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The Gross-Neveu version of the Thirring model is analyzed in four-dimensional space-time. In 2+(
dimensions this model is nonrenormalizable by power counting; however, it is known that up to4-e
dimensions the 1/X summation produces the improved propagator of the collective i' field so that the
theory requires no more subtractions than the theory in two dimensions. In four dimensions the situation

deteriorates: There are two induced couplings of arbitrary strength, and the elastic unitarity is violated
because the collective propagator decreases too fast. We show that the arbitrary coupling constant can be
determined from the requirement that the effective potential has a minimum for zero values of the classical
fermion and collective fields, One more reason for inconsistency is that a tachyon pole comes about even if
one expands around the minimum of the potential. It is argued that one can get rid of inconsistencies by
allowing the theory to be nonlocal. We construct the nonlocal form factor of the collective field from the
requirements of unitarity, microcausality, correct spectral properties, and several assumptions about
regularity properties of the nonlocal form factor.

I. INTRODUCTION d "0 Tr[I'i(g+P)]
(2 w)" k'(0 +p)' (1.4)

The model that we shall consider is the N-com-
ponent spinor field theory with a quartic scalar
interaction in four-dimensional space-time:

Ly =g(ij )g —aA(gg)'

(plus, possibly, the fermion mass term), where

(1.2)

Integration on the right-hand side reveals that

rr(p ) = "
„„r(1 ——,'n)a(-,'n, —,'n)(- p')("-" ' . (1.5)

Summing all the contributions by means of the
formula for the sum of the geometrical series,
we obtain for the improved propagator

Following the usual procedure' we shall replace
(1.1}with an equivalent Lagrangian involving the
auxiliary collective field r,

—iA.

1 —~rl(P')
' (1.6)

1I,, = p(i g)g- —o' —vgP.

In more than two dimensions this model is non-
renormalizable by power counting; however, it
has been recognized that up to dimensions less
than four it can be renormalized without the need
to introduce an infinite number of counterterms. '
The essence of the method one has to use is that
first one should sum up the contributions from the
leading 1/N-order self-energy diagrams (see Fig.
1) and then use the result as the "improved propa-
gator" while evaluating higher-order contributions.
Then only a few types of vertex functions turn out
to be superficially divergent. The idea of the
superpropagator method' is intimately built into
the scheme of the 1/N expansion.

In order to demonstrate how the method works
let us calculate the contribution from the single-
fermion loop which enters in the graphs of Fig. 1.
%e obtain

D(p') asymptotically behaves like p' " and the
convergence properties of the diagrams of the re-
arranged perturbation expansion are considerably
improved. The tachyon pole which comes about
in (1.6) is spurious and disappears by means of
dynamical symmetry breaking, These two facts
support the belief that the model is consistent in
4- E dimensions.

In four dimensions the situation deteriorates
dramatically. Now D(P') decreases too fast because
of the term P'lnj' which arises in the finite part
of (1.5). To make matters worse the ghost pole
appears in the propagator even if we correctly
expand Green's functions about the minimum of
the effective potential.

In the sequel we shall try to attack the problem

FIG. 1. The bubble chain contributing to the improved
cr propagator.
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in the framework of nonlocal quantum field theory.
Textbook knowledge tells us that the renormaliza-
tion of the perturbation expansion introduces non-
locality into Qreen's functions when the conven-
tional technique is applied to nonrenormalizable
interactions. This is because counterterms con-
taining arbitrary powers of momenta should be
added to any kind of Green's function. The 1/N
expansion is essentially a rearranged and partially
resummed perturbation expansion, and there is no
principal reason why all these troubles should be
absent from it. It possesses, however, one par-
ticularly attractive feature: The ambiguity due
to the renormalization procedure fully concen-
trates in the leading 1/N order. Therefore all
additional assumptions which ar'e needed to fix
nonlocal terms can be controlled and, we hope,
interpreted.

This is not as unexpected a result as it sounds
because nonlocal terms are produced by infinite
summations, and in the 1/N expansion the bubble
chain4 of Fig. 1 is the only infinite summation which
is needed to any order in 1/N. Hence the single
part of the argument which may require modifica-
tions is the formula (1.6) for the improved propa-
gator which is the result of the asymptotic sum-
mation. It was the formula for the sum of the
geometrical progression which led to (1.6}. We
have used this formula because then D(P') is the
analytic continuation of the result from the region
where the series actually converges. In this sense
the result (1.6) is unique. It corresponds to the
simple form of the generating functionals: Equa-
tion (1.6) is generated by the effective action which
contains (I/&)o' coupling and the standard tr log
term.

The idea that one can get rid of the tachyon poles
by a suitable modification of the method of sum-
mation is rather old. ' In particular, one can re-
move the unwanted pole by replacing D(P'} with
D(p')+ f(p') ', i.e., by introducing an additional
nonlocal 2af(- )o term into the effective action.
The function f(P') ' should have a pole at the same
place as D(P') and the residue equals minus the
residue of D(P'}. If, moreover, the function f
has a zero asymptotic expansion in powers of ~,
then one can argue that the new improved propa-
gator belongs to the equivalence class of the as-
ymptotic sum for the series of Fig. 1 and there-
fore is as good an improved o' propagator as (1.6)
was. ' While applying this method one must take
care for the effective potential; it may happen
that the tachyon is removed, but the Qreen's func-
tions are not expanded around the absolute mini-
mum of the potential. We just know how to calcu-
late the effective potential in different 1/N
models "-'

II. THE EFFECTIVE POTENTIAL

The one-loop o-self-energy diagram of the theory
with massless fermions yields

d"0 Tr[g(P'+P]
(2 v)" k'(0 +p)' (2.1)

Integrating and retaining only the finite part we
obtain in the limit n-4

It is very convenient to construct f(P') ' in the
form

w(p')
P Po

Theories with nonlocal propagators of this type
were rigorously elaborated by Efimov" and
Alebastrov and Efimov. " They have demonstrated
that if W(z) is an entire function whose order of
growth p satisfies

a ~p&1,

then the unitarity condition for the S matrix is
satisfied and if, moreover, p= & then also the
microcausality condition in Bogoliubov's sense"
is fulfilled.

The principal aim of this paper is to construct
the form factor W(p'} in such a form that the re-
sulting theory possesses the ground state, has
the correct spectral properties, and satisfies
unitarity and microcausality conditions in the sense
of Ref. 14. Under specific assumptions on the
regularity properties of the nonlocal form factor
and the behavior of the improved propagator in the
Euclidean asymptotic region, it is possible to ob-
tain the unique answer. To this end we use
Evgrafov's method of constructing the entire func-
tion from its asymptotic behavior. " This method
was applied in physics by Efimov and Mogilevsky'
in the framework of nonlocal quantum electro-

dynamicss.

We show that the resulting theory exhibits fea- .

tures predicted by Klauder for nonrenormalizable
interactions. ' '" In the limit of the vanishing
coupling constant the quasifree instead of the free
field theory is recovered. The form factor 8'
does not have a zero asymptotic expansion. This
result is not unexpected: In contradistinction to
the renormalizable models, perturbation expan-
sion reveals nonlocality of the interaction. Hence
the additional nonlocal term should be considered
as the "augmentation of the interaction" in the
spirit of Ref. 17 rather than as a modification of
the propagator (1.6}within the equivalence class
of the asymptotic sum of the divergent series
leading to the result (1.6).
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—iA.

I -(~/4 ')P'I (-0'/V') ' (2.2) If, instead of (1.1), we consider the Lagrangian
with massive fermions then the analog of (1.3) is

where several numerical factors were rearranged
into the arbitrary sca,le para. meter p.'.

It is apparent that for positive values of ~ the
tachyon pole unavoidably comes about in (2.2). In
that respect our model resembles the Gross-
Neveumodel. ' For large negative values of A.

(A. &-4em'/]]. ') the pole disappears (unlike in the
Gross-Neveu model), but for negative coupling
the theory with the T]]} g collective field does not
have physical meaning, ' so from now on we shall
confine ourselves to the case A. &0.

1 2I-o = g(i I™)I~ ——o' —ug p (2.3)

and the contribution from the one-loop self-energy
dia.gram is

d "k Trg- i(P+|]])+m](- i g +m)]
(2w)" (k' —m') [(k+P)' —m']

(2.4)

Expanding in powers of 4 —n we obtain for the
finite part,

F P 11(p, m) =, I3y-"I+»n +2B(k' m2)jm' — 2y-~+2» +2B(k' m')Ik'1 I' m'
4m' I, p2 )

~ 3 2 ~2 2 p )
~ p. (2.5)

where y is the Euler's constant. While expanding
(2.4) we have used the convention that we expand
only the Euler's I'function and integrals over the
Feynman parameters. Everywhere else we set
n=4. The function B(k', m') is given by

j. /2

a{{,",I'}= 2 (}—— }n{{}—x}'~' + {-x}'~']1

for @+0,

Z/2 X/2

B(k', m') =. 2 ——1~ arctan
X ) 1 ~ x

for 0 ~x ~1, (2.6)

B(k', m') = 1- —
~

(-iv+21n[(x-I) ~ + ~ ])x)

couplings in higher orders is granted by power
counting with a modified rule for the o' propagator.

We cannot continue our discussion unless we
gain some information from the effective potential.
We shall calculate the effective potentia. l using
the method proposed by I ee and Sciaccaluga. "
This method seems to be perfectly suited for
dimensionally regularized theories.

Shifting in (1.3) the field o' by its classical value
u we obtain

1 2 1I.'=y(i ]-]])uI-]—~'-ogg- —u~.
2A.

(2.V)

In leading order there is only a single one-particle-
irreducible nontrivial tadpole diagram (see Fig. 2).
The contribution from this graph is

(,) )
. d "k Tr(- z f+u)

(2]]')" k' —u'

where

x = k2/4m2 .

for x&1
~ (,„~, I'(1 ——,'n)u" '.

2z)

At n =4 the finite part of (2.8) equals

F.P. I ' ~(u]) =', u'ln —,,
1 Q

(2.8)

(2 8)
We cannot draw any reliable conclusions about

the spectrum unless we eliminate the explicit
dependence of (2.5) on the arbitrary scale pa-
rameter p,'. This dependence cannot be rear-
ranged into the pa.rameters of the original La-
grangian. This manifest reflection of nonrenor-
malizability does not offer serious trouble. In
the following we shall show that any change of p'
can be soaked up by a suitable redefinition of the
induced 0 coupling constant. In the leading order
there are only two induced couplings: quartic
interaction of the composite mode and the kinetic
quadratic term (sv)'. The lack of the induced

where

SP Q
ln —=ln —+ y- 1.S2 jl2

(2.10)

There is a simple relation between F~'}(u) and
the radiative part t/'„d of the effective potential
jeff,

md(u) F(y}( )BQ
(2.11)

Hence the finite part of the radiative correction
to the effective potential equals
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PIG. 2. The cr-field tadpole diagram.

1 g2
farad =

16@2 s'o ln ——2 (2.12)

The full expression for the effective potential is

1 — 1
V« = —o'+ops+ o4 ln —--,

2A, m2 s' (2.13)

The condition & V«/sv =0 gives us the gap equation

1 1 3
g g = ——&x — &'In —.

k. 4@2 s' (2.14)

Eliminating the dependence of (2.13) on g g we
find that the constrained effective potential is equal
tO

1 ~ 1 0'
V = —v2- & 3ln —+-,' .

2k. 16m 2 (2.15)

Equating to zero the first derivative of V„„with
respect to 0,

1 1 o'
V' = ——« — 3 ln—+2 I«'con g 4

(2.16)

we observe that, except for m=0, there is the
second candidate for the minimum of V.„, namely,
0 =0, where o is the solution of

a' 4m"02 31n --+2s' A.
(2.17)

The second derivative of t/, equals

31n—+4~«'.n
coll y 4«2 s2 (2.18)

Substituting 0 and o for we obtain

V„'„(0)= ——U„"„((T)=——1 „2 32
(2.19)

P~y Q g» o. (2.20)

is dynamically broken.
The sign of V"„(o) depends on the actual value

of o' which, as implicitly defined by (2.17), is a
function of the scale parameter s' [or g', cf.
(2.10)]. We cannot draw any conclusions from the
above formulas unless all quantities are expressed

Hence for ~ & 0 the point o' = 0 is the maximum of the
effective potential and we expect that the discrete
symmetry

in a p,-independent manner. We have renormalized
the dimensionally regularized diagrams according
to the 't Hooft-Veltman renormalization prescrip-
tion, ' i.e., we have subtracted only the pole parts
of the divergent integrals. Using another pre-
scription leads to different results, but in re-
normalizable theories all the differences can be
absorbed by a suitable reparametrization of the
Lagrangian. ' When nonrenormalizable inter-
actions are taken into account the ambiguity due
to the choice of the renormalization procedure
becomes essential. In consequence of this am-
biguity an additional g term with an arbitrary
coupling strength g can be added to (2.12) and
(2.13). Any change of q can be compensated for a
suitable change of p. We find it convenient not
to introduce g but, alternatively, to treat p2 on an
equal footing with other parameters of the model.
Both formulations are manifestly equivalent.
Another induced coupling creates the o-field
kinetic term. This term does not contribute to
the effective potential and therefore will be dis-
carded here. "

Equation (2.1V) has zero, one, or two real posi-
tive solutions. We should choose p2 large enough
to ensure that (2.17) has two such solutions,
tt, &o'„say. [We do not consider the case when
(2.17) has one solution because then the potential
has an inflection point instead of a minimum. ] The
gap equation defines the three-valued function
o'(pg). The branch points are localized at the
points which are solutions of the equation

and coincide with the roots (r„&, of (2.1'I). In that
respect the situation resembles that which trans-
pires in nonrenormalizable quartic scalar self-
interaction in more than four dimensions (see the
second paper of Ref. 8).

We have just noted that at o = 0 the constrained po-
tential has a maximum. If g increases then ~„„.
decreases up to o =0, where we have a minimum
and then begins to increase until « =«, (see Fig.
3). Inverting the gap function g f(«) we have to
choose the branch extending from , to o2. Then t/'

has a minimum at g P(«, ) and gets an imaginary
part at g g(&,). Unfortunately we find that g tP(o', )
&0. This result is independent of the value of the
parameters A. and p,

' and is highly unacceptable
from the physical point of view.

If we want to have a minimum in the physical
region we should somehow lift the plot PP(&) up-
wards. This can be realized by letting the fermion
field be massive from the beginning. If we start
from the Lagrangian
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V gP, therefore we have to assume that

g g(v, —m) =0. (2.25')

This is a nontrivial restriction which we interpret
as a consistency condition allowing us to fix the
value of the (previously considered as arbitrary}
induced o' coupling strength. The question is how

to calculate this coupling constant explicitly.
Condition (2.17) tells us that & satisfies

4w' 2&'ln —=—s' SA. 3 (2.26)

Substituting this into the gap equation and using
condition (2.25') we obtain

4m 6n m
A.

(2.27)

1I.= g(i P —m) g ——v' —up y2A.
(2.21)

then we obtain

V ~ =,((x + m)' ln
~

1, &0+nz
'

16m s (2.22)

The gap equation gets the form

1 1 , o+m't(~+m)'»
4m' s (2.23)

FIG. 3. The constrained effective potential versus 0.

versus Pp in the massless case. The minimum (heavy
dot) occurs for negative values of. lt}ljI).

For positive & and m the product of the roots of
(2.27) is negative, thus (2.27) has either one nega-
tive and two positive or one negative and two corn-
plex solutions. The condition that (2.27) has two
real positive solutions plus the requirement that
the smaller of these solutions satisfies (2.25) de-
fine the region on the (A., m) plane where the ground
state exists. For and & from this region Eq.
(2.27) can be solved, e.g., using Cardan's form-
ulas. Substituting the solutions back into (2.26} one
can calculate s'. Let us notice that the points
close to the axis ~ =0 belong to the area on the
(A., m) plane where the solution exists. This allows
us to discuss the limit ~-0 independently of the
value of ~. When ~-0+ then the positive roots
of (2.27) approach the point 6 = ~vm and satisfy
(2.25). The negative root approaches minus in-

and the constrained effective potential is equal to

1 o+m&'V„„=-—(a+m}-,(o+m)' 3 ln I +2 ~

1

(2,24)

Comparing (2.22) and (2.23) with their predeces-
sors (2.12)-(2.15) we find that now the plot V,
versus o is shifted to the left by m, and $g versus
0 is shifted to the left by ~i and lifted upwards by
m/X (see Fig. 4). The position of the extrema
(and of the branch points) is now v =0, —m and
O' = 02 —Pl.

We cannot expect the minimum of V to be the
ground state unless two additional requirements
are satisfied. The first of them is

0'

C~ &i' . (2.25)

Then the minimum occurs for positive values of
the classical field. Shifting o by its classical
value &, —m we make this field have zero expecta-
tion values at the minimum. This does by no
means automatically imply that the same holds for

FIG. 4. The same as Fig. 3 except that the fermions
are massive. The suitable choice of the induced 0 cou-
pling strength allows the minimum to occur at gg = 0.
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4m'
o'ln —=—s' 3A.

(2.28)

and therefore s'-0+ as A. -O+. This means that in
the limit of small & the induced coupling constant
g becomes very large so the model does not reduce
itself to the free one and offers a nice example of
Klauder' s phenomenon. "

Suppose that we have taken m and X from the
suitable region and we have calculated o„a„and
s'. Now formula (2.5) is a correct expression for
the two-point Green's function provided we re-
place ~ by o

y and we set

finity faster than —2~/X'~'. Equation (2.26) reduces
to

of( V)o, (3.1)

where l is a dimensional parameter which plays
the role of the elementary length.

If we want the nonlocal term to cancel the pole
at P, we should take f such that its negative of the
inverse of the Fourier transform. is of the form

(3.2)

finite order in I/N th'ere are no infinite summations
except the bubble chain for the o two-point function.
The only possible refinement of the effective action
can be realized by augmenting the generating func-
tional by a term quadratic in the o variable and
having the form

0 0'
ln ' =ln ' +1 —y.p2 s2 (2.29) If the residue at the pole equals P„ then

We are just in a position to examine what kind (if
any) of poles occur in the o' propagator.

i,et us observe that the function B(k', m') which
was defined by (2.6) increases monotonically when
k' tends from zero to minus infinity (spacelike
momenta). For k' =0 we have B =2, independently
of the value of ~'. The condition for the absence
of tachyon poles is

W(po'I2) = —Bo. (3.3)

1
~ ~&p&}. (3 4)

Nonlocal models with propagators such as (3.2)
were extensively studied in the past. ""Rigorous
proofs exist" that unitarity of the S matrix re-
quires 8' to be an entire function whose order of
growth p satisfies

XII(P' =0) &1.

This, when combined with (2.5), implies

4m'
o,'[y- I+In(6', '/I(. ')] &

~~

Using (2.26) and (2.29) we obtain

&r,'&-4w'/A. .

(2.31)

U p = 2 then also Bogoliubov's microcausality con-
dition'4 is satisfied. For the sake of clarity the
construction will be performed for an arbitrary
value of p from the interval (3.4). Putting p=-,
at the end of the calculation we can compare the
result with the case p& 2 when microcausality is
violated.

The requirement of Hermiticity lea, ds to

Both X and , ' are positive, hence a tachyon is
unavoidable. Bound- state poles are absent from
the o propagator because B(k', o,') decreases when
k' tends from zero to 40,'. To the right of the
branch point k' =4&,' B increases when k2 tends to
infinity, but now —k' &-4&,' and the term
——,"O'B(k', 8,') in (2.5) dominates 2o,'B(k', o,')
therefore II(P', C,') still decreases (up to minus

infinity). It is obvious that also the resonance poles
are absent from the 0 propagator.

III. CONSTRUCTION OF THE NONLOCAL IMPROVED

0 PROPAGATOR

The aim of this section is to construct explicitly
the additional term by which the effective action
should be augmented in order to make the model
have correct spectral properties and to satisfy
the unitarity and microcausality conditions in the
Bogoliubov sense. It is intuitively clear that the
modification should affect only those Green's func-
tions which involve infinite summations. To any

Our final assumption is that, for P'-- ~,
const

O)n(-P*(') 1 *( P')*))

(3.5)

(3.6)

C(z) = In (W(z) j. (3.V)

One can assume that in n infinite regions D, of the
a plane, obtained by dividing the plane by n curves
4» starting from one point, 4(s) is equal to a cer-

in accord with our belief that diagrammatical cal-
culations give the correct predictions for the
asymptotic behavior. It is possible to construct
W(p'I') from the requirements (3.3)-(3.6). The
general method of construction is due to Evgrafov. "
We shall apply this method as we have learned it
from the paper of Efimov and Mogilevsky, where
it was used to solve a similar problem in nonloca1.
QE D.

The main hint is that our task can be alternatively
stated as a task to construct a subharmonic func-
tion C(z) such that
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U~(z) = U, (z) for z (3.8)

is satisfied.
Denoting by o,(s) the discontinuity of the normal

derivative of U across L~,

sU( )»",( )o»(s) z»(s) & L», (3.9)

one can write 4(z) in the form
n

4(z) = P — ln 1 — o»(s)ds
1 z

»=l 2F L» Z»(s)

or, equivalently,

(3.10)

4(z) = Q ln 1- dt's»(s),
0=y II z»(s)

where

(3.11)

tain harmonic function U„(z). On each L» the con-
tinuity condition

x 0
2= ln p+ ln Inx, ,

~', lm', = 1.
(3.16)

Now the symmetry of L with respect to the real
axis is manifest, as (3.17) does not change when
one replaces y by 2z —p. The intersection point
of L with the real axis remains unprecise. It is
very natural to suppose that the intersection takes
place at the site of the tachyon pole. Indeed, the
normal derivative across the trajectory of zeros
is discontinuous. If z, =p, 'l' is the intersection
point, then the discontinuity of the derivative of
the four-fermion elastic amplitude which occurs
at p p can be understood as a ref lection of the sin-
gular point of the (local) o propagator. If the tra-
jectory of zeros intersects the axis at 2 wz„ then
the momentum transfer P' =z(/' is singled out by
the procedure for no reason whatever.

From (3.17) and the assumption that z, = x, is the
intersection point we obtain (cf. Ref. 5)

p (s ) = o ( t) dt .
2 W 0

(3.12) Solving (3.18) approximately we obtain

xP2=1.76, p=10p. (3.19)
W(z) can be represented in the form of the canoni-
cal product

From (3.9) we have
n

W(z) =A j.r W,(.), (3.13)

(3.14)

8 1
o(s) =-

en 10pln(-z)i

8——[exp(z'e"" ")].
Bg

(3.20)

where

Calculating 4(z) according to (3.10), we obtain on
the real axis,

A»(rn) =z»(s»(m)). (3.15)

ln
1 = ln ~exp(z'e""-") I,Pln(- z)

where P is to be determined. Substituting z
= xe' ~ we obtain

2' ~ cosp(y —m) = In/+ In[(inr)2

~ (~ v)2]l /2

(3.16)

(3.17)

We define s,(m) as the function inverse to p»(s).
I.et us assume that the z =p'l' plane splits in two

regions D, and &, separated by a trajectory of
zeros L. In one region, involving the large-nega-
tive-x part of the real axis, W(z) is expected to
behave like I/In(- z) [cf. (3.6)]. In the second
region we suppose that W behaves like exp(pz)
[cf. (3.4)]. The trajectory of zeros L is the curve
on which the logarithms of the moduli of both func-
tions are equal to each other [cf. (3.7) and (3.8)].
The form factor should be real on the real axis,
therefore L should be symmetric with respect to
the real axis [cf. (3.5)]. Hence L, is defined by the
following equation:

1
ln

( )s for x&x, ,

4(x) = —ixi' for x, &x&-0,
x2cosw(1- p) for x&+0, (3.21)

where x=l'P', x, =l'p, '. We are now in a position
to evaluate the remaining parameters l' and A..
On the real axis,

W(x) =A exp[4(x)]. (3.22)

Making use of (3.6), (3.19), and (3.21) we obtain

A = -R, exp(-1.76) . (3.23)

From (3.20) and (3.21) we immediately antici-
pate that for —,

'
&p &1 the form factor grows ex-

ponentially for timelike momenta. If we take p
then the difference is sharp: forP'&0, 4(x)

=0, the form factor is constant in the timelike re-
gion and the region of growth is thrust away to the
unphysical domain of complex momenta. For
spacelike momenta TV decreases, first exponen-
tially then, from p'=Po', logarithmically. The
elementary length f is not an independent parame-
ter. From (3.19) we obtain
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(3.24)

where we have substituted p = —,', and p, is the solu-
tion of

p,'- —(-,')'n'm' (x -0+) .
The residue Rp is equal to

(3.25)

(3.26)

where the prime denotes differentiation with re-
spect top'. In the limit A. -O, Rp tends to zero
like

,W, -zm'/3 (x-0) ~ (3.27)

The normalization factor A is proportional to Rp
hence the form factor vanishes in the limit A.

-0 but, as expected, its asymptotic expansion is
not identically zero.

IV. SUMMARY AND CRITICISM

Section II was fully devoted to the calculation
and examination of the effective potential. We
have found that even if one evaluates Green's
functions around the minimum of the effective po-
tential then one finds a tachyon pole in the o prop-
agator. We have accepted this result quite un-
concernedly; however, usually the presence of the
tachyon pole means one of two things: Either the
minimum was chosen erroneously or an impor-
tant class of diagrams was overlooked in calcula-
tions. Of course, the theory may also be in error
from the beginning. Here we have modestly con-
fined ourselves to the leading order in 1/K and
the requirement of the canceQation of the un-
wanted pole has even helped us to determine the
nonlocal form in the o propagator. W'e know no-
thing yet about higher orders. We can not ex-
clude the possibility that a new kind of in'consis-
tency, e.g. , the complexity of the effective poten-
tial for all values of the classical fields, will ap-
pear in next to leading orders. Root' has demon-
strated that such an effect takes place in the re-
normalizable (1/N)(C '), model if one expands
around the (incorrect) minimum where tachyons
come about.

We have also rejected the possibility that A. may
be negative. In fact considering the two-dimen-
sional analog of our model one finds that for X &0
it is still consistent, but a collective mode does
not exist in the $ —p channel. Instead one finds
the supercondueting phase and collective modes in

From (2.5), (2.6), and (2.28) we anticipate that

p, tends to a finite value in the limit X going to 0+:

the g —( channel. "
It would be instructive to examine this case also,

as well as other nonrenormalizable models. Let
us note that this procedure can be easily repro-
duced also in the case when spectral properties
are correct from the beginning. The requirement
of the cancellation of the tachyon pole has led us
to a, unique normalization condition for the non-
local term. We have simply asked that the residue
of the nonlocal term cancel the residue of the prop-
agator obtained by conventional summation. Were
we to deal with the bound-state pole, then the most
natural condition would be to require the residug
to be the same as that of the free scalar propaga-
tor (-i in our conventions).

In Sec. III the nonlocal form factor wa, s con-
structed. Obviously, such construction must be
highly arbitrary. The task is hopeless if one is
restricted only to diagrammatical considerations.
Our conditions (3.3)-(3.6) determine a large class
of possible solutions of the problem and by no
means can be realized in a unique way. Let us
specify additional requirements which have been
used in constructing the result (3.21).

First of all we have rejected all but the first
term in (3.6). There is no formal mathematical
reason for this step; however, if we do it then the
large-spacelike-momentum behavior of the non-
local propagator is ("exactly" instead of "approxi-
mately" up to 1/InP') the same as that obtained
by conventional summation of diagrams. The
modified condition (3.6) with amputated higher
powers of the logarithm cannot be satisfied togeth-
er with (3.4) by a completely regular function.
This does not offer any problem because we ac-
tually need only the continuity of the form factor.
Following Efimov and Mogilevsky' we have taken
the simplest version: W is composed of two func-
tions, one satisfying (3.4) and the second satis-
fying (3.6), continuously pieced together along the
curve on which they are equal to each other. This
line is the trajectory of zeros of the entire func-
tion 8". The trajectory of zeros passes across the
real axis through the point which was the position
of the tachyon pole, otherwise the procedure would
single out an additional point in the p' plane. The
trajectory of zeros uniquely defines the entire
function; hence the solution is found.

The resulting theory has very attractive fea-
tures: On the real axis the form factor is a
bounded function and is constant for timelike mo-
menta. This implies that the leading-order elastic
fermion-fermion scattering amplitude vanishes
for timelike momenta such as 1/p'. In the local
case it has vanished like I/(p' Inp') and the elastic
unitarity wa, s violated.

We have just warned that the modification of the
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effective action usually changes the properties of
the effective potential and it may happen that a
new vacuum has different features when compared
with the old one. If we want to leave all the dis-
cussion of Sec. II unaltered (and, of course, we do)
we must shift the v-mass parameter 1/~ by the
value at p' = 0 of the additional nonlocal term,

1 1 pa 176e '
2A. 2RO

The remaining terms of the expansion in powers
of p' do not contribute to the effective potential.
Such redefinition does not change the general

features of the A. -0 limit because then

P,'/2R, - (-,')'p'/x,
l

and the shift reduces to the finite multiplicative
renormalization of A..
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