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Construction of the functional-integral representation for fermion Green's functions
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A direct derivation is given of the functional-integral representation for the Green s functions of quantum
theories built from a finite number of canonical fermion operators Q, Q t with (Q„Q ts) = 8 &.

The Green's functions of a quantum field theory
are often represented as functional integrals. For
example, in a theory with a scalar field 4 and a
Dirac field 4(x), one has
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and Z is a normalization factor. The integral is
over all classical field configurations p(x) of the
boson field and over anticommuting field variables
tI(x) and tI(x) at each point in space-time for the
fermion field.

Integral representations such as (I) have proved
to be useful for performing formal manipulations
on the theory, including the derivation in a simple
way of the Feynman rules for perturbation theory.
In the case of boson fields, the integral represen-
tation is also useful as the starting point for var-
ious semiclassical approximations.

In most interesting field theories, 2, is quadra-
tic in the fermion field variables. Thus in many
applications one can perform the q and g integra-
tions exactly. This leaves only the &f& integral,
which is susceptible to approximation schemes.
Indeed, the paper' that first introduced the fermion
functional integral also showed how to eliminate
it in this way.

The derivation of the functional-integral repre-
sentation for quantum theories with a finite num-
ber of canonical boson operators 4, II with

[C, Iis] =i6 s is well known and very simple. '
From there, one passes easily to the limit of an
infinite number of field operators and thus to a
boson quantum field theory. (That is, this step
is easy if one assumes the existence of this limit. )

The functional-integral representation for a
quantum theory with a finite number of canonical
fermion operators Q„, Q with (g, Q s) = 5„s is

also well known. It has been established by show-
ing that it leads to the Schwinger action principle, '
that it solves the field equations of motion written
as functional differential equations for the gen-
erating function of Green's functions, or that it
leads to the correct Feynman rules for perturba-
tion theory. In the boson case, however, one con-
structs the functional-integral representation di-
rectly from the underlying quantum mechanics,
without reference to perturbation theory or the
functional differential equations of motion. One
would like to have a similar direct construction
available for fermions.

Two recent papers, one by Halpern, Jevicki, and
Senjanovic' and one by Samuel, ' point the way to
such a direct construction. (These papers are
briefly discussed in Appendix C.) My purpose in
the present paper is to generalize the methods of
these authors to cover the construction of the
Green's functions for fermion field theories with a
general Hamiltonian. I hope to illuminate ques-
tions of operator ordering, antiperiodic boundary
conditions, and the precise definition of the func-
tional integral as the limit of a certain lattice
approximation. In addition, I prove the existence
of the limit in the case of a finite number of de-
grees of freedom.

One can easily combine the boson and fermion
constructions so as to cover the case of a finite
number of boson and fermion operators, then pass
to the'limit of an infinite number of operators and
thus to a general quantum field theory. In the in-
terest of simplicity, these steps are not discussed
in this paper.

The objects for which we construct a functional-
integral representation are the finite-temperature
imaginary-time Green's functions

TrJ(e s"T[qs(-its)qt(-it„) ])/Tr{e ").
These Green's functions are directly relevant to
statistical mechanics. To obtain the usual Euclid-
ean Green's functions used in particle physics,
one simply takes the limit P- ~. This leaves only
the contribution from the vacuum state,
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(Q QB)=6 8~

fq~ QB)=fq Qa)=0.
(2)

The Hilbert space describing the states of the sys-
tem has the usual rock basis

lo),

I
o& = q'. Io&,

l~ p&=q'. q8lo&,

I1, 2,",d& =q,'Q.'"q,'Io&,

with Q Io) = 0. Of course, the ground state of the
system need not be the state Io& .

e consider the most general possible self-ad-
joint Hamiltonian 8 for the system, subject to the
condition that 9 be unchanged undec the transfor-
mation Q- —Q, Q~ --Q'. We choose to write H
in the form of a normal-ordered polynomial

H(q~, Q) =&+ gr'Q. Q, + C"'Q~q, + D'q'„q',
+& '"Q Qeqyqs

+F"'"q'Q Q Q +"
[The choice of which operators of the theory are
Q's and which are Q" 's is arbitrary, but once we
have made this choice we stick to it and write
H(Q, Q) with all of the Q's to the right of the Q 's.
In the case of a Dirac field, the most convenient
choice is to let each component of 4~(x, o) at each
point in space be a Q„.]

Our object is to write a functional-integral rep-
resentation for the finite-temperature imaginary-
time Green's functions

G«. , "., t.) =Z-'»(e-'"T[q, (-it d" Q.(-it.)]],
where Z= Tr(e 8"), T denotes time ordering, and
it is assumed that —P /2 & t „&p/2. ' In order to keep
the notation simple, we will consider a definite
example, the two-point function for t ~) t„:

(vac
I T[QH(-it ~)Q~(-it „) ]Ivac& .

Finally, if one wants the real-time (Minkowski-
space) Green's functions, one analytically con-
tinues back to real times using the Wick rotation
-it - e 'gt - t with m/2) 6)0. The resulting
Green's function can be written formally as a
functional integral with ifdt in place of Jdt and
-is/Bt in place of 8/st, but, in addition to making
these replacements, one must remember the di-
rection of the Wick rotation by occasionally in-
serting ic terms in calcujations.

We begin the construction by considering a quan-
tum system described by a set of operators Q„
with o. =1,.. . , d and their adjoints Q~. The opera-
tors are assumed to satisfy the canonical anti-
commutation relations

(t t „)= Z-'Tr(e- «&'-~a»q e- «e-~~»

)(~$~ (8~ 8/2)8$
~n

Let us divide the "time" interval (-—,
'

p, —,'P) into a
large number N of small intervals (t ~, t~, ) with
--', P=t, &t, &t, «. t „=+-',-P. We choose the
lattice points t ~ so that two of them fall at the
values t ~„=t~ and t ~ =t~. The evolution opera-
tors can then be written as products of small-in-
terval evolution operators exp[-(t ~

—t ~,)H].
We now make the essential approximation of the

present derivation. We replace exp(-b, t ~H} by
:exp(-ht ~H):, where the colons denote normal
ordering. This gives the "lattice Green's func-
tion"

G Z Trf ~ g @~~N+ ~ ~ ~ Q ~ ~ ~ Q~ ~ ~ ~

H&t 2. .+-H+t
~ ~ ~

g

where Z=Tri:e " '~: ~ ~:e " ~:). Since H(Q", Q)
is already normal ordered, the normal-ordering
instruction in:exp(-~t ~H): affects only the terms
of second or higher order in the small quantity
ht ~. Thus the approximate Green's function G

will approach the exact Green's function G as the
maximum lattice spacing b, t ~ tends to zero. '

The rest of the analysis is purely algebraic: we
write an exact representation of the lattice Green's
function G as an "integral" over a set of anti-
commuting objects q„(J'),q*(J), with u = 1, . .. , d
and J=1,.. . , ¹ Each of these objects anticom-
mutes with each other object; they are the gener-
ators of the Grassmann algebra of order 2Nd.

Let us briefly review' the definition of integra-
tion on a Grassmann algebra 9»,. For this pur-
pose we denote the generators by Z» Z». .. , Z»„.
The algebra 8»~ consists of all polynomials

P(Z) =g+g Z)+ C Z)za+ ' '+ Izxz2 ' 'Znrq (6)

together with self-evident rules for addition and
multiplication of polynomials (using Z,.z, + Z„Z,.
=0). Differentiation on 9»~ is defined by

8
g

8

together with the rules

[eP(Z)+bq(Z)]=a, J (Z)+b q(e),

z,p(z) =6;p(z) -z, , p(z).

The standard definition of "integration" on g,~„
can be;stated very simply:

dZ, P(Z) -=P(Z) . .
BZg
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(It is only for historical reasons that one uses the
integration symbol for this operation. ) In par-
ticular, if one integrates P(Z), t K[I. (6)] over all
of the anticommuting variables, one obtains an
ordinary number, the coefficient of the highest-
order term in P(Z):

dZ2~„dZ, P Z =I.

We make use of the Grassmann algebra by map-
ping the space of states of the quantum system on-
to the space of polynomials P(q*) in N anticom-
muting variables q*„. Let the basis states ~0), ~o),
~o. , P), .. . correspond to the monomials

(0) -1,
l~) -n*. ,

ia, P& -n*ng,
N) -n"n.*"'&* ~

More generally, let the polynomial P(g*) corre-
spond to the state P(Qt)~0).

Now consider a quantum operator E, which we
write as a normal-ordered polynomial

F(Q Q)=&+&0 + "+LQ'"O'Q" Q

The corresponding operator on the space of poly-
nomials P(q*) can be written as an integral oper-
ator: if FP(Q )~0) =P(Q~)~0), then

P(0") =f( [)[de de )"„ex„p(g (ij„'—0'„)0,)
»(~*,n)P(n*). (8)

The proof of E{I. (8) is straightforward and is
given in Appendix A.

Evidently the relation (8) can be used repeatedly
to write a product of operators,

F=F (Q', Q). F.(Q', Q)F (O', Q),
as an integral operator on polynoinials P(g*), in
the form of E[l. (8). The combined kernel F(q*,g)
then corresponds to the normal-ordered form
F(Q, Q) of the operator F. One finds that
FP(Q~) ~0) =P(Q~) ~]0), where

1"'[0'(Ã)]=)( de,'(0)de„(0))e'" '"' ' 'ej""x[0'((e) 0(0)]p[e"(0)]
a

and the new kernel F()I*,q). is

&-I

x[0 ()0),0(0)]= [de„(d)de(d) exP [,0 "(0)—0"(J—()]e(J 1))efe e&-e & &1 0
J =1 0[ =2

xF [q*(N), q(N-1)] F,()I*(1),q(0)].

Here we have used the notation

~*(~')n(~) -=g n*.(~')n„(~)

To complete the construction, we need to write the trace of p' as an integral. The relevant relation is

Te{p (qe, p)]= f ( ', (de de.' exp 0+ 0'e,)p(e', 0)
a lX

for a normal-ordered polynomial F(Q, Q). This relation is proved in Appendix B.
When the relations (9) and (11) are combined, one obtains

I

xe{p (0'0) p„(0 0, )]=f de', de 'e,xp(- g 0 (0) [ (z) - (ze- 1)I) ep, [e'((e)e(10 1) I p, [e (1),,e(0)]-, "
J' =1

(12)

where

, d

cf'/*cd'g = 4'Ij ~ J Ag~ eJ
J =& a=&

and where, when )I(0) occurs, it means

q(O) = -q(N) .
The integral representation (12) for the trace of
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a product of operators can now be applied to the
lattice Green's function (5) with the result

G8 =Z dg* e " '"qs JBg*J~
I

Z= dg+ e sr. n+ n]

where

s(q +, q) = g t t, q ~(z)"

(v) The methods used here also work for bosons
[Q, Qs] = 5„8 if the q's are interpreted as com-
plex numbers and

1 OO

dq„*(Z)dq„(J) =— dReq dime .
7l tro e 00

Equation (8) is unchanged, while the exponential
factor in Eq. (11) is to be omitted for bosons. As
a consequence, the results (14) and (15) hold for
bosons as well as fermions except that the bound-
ary condition (13) becomes a periodic boundary
condition q(0) =+q(N} for bosons.

In the limit in which the maximum time interval
ht~ goes to zero, the lattice Green's function 0
approaches the comtinuum Green's function G. It
is suggestive to write G in the standard form

Se,(t„t„) Z' f dn='dne *t" "ne(t )n,"(t„),
(15)

Z = dg~d~e- s [n*,~]

where

8/2 dS('n", n)= dt ti'(t) n(t)ett[n'(t), n(t)[—
I

.
—8/2 df;

A few comments are in order
(i) The functional integrals in Eq. (15) are de-

fined as the b, t -0 limits of the finite-dimensional
integrals in Eq. (14). We have proved' that this
limit exists.

(ii) The representation (15) was derived under
the assumption that t B & t„,but the same repre-
sentation evidently applies for t „&t B.

(iii) The integral representations for Green's
functions with more operators Q&(-it c)Q(;(-it ~)
have additional factors gz(t c)q~(t dr)

these Green's functions can be obtained by dif-
ferentiating the generating functional

Z(d, d")=Z-' f dn'dnexp( S[n'n[e f [ d(tt)-nd(t),

+d"(t)q(t)]),

where J and J*are additional anticommuting vari-
ables.

(iv) The antiperiodic boundary condition (13) im-
plies that the operator d/dt in the continuum ac-
tion should be defined with antiperiodic boundary
conditi'ons and that the Green's functions are anti-
periodic:

G(tI, ~ ~ r trCr+zpr tA) ——G(tI, . . . , t Cr spite).
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APPENDIX A: PROOF OF EQ. (8)

Let E(Qt, Q) be an operator written in the form
of a normal-ordered polynomial and let
E(Q, Q)P(Q~) ~0) =P(Q ) ~0). Define R(Q~) by

S(il')= f ( „,dnedne) exp(g(q„' — ') n)n

xy'(q*, q)P(q*) .

We seek to prove that R(q) =P(t)).
It suffices to prove this in the case that F and P

are monomials

&(Q Q)=Q, '''Q „Qs~ "'Qs, r

P(Q')=Q' " Q'
~1 ~C

Then,

R(q') ii" ii" f=( d„q„"dri„„[(1+neet)

x II (1+)[)*q )

~ ~ og gW ~ ~ ogW
B 1 ~1 ~C

Evidently, R(i)*)= 0 if the values of the indices p
are not a subset of the values of the indices y. In
this case P(Qt) =0 also, so P =R. In the contrary
case (p,.}c-(y,.), one can assume without loss of
generality that p, =y„p,=y„... , ps=ye. Then
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It(i)+) =)+ ~ ~ i)* J[g dn*d~) II (I+n, n(*)n„n,* n, n,* 0„* n, n,* " n„* n„n„*
B+ 1 ++I B+1, C C C

The remaining integral equals 1, so

~ (n*) =()* n* i)*
I A ~B+ ~C

In this case,

&(q', Q)I'(Q)10&=q '''Q Q '''Q Q '''Q' I0&'Y

~
'YC

"q'
I
0&.y+

Thus, P =R in this case also, and the theorem is
proved.

APPENDIX B: PROOF OF EQ. t'1 1)

I et I' (Qt, Q) be an operator written in the form
of a normal-ordered polynomial and define

=0. (Thus, scattering is included but pair crea.-
tion is not. ) The fermion number equal to one
part of the isomorphism (7) between polynomials
in the Grassmann variables and states is implicit
in Samuel's construction, as is the representation
(8) of operators as integral operators.

Another recent paper by Halpern, Jevicki, and
Senjanovic' constructs the functional-integral rep-
resentation for the same object by using fermion
coherent states:

In(&)) =e'" "'10&,

&n*(~) I
=&01 .

Their construction is swift and elegant, as is the
corresponding construction in the Bose case.
They introduce the coherent states at each time
interval using

1= dg Jdr J e

We seek to prove that I= Tr(p(qt, q)f. It suffices
to prove this in the case that P is a monomial

&(Q, Q)=q '''Q Q ' Q

Then they evaluate the matrix elements using

&n*(~+»l~(q', q) ln(~)&

y [n &)& (g + I) n (g) je
)) ~ (J'+ 1 ) )) )) (1)

Evidently Trz =I=0 if the set (n,.) does not equal
the set (p,.}. In the case (n,.)= (p,.), it suffices to
assume that c(, = p„.. . , n„=p„. In this case

Onk can also introduce the trace by using

T&z((&&, q) =f "
d&& (N)d&) (Ã)e'""»"

d,I-
~ [ dn~dn~+ (I+ 2n+n )n+ n

b~=:

2d-A

But in this case Trg =2" " also, so the theorem
is proved.

APPENDIX C: COMPARISON WITH OTHER METHODS

The method used in this paper is a generaliza-
tion of that of Samuel, ' who constructed the func-
tional-integral representation for
&0~Q Tej""'Q8~0), where H=q (ttl) SQS andq8~0&

x&n*(~) l~(q', q) ln(iv)&.

Notice that the fremion coherent states do not
belong to the original fermion Fock space, but to
a larger vector space in which the role of scalars
is played by the elements of a Grassmann algebra.
The creation and annihilation operators on the
space, Q~ and Q, anticommute with the Grassman
vraiables g~s and g 8. The construction of this
Grassmann-Fock space and the proof of the for-
mulas listed above are, if done carefully, not
difficult but not entirely trivial. The principal
advantage of Samuel's method in comparison to
the coherent-states method is that the Grassmann-
Fock space need not be introduced.
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The definition is extended outside of this region using
the antiperiodicity relation G(. . . , t„+P, . . .)

G (o ~ ~ s tgs ~ ~ ~ ) ~

Let U —= exp[-H(tz-tl)]. Divide the interval (tr, tz) into
small segments (tz ~, t J) and define U= Oz.exp(-Hht J'):.

Evidently

II «P( »tz) ex-f ( »tg): ll«(«z)'
for some constant C. From this bound one easily de-
rives

II&-&II«xi(-&0(t&-tl)l {«fK(t+ tj)m««g1
where Eo is the smallest eigenvalue of Il or zero,
whichever is smaller. Thus, [[ U —U[[ 0, and there-
fore ~G-G( 0, as max«z 0.
For further details see F. A. Berezin, The Method of
Second Quantization(Academic, New York, 1966).

Footnote added in proof. A similar construction has
been given independently by L. Faddeev in Methods
in I'ield Theo~, edited by B.Balian and J. Zinn-Justin
(North-Holland, Amsterdam, 1976).


