3.3). For later conven-
ience, we shall use both the function A and the
standard function' A, which are defined by

(3.16)

form of the function A in the case m,. =m&=n. In
terms of the variable a = (P, +P')2 for ImII [cf.
(2.13)] and a=(p' —p)2 for e+p scattering [cf.
(2.23)], we have

2( 1+u' 1+u i

ln
2u 1 —u

where X,.~ =p, p~)/m, m, The a int.egration is trivi-
al and one gets

u=i (3.17)

X X+ (X'- 1)"'
77 2(X'-1)"' X- (X'- I)"'

(3.14)

Note that A is real and non-negative since j" is
orthogonal to k" and therefore spacelike. The high-
energy behavior of the function A is

(3.15)

For later reference, let us write explicitly the

Equation (3.12), combined with (2.33)-(2.38), gives
the spectral weight function in space-time for any
process.

The essential problem we have to face now is to
compute the Fourier transform of ezp[oI(P, P'; x)] ~

It is unlikely that such a program can be done with-
out resorting to some approximation. Fortunately,
we can be guided in the choice of our approxima-
tion by a scaling property of the spectral weight
function which is a direct consequence of the in-

fraredd

behavior of the emitted photons. A glance at
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Eq. (3.12) shows that

(3.18)
——- v =P ~ q =-P K P-(2E -K )0 0 z & z (3.24)

A =22 =-Q zfzf(9(8~A(X))) (3.19)

where A =RA is, for a general process, defined by
[compare Eq. (2.37)] 2Es =P 'P 2P»Es=p '(P+P }

2P E =P (p' p)-, (3.25)

and A(K) is given in (3.13). The corresponding
scaling property of the spectral weight function in
momentum space is

E,(p, ;pK) =p"." 'E, (p„.K) . (3.20)

The origin of the exponent -4 is easil. y under-
stood since E~(p, ;K)-5'(K) when e-0. Let us
note also two simple and important properties of
the spectral weight function associated with a pair
of charged particles with momenta p and p', which
result from the classical current definition:

E~(p p'K)=Ei(p' P'K} (3.21)

8. Energy spectral weight function

(3.22)

The last property expresses the fact that a charged
particle which is not accelerated cannot radiate.

Before exhibiting a nice and useful approximation
to the general spectral function E„(p,;K), we shall
pause to discuss a simple case where the spectral
function can be computed exactly. This will permit
us to make contact with the standard YFS work. '6

where we have neglected the transverse component
of K. According to (3.25), ~lp, ~

«P» for elastic
scattering and K, can be neglected in (3.24), since
K2 &0. Now we can evaluate the K integral in (3.23),
thus introducing a photon-energy spectral weight
function:

z~((|,s', K )= f sKE~( s, s'K)

dt—ez»'E~(p, p', 2»=t, x= 0).

(3.26)

Of course, the function E„(K»), computed in the
lab frame, would appear directly in Eq. (3.23) if
one considers the problem at hand as potential
scattering. ' From (3.12), we see that for x =0, the
t dependence of E~ is a power law and reads

-ng
E~(s, s', x = sx0)=(, ((t-sal e"

(3.27)

where

(1+u') '
dP 1+tlu

ffu» (1 —p2u2)p 1 —(8u

There exists a large class of physical problems
for which only energy resolution is effective. As a
typical example, let us pursue the discussion of
electron-proton scattering. Introducing the effec-
tive photon four-momentum K =p —q- p', Eq. (2.21)
read s

and

1 1+u
+ —ln

ffQ 1-Q

'k p p'+m k a

(3.28)

(3.29)

2o. ' d'P'
soft

p 2Es [(p ps K)2]2

x W""(P,p - p'-K)

x ZC(), )((„(P,P')E2(P, P', K), (3.23)

where W„„ZP&~& is explicitly stated in (2.29}. Of
course, one expects that only small values of K
contribute to this integral. We are seeking a phys-
ical situation where only Ko plays a significant
role, so we can neglect K in W„„and (q') '. lt is
easily seen that this is the case of (almost) elastic
scattering in the Breit (B) reference frame where
p+p'=0, E=E'. In effect, taking p along the posi-
tive z axis a.nd neglecting the electron mass, one
has the following kinematical relations:

Although E has been computed in the Breit
frame, it is a Lorentz-invariant function. Its ex-
plicit form involves a Spence function (p or a dilog-
arithm Euler function Li,:

(I+r') 1 (1+r)F(r}=—,[2ln'r+2Li (1 —r)] ——
ff(I - r') ff (1 —r) lny

(1+3r) 2(1+r')
=A(r) lnr —

2 (1 — ) (1 — '} L12(1 —r).

(3.30}

Here

' dtLi, (y) = — —ln(1 —t) = —(ts(-y) + — (3.31)t 12

and r is a kinematical invariant, frequently used
in what follows:
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r= =X- (X —1)"', X=p p'/m'. (3.32)
1 +u

The second form of E(r) in Eq. (3.30) uses (3.14)
and (3.32). At high energy, X»1, r-m'/2p p',
and from Eq. (3.30) one gets

I 2 1 n'

F(r) ~ ——ln'r ——lnr ——+0(r lnr) . (3.33)
2m n' 6

Looking back to Eqs. (3.26) and (3.2V), we see
that the time integral can be computed by deforming
the contour in the complex t plane or, equivalently,
by using an integral representation of Euler's I'
function written in the form

[ ((ii~)I "=r '(v) f drrrr" 'e '" (Reu)0)
0

(3.34)

to integrate over t first, with the result

(Xe~l

0

(3.35)

This equation is very similar to the YFS' result in
potential scattering. In the latter case, the photon-
energy spectral weight function is computed in the
lab frame, whereas Eq. (3.35) is valid in the Breit
frame. The difference, however, is not very sig-
nificant at high energy' since it appears in the angu-
lar part of E. We note also that Eq. (3.35) is an
exponentiated form of Schwinger's '" lowest-
order computation of soft-photon emission. Note
that the radiative tail is characterized by the spec-
trum F '(aA)K0 " "which is integrable at K, =0.

C. The spectral weight function in the peaking approximation

We discuss now the general spectral weight func-
tion in momentum space. We shall seek an approx-
imation for E~(p,.;K) which satisfies (3.21) and

(3.22) and the scaling equation (3.20). Since the
former equation is nonperturbative, we shall insist
that the approximate spectral weight function sat-
isfying this equation, let us call it E,~, can be
computed in closed form. In a previous paper"
and also in the first version of this manuscript,
we chose for I(p, ; x) the form [compare Eqs. (3.12)
and (3.2V)]

I-l, ( p, ; x) = -X In(-~'x'e'&/4) .
The resulting spectral weight function in momen-
tum space is"

E,( p, ;K) = . . .„F-'(a2)F -'(o.X- 1)
2(x'e'~ )

w

xg(K )s(KO).

2[r' 'mm'N(r)]' '(p rpi'
, ),

2[r"mm'N(r) ]'" I'P' rPIl'=
~

———
I

~

1 —r2 (m' m&
'

(3.36)

The kinematical variable r, chosen such that l2
=l" =0, is then given by Eq. (3.32). We have kept
the solution 0 (r ( 1 so that lo, 1,') 0.

At high energy, r-0 like

1 mm'

2p p' (3.37)

and the momenta l and $' become'nearly parallel to

p and p', respectively. The normalization factor
N(r), which is supposed to exponentiate, is dis-
cussed later. It is introduced in Eq. (3.36) in such
a way that N(r) -const, at high energy, at least for
the two examples discussed in Sec. II. From (3.36)
we get

l ~ l'=2mm'r ' 'N(r). (3.38)

By definition, the peaking approximation to Eq.
(3.12) is

I,( p, p', x) =-X(X)ln 4, (l ~ x)(l' ~ x)
g2e2 g

(3.39)

where l and l' are defined in Eq. (3.36) and xo has
a negative imaginary part. When only one pair of
charged particles is involved (as in ImII or e+p
scattering of Sec. II), the space-time spectral
weight function, in the peaking approximation, is

The three-momentum integral of this function, de-
fined by analytic continuation in &A, leads, of
course, to the first factors in (3.35). This approx-
imation has been criticized, with good reason, on
two grounds. First, if E, is to describe the photon
four-momentum spectrum (in experiments where
three-momentum resolution is also precise), it
must be an integrable function of K without resort-
ing to analytic c'ontinuation. Second, the Fourier
transform of I, which represents the relative prob-
ability of one soft-photon emission will be

r, ( p, ; a) = (A/w)e(n, )5'(I' —~'),

which is not positive. ' Furthermore, the function
E, obtained previously is negative for small eA.
Thus the preceding choice for E, cannot be de-
fended. Fortunately, we have found a very prac-
tical approximation which does not suffer from
these objections.

To introduce the peaking approximation, we as-
sociate with every pair of charged particles ap-
pearing in Eq. (2.38) with momenta p and p' two
positive-frequency light-cone momenta $ and l' de-
fined by
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E,~(p, p', x) = exp(o.'I, )

-X'e'~
, (t x)(t' x)

4mm

- o.'A

(3.40)

(3.40)]
2 2 -OtA'

E,„(p,; x) = p[ —
4 (l, x)(l,. ~ x)
4m&m&

The four-dimensional Fourier transform of (3.40)
is easily obtained using twice the integral repre-
sentation of Eq. (3.34). One immediately gets

~2gy )-aA
E„(p,p', K)= 4, I r '(oA)

where, to simplify writing, we have set

A, z,-z;-8, 8qA(X;q) .
The momentum-space version of (3.45) is

(3.45)

(3.46)

nI, ( p, p', k) = o.A —[5'(k —vl) + 5'(k —o I') ] .
y/2e

(3.42)

Thus, in the peaking approximation, only photons
collinear with l or l' are considered. To prove
Eq. (3.42), it is enough to compute the integral

d'ke *'* 6'(k-ot) = ——e '""
k/2 ~ + g/2 st

(3.43)

in the limit of small X/2m. Setting y/2m=0 in the
imaginary part, one gets, using {3.7),

d(7 A. t'tT—e ' '"=-y —» Il'xI — e(t x)
y/2~ O' CPS 2

X, t 1'x) /2~
(cost —1),

0 t

Xe&g
(l x —ie)

2m f (3.44)

where, in the last form, we have neglected the in-
tegral which vanishes with X. Equation (3.42) is
thus, established.

Generalization of the above results to any cross
section is now a simple routine. The space-time
spectral weight function, in the peaking approxi-
mation, is [compare Eqs. (2.37), (2.38), and

x do dg' ocr' " '5' —ol- o'l' .
0 0

(3.41)

This equation is a simple and important result of
this paper. Of course, E,„ fulfills (3.21), (3.22),
and the scaling equation (3.20). Note also that E,z
is proportional to [N(r)] " as may be seen by the
change of variables o -o[N(r)]'I', o'-cr'[N(r)]'I'.
Physically, Eq. (3.35) means that the effective pho-
ton momentum K is in the plane formed by l and l',
that is, E,~ is proportional to 5'(Kr), where Kr is
the transverse component of K. The meaning of the
peaking approximation is clarified by computing

I,(p, p', k), the Fourier transform of (3.39) which
represents (when multiplied by o.) the relative
probability for one-photon emission with momen-
tum k. This probability reads

iz. I A.'e'& ~ "i&I' (nA' )

II do, do, (o,o, ) ~'~ '

x5'IK-g o, t, I
. (3.47)

Finally, the relative probability for one-photon
emission in the peaking approximation is

nI~( p(', k) = -Q z (zJ8(8~A(X;~)

x —54 k-ol,- +64 k —ol,

(3.48)

l '=l l'/2=m'r "N(r) (3.49)

according to (3.38). After computing the Jacobian,
Eq. (3.41) reads

E,~(p, p', K) =2I' '(nA)[X'e'&r 'I'N(r)) ""
„5'(K,)8(K')8(K.)

(K2)1 (xA (3.50)

This is, of course, the generalization of the pho-
ton-energy spectral weight function, Eq. (3.35).
The essential feature of Eq. (3.50) is the appear-
ance of an integrable singularity at Kp K The
scaling equation (3.20) has been satisfied covar-
iantly, thanks to 6'(Kr), which takes care of two
powers of inverse K momentum.

A further confidence in the peaking approxima-
tion is obtained by computing the corresponding
energy spectral weight function, defined as in Eq.
(3.26). Owing to 5'(Kr), there remains only an
integral over K, which is proportional to
I'(nA)I '(2+A). The result is

. In this paper, we shall not discuss further these
general forms but concentrate on the pair spectral
weight function given in (3.41). A more explicit
form of this equation is obtained by doing the o and
g' integrations. One gets the simplest result in the
Breit frame where p+p'=0 and thus 1+1'=0. In
this frame we have
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A [—,
' lnr —lnN(r )] = E(r) .

By taking into account Eq. (3.30), we get

(3.52)

A(r) lnN(r) = 1, Li, (1-r)+ lnr .2(1+r ) . 1+3r

(3.53)

In particular, N(r) -We at high energy. Using the
normalization of Eq. (3.52), Eq. (3.50) becomes

E,~(p, p', K) =21' 2(e(A)(&(e&) ""e r("&

„5'(K,)e(K')e(K, )
(K2)x-(q7& (3.54)

which is our explicit form of the spectral weight
function in the'Breit frame.

We shall see in the next section that with the nor-
malization of Eq. (3.52), the spectral weight func-
tions E„(K)and E,~(K) coincide in perturbation
theory up to order e. This means in particular
that, in lowest order at least, the relative proba-
bility of one-soft-photon emission

— (2 ') '~q('5, (a'- &(.')

can be replaced by oI, (k), given in Eq. (3.42),
which happens to be much simpler to handle in
practical computations.

IV. THE QED VACUUM-POLARIZATION FORMULA AND

THE ELECTROMAGNETIC VERTICES

In this section, we shall first use the spectral
weight function in the peaking approximation

d, „(pq d, ,'l, = f d'qqd„(qq ,)q'),

[N(r)]'/ &(.e& " 8(KO)
1/4r & "0(g t

0

(3.51)

where, as before, A =2A. . Comparison between
(3.51) and (3.35) shows that the exact and peaking
photon-energy spectral functions are identical in
the Breit frame if N(r) is chosen such that

E,„(p,p', K) to derive spectral representations for
the imaginary part of vacuum polarization in QED.
In particular, the spectral form with respect to a,
the squared c.m. electron-positron energy, has a
characteristic soft-photon tail. ' Since our formula
is a functional of the electromagnetic vertices, a
quantitative discussion entails a nonperturbative
knowledge of these functions.

As a test of the peaking approximation, we com-
pare the formula we obtain for ImII with the known
fourth-order result. We find that the soft and peak-
ing approximations coincide up to this order. The
hard contribution to ImQ, which is included neither
in the soft nor in the peaking approximation, is
computed and shown to be very small near thres-
hold and behaves as lns, whereas the soft contribu-
tion behaves as ln's at high energy.

The nonperturbative spectral representation of
Imp leads us to discuss the threshold behavior of
the electromagnetic (em) vertices. The exact form
of the electric vertex function I', near threshold is
derived from the solution of the Schrodinger equa-
tion for a truncated Coulomb potential. It has poles
corresponding to the nonrelativistic positronium
bound- states energies. The resulting threshold be-
havior of Imff is then easily computed and agrees
with another derivation. "

A natural extension of the nonrelativistic vertex
function I', is given with the correct threshold and
infrared dependence. The proposed I", has also the
correct high-energy behavior found by many au-
thors'~ and differs (the difference appears only in
fourth order) from the Grammer- Yennie' form by
the presence of the positronium bound-state poles.

The nonperturbative form of F, is used as an in-
gredient in the discussion of the radiative correc-
tions in e+p scattering discussed in the next paper.

A. Non-perturbative, spectral representation of ImII

Knowledge of the spectral weight function in
closed form allows us to derive a simple nonper-
turbative representation of ImII in the peaking ap-
proximation. Putting (3.41) into (2.15), we get

( g2 ) O.'A

Imrl, (s)=, j( d'p'd'p, 5,(p" -m') 5(p,'- m)( 4

&I"(qX)X'~(q) f dqdq'(qa')"" 'q'(q-&, —p'-q(. —q'('),
0

(4.1)

(4.2)

where a and X&(a) are given in Eqs. (2.13) and

(2.16), respectively, whereas l and l' are given by
[compare Eq. (3.36)]

2[r"'N(r) ]~2
(P, -rp'),

2 [rl/2N(r )]&/2

2 (P'- rP. )

the relation between r and a being here [compare
Eq. (3.32)]

a = m'(1+r)'/r . (4.3)

We shall absorb part of the normalization factors
[cf. (3.38)j by changing variables

a-[r N(r)] 'a o'- [r' '/N(r)]' 'a'.
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Upon introducing the noninfrared combination of the vertices

X(a) = [X'e'~r '"X(r)] ""X,(a)

=(Xe~) ""X (a)e

Eq. (4.1) becomes

1
ImrI, (s)= 6, da dodo'(oo') " '(4m') "I" '(&X)X(a)

0

(4 4)

d p'd P+6, P' -m 5, P, '-m 5 p, +P' ' —g 6 q- CP, —C'p', (4 5)

(4.6)

Let us compute the phase-space integral in Eq. (4.5) in the frame where q=0 and q, =v s. Then

v s —CE, —O'E'=0, Cp, +C'p,'=0,
and Eq. (4.5) becomes, after an elementary calculation,

1
Imrl, (s) =

6ssv s
da(4m')""r '(nX)X(a) dodo'(oo') " ', ', 6((p, +p')' —a) .

Note that p,' and (p, +p')' are to be expressed in terms of C, C' using Eq. (4.7). The argument of the 6
function is also computed using this equation and found to be

(p, +p')' —a = [s-m'(C —C') —aCC ']/CC'

= [s —a —2m Wa(o+o') 4m'era'-]/CC',

(4 7)

(4.8)

(4.9)

where we have used (4.6) to obtain the last form of Eq. (4.9). It is very convenient to introduce the variable

b =4m'ov', (4.10)

which is easily seen to be the squared mass of the effective photon momentum (b=K'). Equation (4.8) now
read s

ImII, (s) = da db b"" 'I '(nA)X(a) do do'5(b/4m' —oo')
~ p,'/C ~

5(s —a —b —2m& a (a+o')) .6ss s

(4.11)

Integration over o and o' amounts to computing a simple Jacobian which is found to be

2m' a ( o —cr
'

f
= [a(s, a, b) ]'~',

where'

a(s, a, b) = s'+ a' + b' - 2as —2bs - 2ab .
From Eqs. (4.6) and (4.7) we found

p,'/C = [a(a- 4m')]'~'/2v s .
The double spectral representation of Im?I finally is

S cWs Wa) dbb&A 1-
ImII, (s)=, da[a(a- 4m )]' 'X(a)I' '(oA)6ws' , 2 0 [6 sia, b

(4.12)

(4.13)

(4.14)

(4.15)

(A factor of 2 is included in this result corresponding to the domains o &o' and o &o'.)
We note that the 5 integral is convergent without analytic continuation in nA. The power of b, eA —1,

is the same as in Eq. (3.50) since b =K'. Equation (4.15) gives in particular the "spectrum" of ImII in
terms of the electron-positron pair mass ~a and the "missing mass" v b.

We shall now integrate over the photon spectrum in Eq. (4.15). By the change of variable

x= b/(Ws —v a)',
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the $ integral is

dbms
"'"r '(th()(Ws —Wa)' J' dxx'" '

I' ' nA)
[b,(s, a, b)]'~' s —a , (1 —x)'~'(I —zx)'~'

I' '(&rA)[2(Ws —Wa)] " t', aA nA+ I
2(.s )

2F&l z 2 2 sz)

where

( && s —
&& a &i'

E&s+ Wa&

(4.16)

(4.1V)

and 2F& (a, f&; c;z) is the hypergeometric function which is not expected to play a significant role, since for
S=a, 2Eg=j. .

From Eqs. (4.15) and (4.16) we get

da[a(a- 4m')]' ' &v s +Wg&( ""&'& AA oA. +1 v s —v al(21(

( )&- g&.& I( 2 )&
X(&&)1' '{&rA(&&)),F, I 2,

(4.18)

Here, A(a) is given in Eq. (3.16) and X(a) in Eqs. (4.4), (3.30), and (2.16). Of course, the a integral is
convergent even in the infrared region where s-a. The essential feature of this equation is the broadening
of the 6(s- a) factor which we would have had for the elastic unitarity contribution to F (eA)(s- a) " '
which is characteristic of the soft-photon tail. . As we shall see, the hypergeometric function will not con-
tribute up to order e4.

At this point, it may be instructive to derive an approximate form of Eq. (4.18) using the photon-energy
spectral weight function, Eq. (3.35). Taking the effective photon momentum K =q- p, —p' as an integration
variable, Eq. (2.15) becomes

d3 '
ImII «(s) =

2 atda, d K 5{a—(q-K)')5, {(q-P'-K) -m')X&, (a)E&(P', q-P'-K;K).

In the frame where q =0, q, = v s, we shall make the following approximations:

(4.19)

(i) Neglect K in the second argument of E&,.
(ii) Neglect K in the arguments of the two 5 functions.

We can then integrate over K which brings the photon-energy spectral weight function given in Eq. (3.35).
The approximate form of Eq. (4.19) is then

(4.20)

where X(a) is defined in Eq. (4.4). Using the 5 functions, we integrate over Ko and E with the result

da[(&&-4»&')/&&]'~', && Ws+v a '" (Ms+&a) (4.21)

Of course, Eqs. (4.21) and (4.18) are very similar.
In particular, the regular parts of the integrands
are the same for s=a. As will be clear shortly,
these equations are equivalent up to fourth order
in perturbation theory. Before discussing nonper-
turbative applications, it is necessary to know the
importance of the neglected terms in going from
the exact to the soft and then to the peaking approx-
imations of ImlI. We shall now analyze the respec-
tive contributions up to fourth order in pertux'bation
theory.

B, Perturbation expansion of ImO to fourth order

Perturbation expansion of Eq. (4.18) involves a
Laurent expansion of the distribution
I' '(nA)(s- a) "&'& ' in the power of the exponent.
This is slightly more complicated than the known
expansion2' of I' '(A. )~~ in powers of A. due to the
dependence of the exponent on the variable a. The
approach we follow is a direct generalization to
take into account this dependence. The expansion
is expected to converge for nA & 1. We write Eq.
(4.18) in the form
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oA(s) ' da g(s, a)I 11,( )= (4.22)
1 s 6da (0)(s, a)Imii, (s)=, P'"(s, s) + aA(s)

127TS s —a

where

y(s, a) = [a(a-4m')]'~'X(a)(s- a)

x I" '(oA(a)), F,/aA(s) . (4.23)

To expand Eq. (4.22) in a perturbation series, we
must first integrate by parts once or, more simp-
ly, introduce a small cutoff e which we shall fix in

a convenient way. In the following, the limit e-0
is understood. We can write Eq. (4.22) in the form

Imrl, (s) =
2

oA(s} day(s, a)
12' 4~2 S- 0

~ y(s s)e(xA(s) (4.24)

y(s, a) = P'0)(s, a) + o.'y")(s a}+ (4.25)

where higher orders in e are not needed for ImII
up to fourth order. Equation (4.22) becomes

where, to obtain the second term of this equation,
we have approximated g(s, a) by P(s, s) in the inter-
val [s —e, s]. Let us write

+ ag"'(s, s) + nA(s)y"'(s, s) Inc

+O((oA) ) (4.26)

&& [-A(s) In)) e)' +F(s) + 2 ReF)2)(s)

+3sF,"'(s)/2w (2m' + s)],
/

(4.27)

where F(s) is the function given in Eq. (3.30) and

F,"' and F2"' are the lowest-order radiative correc-
tions to the (proper) vertices,

F =1+~F&2&+ ~2F~4&+"
1 1 1 7

F =F&'~+eF~'~+ ~ ~

2 2 2 7

(4.28)

(4.29)

with F~&2)(0) = F,"&(0)=1 according to the normaliza-
tion (2.14). The explicit expressions of F,"' and

F,"' are given here for convenience:

We note that, up to fourth order, p
"' appears only

for s=a, which means that Eqs. (4.18) and (4.21)
are equivalent up to this order.

From Eqs. (4.4) and (2.16), the expansion of X(s)
is

X(s) = (2m'+ s) + n(2m'+ s)

(,) )). ! 1+v' 1+v 1+2v' 1+v
wF,"' s =-In —1— ln —1+ ln

m l, 2v ~I —v. , 4v 1 —v

1+v' & 1 —v s 2 1+v 1+v 2v
+ -P

~

— ——,
' ln' + —g(l —v}—In ln

2v ), 1+v ' 1 —v 4 1 —v 1+v
4m2v2

+ iwg(s —4m') ln, 4v )' I —v'
1 +2V

4v

1+v' 1+v
=wB(s) ——,

' 1 — ln
2v 1 —v

1+v
+ iwg(s —4m')

2v
(4.30)

E,"(s)= — ln +—(1 —v')g(s —4m').„) (1 —v') 1+v iw

2v 1 —V 2v

In these equations and in the following, the variable v )s defined by [compare Eq. (3.17)]

&s- 4m'&~2

)

(4.31)

(4.32)

(4.33)

and

B(s) is the standard YFS function which we shall use later. Note that when 0 &s &4m', the logarithms in
Eqs. (4.30) and (4.31) have to be replaced by arctan functions and 8(1 —v) is to be considered as zero. The
Spence function P is defined in Eq. (3.31). It is easy to verify that, using Eq. (3.16) for A and (4.30) and
(4.31), X(s) as given in Eq. (4.27) is free from infrared divergence. We note also that F, begins to be in-
frared divergent" only at order e . A straightforward expansion of Eq. (4.23) using (4.27) leads to

y' '(s, a) = [a(a —4m')]'~'(2m + a)A. (a)/A(s)

P"'(s, s) =(2m'+s)[s(s —4m')]'~'[ —A(s) In))v s + (sF) 2R+e F(s)2) 3s+'F(s)/2 (2 w' ms)+] .
Choosing e =))Ws in Eq. (4.26), this equation becomes

(4.34)
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Imll (s) = + nlmll&"&+ o. lmil""+O((oA) ),v(3- v') 2e 2b 2

24@ 1

where we define

Imll,""(s)= da[a(a- 4m')]' '(2m'+ a)A(a)
12ws' s-a

+ S'&s)&2ss'+ s)[s&s —4ss*)]'S'I

(4.35)

(4.36)

ImII""(s) = (3 —v') Re1 &'(s) + —Re1""'(s),3
12m ~

1 2r 2

1+v' 1+v +V
, -4v(3 —v') ln —1 — ln —4v(3 —v')+2v'(4 —v') ln +2(3 —v')(1+ v')

48m' m 2v 1 —v 1 —v

1T 1 —v g 2 1+v 1+v 2v
X --,' ln' —ln ln

4 1+v 1 —v 1 —v 1+v (4.37)

The physical meaning of Eq. (4.35) is clear. The first term represents the contribution to Imll in lowest
order (Not.e that a factor o. has been factored out in defining Imll as the imaginary part of vacuum polari-
zation. ) The second term, almIIP'), represents the contribution of the intermediate state (e', e, y) in low-
est order of the peaking approximation. We have checked that Eq. (4.36) is also obtained using ni, (p, , p; k)
given in Eq. (3.42) as the relative probability for one-photon emission, that is,

d'p' d p, 4Imilp"(s) =, ,
' d k[(P, +p')~+2m']I, (p„p';k)5 (q- p, —p' —k). (4.38)

Finally, the third term, eImII"", represents the virtual-photon radiative corrections to the e'e inter-
mediate state. We note that Eq. (4.37) is not quite the same as Eq. (23) of Ref. 10, since these authors
compute the improper vacuum polarization. Their equation is recovered by using the form factors instead
of the vertex functions in Eq. (4.3V).

The first term of Eq. (4.36) is computed in Appendix A. The (e,e, y) intermediate-state contribution to
ImII in the peaking approximation is found to be

Imll,""(s)= , 2(1 + v ')(3 —v') 4 ln' —ln ln
1 2

—2&P
1

—3&P—(2) 1 2 2, 2 1+v 1+v 4v 1 —v . . 1- v 3g
48m ' 1 —v 1 —v 1+v ' 1+v 1+v 4 .

1+V 1+V t A, I 1+V—4v(3 —v') —ln —1
l
ln ———,

' ln [3v +6v —9+ 12v(3 —v')]
2v 1-v ) m ' 1-v

+ 4v(3 —v') ln, —+ v(2 7 —5v')(1+v)'
(4.39)

where v is defined in Eq. (4.32). Before discussing the high- and low-energy limits of the different contri-
butions to ImII, we shall compute the hard contribution which is not included either in the soft or' in the
peaking approxima, tions.

The hard contribution comes from the difference between (0 lg„(0) l p„p', k) computed to lowest order and

its soft-photon limit as defined in Eq. (2.4). It is expected to be small near threshold since the emitted
photon is necessarily soft due to phase-space limitations. To lowest order in perturbation theory, the
"bremsstrahlung amplitude" is given by

(0IJ,(0)lp. P k) =eu(P'),
k . ~ +

k v(P, ),P(P'+ P'+ m)y" y"(-I)(, —P'+ m))t'
(4.40)

where p=y p„. With the help of the Dirac equation and the y matrices algebra, Eq. (4.40) is brought to the
form

(Ol J„(0)lp+, p', k) =eu(p')A„pv(p+)ep,

where

App p p+ [y sN]y" +
y" [y k]s

4k p' 4k p

(4.41)

(4.42)
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The first term of Eq. (4.42) is sometimes called the electric part of the current, the remainder being its
magnetic part. The electric part squared gives, of course, the soft contribution of ImII. The magnetic
part squared and the interference term will give the hard part of ImII. The sum over spins and polariza-
tions of the square of Eq. (4.40) involves a trace over y matrices, which gives

Z, Zj ]&6[xv(6)(6„6',6)l'=6[-(6, 6'+6~')Ijl'+tv], (4.43)

with

+ 1, +2p p, + (4.44)

The remainder R gives the hard-photon contribution o. ImII'h~', d to ImG. Comparing this with the normal-
ization of Eq. (2.3) we get

(2) ~ d p d p+ d k 4I 11„,—, 2, 6 (q P, -P -a)fl. (4.45)

There is no need for a photon mass here since the integral i:s infrared finite. This phase-space integral
poses no problem and can even be expressed in terms of elementary functions. Introducing the integration
variable a=(p, +p')', we get

(4.46)

ImII""=-ImII,""+ImII'„",„=4, 2(l + v')(3 —v') —,
' ln' —ln ln, —2&pl

1 . . . , 1+v 1+v 4v fl v).—
hard 48/ 2 1 —v 1 —v 1+v ' il+v&

I + (g 4m2/g)~j2 g-4m' '"
1 — a —4m'/a j'~' 0

[6 —4(1 —v')+ —'(1 —v ')'] 1v —1lv+ v v(1 —v')I,

where the second form has been obtained using the same method as in Appendix A. By adding Eq. (4.46) to
Eq. (4.39), we obtain

( 1 —v I 3m'

1+v&i 4

—4v(3 —v')I ln —1
~
ln —+ln [—,'(v —10v'+33) —6v(3 —v')]

&+v' 1+v l A. 1+v, 4

], 2v 1 —v & m 1 —v

+ —(39—17v )+4v(3 —v')lnv, , (1+v)'
8v2 (4.47)

The most important fact about this result is the identity of Eq. (4.47) with Eq. (48) of Ref. 10, which gives
the full fourth order contribution of the (e,e, y) intermediate state. Remembering that ImII, is the peaking
contribution to ImlI and the definition of ImlI",,',„, Eqs. (4.43) and (4.45), we conclude that the soft and peak-
ing approximations of ImII coincide at order e . In other words, we get the same result if the relative
probability of a, soft-photon emission, which is -o.'(2v') '~j~'5, (k2 —&(.'), is replaced by nI, (k), given in Eq.
(3.42). We have indeed checked that the difference

d'P' d'P+
&]'lmil&„';, ) —nlmii&1'"=, ",

2
"' d~k[(P, +P')'+2m']6~(q-P, —P' —k)

x [-n(2v') '~q~'6, (k' —~') —nl, (p„p', u)] (4.48)

vanishes. [The limit &(. -0, implicit in Eq. (4,48), is not uniform and must be taken carefully after the rele-
vant integrations are done. The difficult part of the calculation is in fact the soft part, dealt with in Ref.
10.J

Let us discuss the result thus far obtained.
(i) From Eq. (4.46), the threshold and high-energy behavior of Imil&2)„are given by

v'
Imli&2j, -,+0(v'),

v~o
(4.49)
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Imii(z&, ~, ln, +O(l)
hard 8g2 m 2 (4.50)

(ii) From Eq. (4.4V), apart from the term proportional to In(&(/»z), the total contribution of the (e,e, & )
intermediate state behaves as

2Imll"" ~—,[v Inv+O(v) j,
v~o

(4.51)

Imil(z'& ~, ln', —3ln, +O(1)m' m'

(iii) From Eq. (4.37), the e e contribution behaves like

(4.52)

imll(2"„0, ——4v lnv+O(v)"-' 8~'
~n

ImII(zz& ~, -ln', +3ln, +O(1)24m' m' m'

(4.53)

(4.54)

(4.55)

(iv) By adding Eqs. (4.37) and (4.47),. we obtain the total contribution to the imaginary part of vacuum
polarization to order e4,

imll"&=
48 z

—2(I+z&')(3-z&') 2&l I I+4&I-
1 I+ 2

+»
1

1, , (I - v) ( 1 —v'l n' I+v 8v
48&& (1+v)[ ( 1+vi 2 1 —v 1+v

—4v(3 —v ))n + —'[-Sv +22v +33 —24v(3 —v )])n + —(33 —Sv )I.(1+v)' ' 1 —v 2

Adding the low'est-order contribution, the first
term of Eq. (4.35), the imaginary part of vacuum
polarization, up to fourth order, behaves like

and

Imll ~
(
I+ + ~ ~ ~

~

z& [' Sz&c[

24m ( 2g )
(4.56)

ImII
12 I

1+ +".1 t Sn

,„„12'( 4»
(4.57)

The last equation coincides with the known value of
ImII deduced, for example, from the renormaliza-
tion group. "" The threshold behavior of ImII is
dominated by the e'e contribution, Eq. (4.53).
This point is discussed further in the next subsec-
tion.

By comparing Eqs. (4.49)-(4.57), we can learn
many interesting facts. Although ImII„„,was ex-
pected to be small near threshold, it is surprising
to see how small it is compared to ImII. We are
also happy to find that the high-energy behavior of
ImII„"„'~ varies as lns whereas the peaking or soft
approximation varies as ln's. However, if we com-
pare ImII'h, ',~ to the total ImII, which varies as a
constant, the situation may seem less optimistic.
However, the nonperturbative formula (4.18) de-
pends on ~(a), that is, on the vertices which must
be also computed nonperturbatively. It may be pos-
sible to choose the soft-part (or peaking) approxi-
mation of the E,, which also exponentiates, in such
a way as to guarantee a constant ImII up to fourth

order, when the hard parts of real and virtual radi-
ative corrections are neglected.

C. Virtual-photon radiative corrections and threshold behavior

of I rr

An extensive study of virtual-photon radiative
corrections, analogous to real-photon emission,
whir', h we have just presented, is beyond the scope
of this paper and will be discussed in a future pub-
lication. " Here we shall concentrate first on those
aspects of radiative corrections relevant to the
threshold behavior of the vertices and then propose
a relativistic generalization. As we have seen, the
whole e', e intermediate-state contribution ap-
pears through X'(a) given in Eq. (4.4). From the
YFS analysis" of the radiative corrections to all
order in perturbation theory, the vertices I', and

I, are shown to be of the form

E,.(a) = e s"&S,(a), i = 1, 2 (4.58)

where the 5,. are free from infrared divergence and
B is the standard YFS infrared-divergent function

(, ), z d ]'z

(2v)' )t' &
'+

( 2p'- a
X (k' —2p' Iz+ie

p, +~ ~
4k'+2k. +is )

The explicit expression. of the B function was given
in Eq. (4.30). In particular, the threshold behavior
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of B ls

m 2mv I8 ~ ———+ig(s —4m')I —ln ~, (4.60)
4v 2n (2v A,

2=I'P —ie) eep
~

—e I In2eir),(ms

I 2

where

(4.64)

which implies that if (4.58) is used in Eq. (4.18),
S,.(a) being computed perturbatively, the integral
in the latter equation will badly diverge at thres-
hold. In fact, there is no physical reason for the
exponentiation of the threshold behavior of Eq.
(4.60). In perturbation theory, the imaginary parts
of E, and E, have been computed analytically" up
to order o. . The threshold singularities, with
normalization of Eq. (2.14), are

4~2v2
ImF, —

~

In —I)', , 4vI,

OI2 4 2 2 +''' (4.61a)

7t' +7t'
ImE r —+ +. . '

2v 8v
(4.61b)

E, =Ft+(e/2v)F2. - (4.62)

The fact that E, is the relevant vertex function in
the NR limit can be shown by expressing X'(a) in

terms of E, and E„

X(a) =(Xe~) "e""'"' ~F, j( a+2m)
e

+ —(a- 4m') Re(E, F,*)
2r

]I' & ' (a —4m')'
i4wm 2

It is clear that the threshold behavior of the
fourth-order terms does not allow a standard dis-
persion relation to compute the real part as dis-
cussed by the authors of Ref. 15. A similar in-
crease of the singularities with the order, near
threshold, is expected, also for the real parts of the

The origin of the threshold singularities is the
long range of the Coulomb potential and more par-
ticularly, the existence of the pos'. tronium bound

states just below threshold. In fact, perturbation
theory breaks down when oi/v»1, and none of
Eqs. (4.58), (4.60), or (4.61) are reliable in this
domain. Fortunately, nonrelativistic (NR) quantum

mechanics applies in the domain v «1 and gives
the nonperturbative behavior of the combination

Q' A

v„, 2v (a —4m )'i (4.65)

&W2 y2
I (1+z)= 1 —yz+

i

—+ —z'+O(z'),
&12 2

where y is again Euler's constant, one gets

(4.66)

Fp perteitetioo I + 2 p ( m R )
4v 4v

A+i —+, In(2mvRe&)+O(v'). ,

2v 8v'
(4.67)

Using the definition (4.62) together with the known

perturbative results of E, and E, taken in the NR
limits [Eqs. (4.61), (4.29), and (4.30)] we obtain

me cv m o. 2mv
Ee perturbatioa r 1 + -&—+ t e + o 2 1

(4.68)

We have not attempted to compute the o."/v'
term, if any, in the imaginary part of Eq. (4.68)
which can in principle be obtained from the analyt-

, ical expressions given in Ref. 15. However, the
cancellation of the o/v terms in the imaginary part
of F, between Eqs. (4.61a) and (4.6lb) confirms that

E, is the right combination to compare with Eo. A

glance at the last two equations shows that the
known terms in Eq. (4.68) coincide with the corres-
ponding ones in Eq. (4.67) provided the following
identification is made:

and 8 is a large cutoff radius of the Coulomb po-
tential which will be related to the photon mass.
Let us note that E, contains the divergent (in the
limit B -~) Coulomb phase factor as well as the
poles corresponding to the nonrelativistic positron-
ium bound states.

We shall demonstrate that the perturbation expan-
sion of Eo coincides with the NR limit of E, known

only from perturbation theory. We expand Eq.
(4.64) in powers of n. This will be valid in the do-
main where v «1 and also v = n/2v «1, for ex-
ample, for v-10 '.

Using the known expansion of the I' function

(4.63)
Re&=A. '. (4.69)

This shows that E, is the exact NB limit of E„
and noting that only the term proportional to

~ E, ~'

contributes for v «1. The vertex function for. two
spinless, oppositely charged particles with relative
orbital momentum g=0 is computed in Appendix 8
and reads

ENR E P 1

(4.70)
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This result can be used to discuss the nonperturba-
tive threshoM behavior of I', where perturbation
theory breaks down. Very close to threshold, e/v
»1, we can use the Stirling formula to obtain

r

E, ~ t('2v
2

'i'exp —
2

ln „, (4.VI)
2v 2v ze&

a result clearly nonanalytic in o..
We can discuss the threshold behavior of ImII.

We note from Eq. (4.70) that, since only the phase
of j', is infrared divergent, the e+e contribution
to Imll is infrared convergent by itself in the NR
domain. The reason is that the exponent of A, , eA,
is very small in the NR domain

eQ ~ 8+v'
(4.V2)

1)~P

Thus we conclude that when intermediate states
with photons begin to contribute, the NH limit, Eq.
(4.70), ceases to be valid. We can, however, use
this equation to obtain the exact threshold behavior
of ImII. Since, in the NR domain, eg is to be con-
sidered as negligible, I' '(eA)(s —a)"" ' in Eq.
(4.18) is equivalent to 5(s- a). In other words, we
get the exact threshold behavior by multiplying the
lowest order by iE, ('. This gives [compare the
first term of Eq (4.35).]

The real part of the analytic function A., is rec-
ognized as the function X=A/2 which is negligible
in the nonrelativistic domain [cf., Eq. (4.V2)] while
its imaginary part, (I+v~)/2v, goes to I/2v as v
-0. From Eq. (4.70), we note that the argument of
the exponential is the nonrelativistic 1imit of
e(B+ I/2v) as it is seen from Eq. (4.60). The rela-
tivistic generalization of Eq. (4.70), which we call
g, „«, is thus

E e At)'Ir(I + ~ }ec(8+I/2 tr) (4.77)

and E,(0) = I+ or/2&&+0(n ) as required by the nor-
malization of Eq. (2.14). This form of the electric
vertex I, has the correct infrared factor and, of
course, the exact threshold behavior. The poles of
the I' function in Eq. (4.7V) gives the positronium
bound-state energies with relativistic correc-
tions.""Furthermore, the ultraviolet behavior
of E, agrees with the exponentiation of the leading
"ln" found by many authors, '4

a '}
E, ~ exp ——ln'—

4n m'] (4.78)

if E, is asymptotically negligible with respect to I",.
A similar study of the vertex function E2 involves

the electron-positron spins and will not be under-
taken here. As a guess, we propose

(4.73)
&e"7+)1'(I+ ~ )e~& 8+t(a "&

2 soft 2 1 (4.79)

where, to obtain the second form, we have made
use of Eq. (4.VO) and of the relation"

I'(I + iv)1'(I —iv) = 2+ve
(4.74)

A similar discussion of ImII has been given by
Barbieri et at.)5 and by Schwinger, "where

i p(0) i'
= iE, i', p(0) being the wave function of relative mo-
tion computed at the origin in configuration space.
Note that Eq. (4.V3) predicts the nonperturbative
result

ImlI(4m') = o&/8, (4.75)

which is probably modified by contributions of in-
termediate states be1ow the s=4m' threshold,
three-photon intermediate state, for example, and
so on.

Once the threshold problem is solved, the next
step is to obtain a relativistic extension of the ver-
tices which keeps the' exact threshold behavior and
contains the correct infrared factor. We sha11 sug-
gest a simple relativistic generalization of Eq.
(4.70). Comparing the power of A. in Eq. (4.70) and
the coefficient of In()i/m) in Eq. (4.30), one must
have

z+ — G 1+v v+1 ~
. . =. —eQi -=—1- ln2v relativistic

(4.V6)

where F,"' is given in Eq. (4.31).
Let us conclude this discussion by noting that

from Eqs. (4.77), (4.30), and (4.31), the vertex E,
can be written as

=e~)'+&I'(I + lx(i )e~&s+v2 "&
8 1

)& I+ —
i
—ln —I +O(n'}, (4.80)

oi (v v+I
&T &2 v —I

where the "hard" correction is seen to be regular
at the threshold v =0.

We shall end this paper by showing the limita-
tions of the nonperturbative formula for ImII. In-
stead of computing its (super) high-energy behav-
ior, we shall write down a formal expression for
the real part II(0}. [A similar computation is pos-
sible for all the derivatives II«')(0). ] Using the
representation (4.15}, we get, after interchanging
the order of integrations,

11,(0) =
2 da[a(a —4m')]' 'ZC(a)I' '(nA)1 6+2

dbb" '

X
ds'

(~a ~e)2 s"[S(s'r a, b)]"'
Oo

da[a(a- 4m'}]'i'X(a)K(a) .
(4.81)
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where K(a) results from the elementary s' integra-
tion,

r '(aX) dbb"" '
K(a) =

( ),

x [(a + b +4ab) ln (a/b)

-3(a'- b')]. (4.82)

Note that the integrand is regular at a =5, as one
may easily check. The function K(z) is computable
in closed form. We have used the trick to compute
the separate terms for a'=-a )0 and to continue
analytically the result thus obtained. We get the
very simple result

anA-3
z(a}= r'(3- eX)

8
(4.83)
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[a(a —4m') ]'~'
11,(o) =. 48, da, „-„(,) X(a)r'(3 —o7T)

4m2
a3-. +A(a)

(4.84)
and X(a) is given in (4.63). The salient feature of
the equations is the appearance of the double poles
at eA =3, 4, . . . , whose origin can be traced to the
divergence of the b integral in Eq. (4.82) for super-
high energy. Thus our formula for Img ceases to
be valid at energies such that oA -1, where hard-
photon contributions and/or pairs of charged par-
ticles will come into play.

The formalism we have presented will be the
starting point for the computation of radiative cor-
rections in e+p scattering dealt with in a forth-
coming article. '

APPENDIX A: CONTRIBUTION OF (e+e y) IN THE PEAKING.

APPROXIMATION, ImH ~+i

Let us compute the first term of Eq. (4.36)

ImII,'(s }—
12

da [a(a —4m') ]'i'(a+ 2 m') A (a)
QsP s —a

(A1)
where A is given in (3.16). The change of variable
[compare Eq. (3.32)j

m'(1 +r) 2

(A2)
y

brings Eq. (A1) to the form

m'
ImlI,'(s) =-

6@'s~

dr (1+4r+r')[(1- r~)2+(I —r4) lnr]
y' (r- x}(x ' —r)

(A3)
where

m'(1+x)' 1 —(s —4m'/s)' '
1, + (s —4m'/s)'i' '«= 2, 2, (A4

and

4m2}2/2

We can simplify Eq. (A3) somewhat by changing r
-1/r in some terms. We get

m ~i"& dr(1+4r+r')(r lnr —r+1/r)
1 6~ 282 (r- x)(x '-r)

(A6)
Only the following terms lead to Spence functions

and are computed using the appendix of Ref. 15:

f dy lny "x. dy lny

Xg
r-1/x "k y —x

ZVx=Li2(l —x') —lnxln
(1 )(1,)

= 2y(x)+ 2y(-x) + —--.' ln'x

A.—ln« ln(1+ «) —ln —lnx . (A7)

After a tedious computation of the elementary
terms of Eq. (A6), we get

3' t

)mrr, '= I2(1+x )(1+4x+x ) —,
' )n'x+-,' )nxln(1+x) —4(x)-4(—x)—

—(1 —«')(1+4«+«') —,ln«- 1 ln—(1+x')
1 —x m

1+4 '+ 4
+ Inx . + —,

' (1 —«2)(1+4«+ «') —(1 —«2)(1+4«+ «2) ln(1 —x')(1 —x)

+(1 —x )[ (1+x )+2(1+x'+4x))I . (A8)
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By adding the second term of Eq. (4.36), where
F(s) is given in Eq. (3.30) with r-x, we get Eq.
(4.39).

. ~E.Coulomb

y, =sin(zx- —,le+5, ) for r)R,
(84)

APPENDIX B: NONRELATIVISTIC VERTEX FUNCTION

FOR SPINLESS PARTICLES

Let us assume that the vertex function for two
spinless particles mith opposite charges results
from the exchange of Coulomb photons described
by the cutoff Coulomb potential

Q
V(r) = —-e(R - r),r (81)

where A is a large cutoff which we will relate to
the photon mass. Although the solution of this
problem is well known to many readers, we shall
present here the main steps of the derivation for
completeness. The radial Schrodinger equation
for relative orbital momentum ) is

f(i+1)yi'+ g' —2VV(r)-, y, (r) =0, y, =~/, ,

(a —4m')'~'
~re (83)

a being the invariant mass squared of the electron-
positron pair. The solution of Eq. (82), regular at
the origin, continuous as well as its first deriva-
tive at r =A is

(82)

where z = pv„, is the relative momentum, V, = m/2
is the relative mass, and v„& is the relative vel-
ocity,

Qm

(a —4m')' '

The Jost function D, (K') =-f, (-K) is defined by

(86)

D, (R') =e "~limy, „(r)/y(r).
y-+p

(87)

Using the known" behavior of y, ,u„b near the
origin, one gets

'(cr) o/c»= (86)

where the normalization constants , are given by

2l
c,=, (I'(l+ I —iv) ie"" .21+ 1 !

Equation (87) now reads

D (~ ) I fe fUhl le'U/2P '( I+ 1 iv)

(89)

(810)

From the analyticity properties of D, and the ver-
tex functions F„ it is known that F, =D, , and, in
particular,

F D -I eivln2 vKe"' 'I (1 —iv) . (811)

Generalization of this result to include spins is
possible. We shall not attempt to do it here. We
will simply identify Fp as the nonrelativistic limit
of the combination F„Eq. (4.62).

where y, ;„„„is the regular solution of Eq. (82)
for the Coulomb potential -a/r, and 6, is the total
phase shift

6, —=e, + v ln(2lcR) =ArgI'(I+1 —iv)+ v in(2aR),

(85)

where
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