
PHYSICAL REVIEW D VOLUME 18, NUMBER 12 15 DECEMBER 1978

Euler-Lagrange efiuation and conservation laws for bilocal fields

Katsunori Mita
Ames Laboratory, Department of Energy and Department of Physics, Iowa State University, Ames, Io~a 50011

(Received 30 January 1978; revised manuscript received 26 June 1978)

A Lagrangian bilocal field theory is presented as an extended meson model. The Euler-Lagrange equation
is found for the fields which vanish outside of a finite internal domain. For such bilocal fields the proper
energy-momentum and angular momentum tensors can be defined.

I. INTRODUCTION

It has been over twenty-five years since Yukawa
first proposed his bilocal field theory as a theo-
retical framework for hadrons. ' Since then, sev-
eral workers have attempted to develop a phy-
sically meaningful theory using the concept of
bilocal fields. ' ' Some of the workers concerned
themselves with the general properties of bilocal
fields and others tried to apply it to hadron phy-
sics in a concrete manner. Yukawa's original
idea of the bilocal field assumed no local con-
stituents. The field was introduced to describe
a nondecomposable, elementary system contain-
ing a variety of particles with different masses,
spins, and other intrinsic properties.

Recently Preparata and Craigie proposed a
massive quark model wherein the fields which
depend on two space-time coordinates of quarks
were used. ' As pointed out by Chiang, "this
model possesses features equivalent to Yukawa's
bilocal field theory. In an attempt to give a more
precise mathematical framework to the approach
of Preparata and Craigie, Capri and Chiang sug-
gested a different model of extended meson fields. "

The intention of the present article is to examine
some of the dynamxicai properties of bilocal field
theory, such as the Euler-Lagrange equation and
the conservation laws associated with space-time
symmetry. The formalism can be viewed as a
direct generalization of local Lagrangian field
theory. Following the usual local theory, we shall
use the variational principle to find the Euler-

. Lagrange equation for the bilocal field. When
the field vanishes outside of a finite internal do-
main, the Euler-Lagrange equation appears to
be a simple generalization of the local equation.
For such bilocal fields, there exist proper con-
servation laws of energy-momentum and angular
momentum.

gard these points as the space-time coordinates
of the constituents (quark and antiquark pair) of
the mesons. The Lagrangian density in general
may be written as

8 82 =Z x„x„4(x„x,), „g(x„x,), „y(x„x,)].ex~ ex,"

The action is defined by the integral

S= dx, dx S.

To treat the bilocal field properly, we introduce
the center-of-mass (external) coordinate X and
the relative (internal) coordinate x

X = +ixi+ &2x2~ &i+ &2

X xy X2 ~

The field is now denoted as Q(X,x) and the La-
grangian density may be rewritten as

2=2[x; $(X,x),D„Q(X,x), d„g(X,x)],
where D =e/BX" and d„=8/ex~. Note that the ex
plicit dependence on X is eliminated from the La-
grangian -density thereby ensuring translational
invariance.

The infinitesimal volume element is unchanged
by the redefinition of the coordinates and the ac-
tion is given by

4xZ.

Here the external integration domain 0 may be
considered to be the same as that of the usual
local field theory. We now impose on the bilocal
field the requirement that the quarks are per-
manently confined. As suggested by Preparata
and Craigie, ' a simple way to achieve this is
to assume

II. BILOCAL FIELD AND ITS FIELD EQUATION
Q(X, x) =0, for x g &u, (6)

Consider a scalar field P depending on two
points x, and x in Minkowski space. We will re-

where ~ is a finite space-time domain. For La-
grangian densities composed of products of @,
D, P, and d„P, the above condition implies that
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the dominant contribution to the action integral $
comes from a bounded internal integration domain

We will refer to the hypersurface enclosing
~ as the "cell" and denote it by C. Admittedly
the cell is not a Lorentz-invariant notion. The
form of the cell depends on the momentum of the
bilocal system.

In the present discussion, the quark and anti-
quark are not associated with separate fields.
Their presence is represented by the space-time
c'oordinates of the bilocal field. A question may
arise as to what binds the quarks and causes the
relative coordinate x to be always finite. In this
model, use is not made of a mediating field be-
tween the constituents. Instead, the interaction
between the constituents is directly expressed in
terms of the internal coordinate x." The explicit
dependence on x appearing in the Lagrangian den-
sity represents this direct interaction.

Let us now find the appropriate bilocal field equa-
tion from the action principle. As in the usual
local theory, the field variation 5@ is assumed to
vanish on the boundary surface of O. The change
of the action integral S due to the variation with
respect to the field P is given by

, l5g 5g 5g

o 54 " 5(D, A)
" 5(&„0)

for the bilocal field.
With the simultaneous, infinitesimal displace-

ments of )x, and x„
x~u x~u = x~u + E

u p

and

u=~u+'u

the field transforms as

P(X, x) - y(X+e, x) = y(X, x)+5y(X, x)

and the variation of the field is given by

5$(X, x) =D„Q(X,x)e'.

(12)

(14)

The translationally invariant Lagrange functional
does not have an explicit dependence on X. To
first order in &&, the change in 3', is given by

5X =D+e"

(15)

The second line is due to the variation of the field
and the Euler-Lagrange equation is used to obtain
this expression. The dot denotes an implicit inte-
gration process

+ d4x ds
A. ~ B = d'x d'yA x, y B x, y (16)

+ d X don„5(
)

where ~ is the unit four-vector normal to the
cell C. The second term in Eq. (7) vanishes since
5$=0 on the boundary surface of O. Owing to the
condition expressed by Eq. (6), the third term in

Eq. (7) also vanishes. Then the principle of sta-
tionary action %' = 0 demands

DuT =p
uv

with the energy-momentum stress tensor 7„,
defined by

5g
)))) 5(D )) y)

v4 8 ))I/ (18)

for arbitrary functions A and B. In view of condi-
tion (6), the surface integral over the cell van-
ishes and Eq. (15) can be rearranged and put into
the form

for arbitrary 5Q.

III. CONSERVATION LAWS

(8) The above two equations express the differential
conservation law of the energy-momentum of the
system. The quantities given by

d'X To,
To examine the conservation laws, " let us de-

fine the Lagrange .functional"

X = X[(X); P, D q Q, d p
)I))] . (10)

The functional 3'. will replace the Lagrangian den-
sity 8 in the consideration of conservation laws

d4xZ .
Ql

This is an implicit function of X and a functional of
P, D„Q, and d„Q. Thus we may write

where

x'„u =A„~x„, r =&, 2 (20)

are constants of motion. This may be regarded
as the energy-momentum four-vector associated
with the bilocal fie1.d.

Let us now turn to an examination of the con-
servation law under homogeneous Lorentz trans-
formations. We perform simultaneous, infinites-
imal Lorentz transformations of x, and x„
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Apv=8 pv+&pv~ &pe= &vp. (2l)

Then both the external and the internal coordin-
ates are transformed as in Eq. (20)

Xp Xp A pvX

D 5Rpyjg Op

where the tensor 5K&„„is given by

(29)

cell in Eq. (2'1) vanishes. We now equate Eqs. (26)
and (2V) and rearrange the terms to obtain

X~-Xp =Ap„X . (22)

For the scalar field, the transformation matrix
is unity and

5X
~yves (Xv ~PA Xk~yu) 6(DP )

~vk4

and

(3o)

y'(X', x') = y(X, x). (23) vX v~X. X.pv '

(24)y'(X, x) = y(X', x')

and require

X[(X);P', Dq(jY, ding'] =X[(X');P, D'qP, d'„P].

When the Lorentz invariance of the I.agrangian
density is assumed, the Lagrange functional de-
fined by Eq. (9) is also Lorentz invariant.

A convenient test of the Lorentz invariance is to
rewrite Eq. (23) as

Here p& = Q„, and the energy-momentum stress
tensor has been previously defined by Eq. (l8).
The first term in Eq. (30) expresses the orbital
angular momentum of the overall motion. The
second term is due to the relative motion of the
constituents and we may regard iY,,~ as the "spin
tensor" of the mesons. In this model the spin of
the constituents is not taken into consideration.
The conserved angular momentum is given by

M~~= d XBRO„),. (32)
To first order in e „„the right-hand side of the
above equation can be expanded as

X[(X'); P, D'„P, d'„P] =X+D,Xe'"X,

and the left-hand side as

(26)

5X
&[(X);P', DqQ', ding ] —X+D„(

)
~ 6P„

+ don„(
)

6p,
c 6 dye

(2V)

where the variation of the field is given by

6$(X, x) =D„Q(X, x)e""X~+d,g(X, x)e""x„. (28)

Because of Eq. (6), the surface integral over the

Having examined the Lagrangian formalism and
established the conservation laws associated with
space-time symmetry, we may quantize the bilocal
field by defining a suitable canonical conjugate
momentum. An appropriate choice of a Lagran-
gian density may give rise to the proper meson
spectroscopy. These points will be discussed
elsewhere.
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