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Supersymmetry at high temperatures
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%'e investigate the properties of Green s functions in a spontaneously broken supersymmetric model at high

temperatures. We show that, even at high temperatures, we do not get restoration of supersymmetry, at
least in the one-loop approximation,

I. INTRODUCTION

Supersymmetry' is a rich theoretical concept
which allows one to mix bosons and fermions in
the same multiplet, which may have relevance for
particle unification schemes. The theories that
are most important are the ones which possess
both supersymmetry and gauge invariance' simul-
taneously, because we believe that the electro-
magnetic and weak interactions can be understood
as gauge theories. As in unified gauge theories,
however, we would Like supersymmetry to be
spontaneously broken because fermions and bo-
sons with degenerate masses do not occur in na-
ture. One implements the idea of spontaneous
breakdown of supersymmetry by adding a Fayet-
lliopoulos' term to the action. One then obtains
spontaneous breakdown of either the gauge sym-
metry or the supersymmetry, depending on the
signature of the term. The gauge symmetry and
supersymmetry are so intertwined that when one
is broken the other is preserved.
. It has been pointed out in the literature that at
high temperatures a. symmetry that is spontaneous-
ly broken in ordinary gauge theories can be re-

, stored. The theory undergoes a phase transition
at a critical temperature which is reminiscent of
the Meissner effectin ferromagnets. It has been
demonstrated that the one-loop corrections at
high temperatures wash away the local minima
characterized by the classical solutions in such
theories, giving us "restoration" of the symme-
try 5I6&7

Similar investigations can be carried out in
theories possessing both supersymmetry and
gauge symmetry. They are interesting because of
the special nature of symmetry breaking in such
theories. In particular, it is quite natural to ask
whether restrictions to a completely symmetric
theory at very high temperatures select out a de-
finite signature of the Fayet-Iliopoulos term. We
show by explicit calculations and later through
plausible arguments that a theory possessing both
supersymmetry and gauge symmetry always dis-
plays spontaneous breakdown of supersymmetry
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at very high temperatures irrespective of the
signature of the Fayet-Iliopoulos term.

In Sec. II, we study the problem of spontaneous
symmetry breaking in the supersymmetric Higgs
theory at zero temperature. We calculate the
high-temperature effects in S~c. III and show in
Sec. IV how supersymmetry gets broken at high
temperatures. We emphasize here that the
phenomena occur in the most general supersym-
metric theory with a gauge invariance although we
cannot say anything about the supergravity theo-
ries'~ because no fully renormalizable model exists.

II. SUPERSYMMETRIC HIGGS MODEL
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e is the electric charge, and t' is the parity-
violating parameter.

This Lagrangian is invariant under the following
super symmetry transformations:
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Here e is a constant Majorana spinor parameter.
The theory is also invariant under the following

local gauge transformations:
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In this section we study the supersymmetric
Higgs model, ' namely, a vector multiplet interact-
ing with a Left-handed chiral multiplet where all
fields are massless. The Lagrangian contains the
vector fj.eld &» the Majorana spinor A, the left-
handed Dirac spinor g~, and the complex scalar
field P. After elimination of the auxiliary fields
the Lagrangian has the form

,'Fu„'+ —,'iX-P—').+if + +(D P) t(D„P)
-i ev 2 ()~A.P —PtXg~) —', (t'+ega—P)', (2.],)

where
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6&=0,

6p = i-p n(x),

6' = iP-Lo'(&) ~

The scalar potential has the form

I'(4) =-'(&+et'4)'.

(2.2)

(2.4)

where the dots stand for terms involving fields.
Therefore, we note that supersymmetry is spon-
taneously broken and ~ is the Goldstone spinor.
This analysis tells us clearly how the symmetry
breaking depends on the signature of the parame-
ter g.

Without loss of generality we can choose e& O.

Then two cases arise, depending on whether
$&0or (&0.

Case I: $ & 0. The potential has a minimum
when (~P~') =-$/ .eIf we decompose the complex
scalar field into real fields and shift the fields
by their classical values, it is easy to show that

6X = v2" F„„e+ eytyy, e. (2.5)

That is, there are no constant terms in the super-
symmetry transformation laws of the spinors.
Supersymmetry, therefore, is still a good symme-
try. However, it can be easily shown that the
gauge symmetry is spontaneously broken. Qne
of the scalar fields, the vector field, and the di-
agonalized spinors become massive. The Qold-
stone scalar is absorbed by imposing a gauge
condition.

Case II: $ & 0. The minimum for the potential oc-
curs when the scalar field has zero vacuum expecta-
tion value. If we look at the transformation laws, we
find that gauge symmetry is not broken. However,
in the supersymmetry transformations we find

III. SUPERSYMMETRY AT HIGH TEMPERATURES

Finite-temperature calculations have been in the
literature for a long time. The important obser-
vation is the fact that the finite-temperature
Green's functions satisfy the same differential
equation a,s the zero-temperature Green's function
except that they satisfy periodic boundary condi-
tions for imaginary times. Dolan and Jackiw and
Weinberg have calculated symmetry behavior at
high temperatures for nongauge and gauge theo-
ries. They have a.rgued and shown that the only
dominant higher-order contribution at high tem-
peratures comes from the one-loop graphs for
weak coupling. Weinberg has given an operator
method for calculating one-loop effects for non-
gauge theories, whereas Dolan and Jackiw have
developed a functional diagrammatic method.
For our purpose, we follow the method of Dolan
and Jackiw and direct the interested readers to
Ref. 6 for deta. ils.

We start with the super-Higgs action of Sec. II,
but now decompose the complex field into two real
components:

g = -,' F „' + —,'i Xp k + i—tt pg +-,'(B„y,)2 «eA „e„g,s „y&
- ie[ p A(Q, +i p, ) -Xg (p, - i (6,)]

——'(g+ey 2) +—'e A

0 =- (1/v 2 )(y, +i y, ) .
Let us assume that the classical solution occurs at (P, ) = y, .. Shifting the fields, p, - P, —g, , we have

«'F»'+2'i X P'&+i g-LpgL+2'(s„(t, )' —eA„eep~s, (t~ + eA~ e~yg, s2 pg+ieg~X(j, + i&,)

~PL(j —0,) — QL~(4', + 0,) —~(L(4, — (6.)] —-'(( + 2 ~ ' e~i pl +~2e4 f ) + 2~Ay (~k' —2& j~ +0'~') '

(3.2)
Keeping only the part of the action which is quadratic in fields, we obtain

2,(y, , y„Z, yL, A„)=-«F„,'+2Xy'X+i ALP'yL +28„y,'- e«„y,A„S„(p,+icy X(y, +i g,)
—ieXgz(y, —i@,) —2e'p&p. zp;gz —2 e$g - «e' j,'p —2e'A2-

=-«F&„+—'m~ A2 +2 (6& p&) —~zQ; M;, (t &
—eeep~A262pg+~2i kg~+iggpljL+ieipLAP-ieX&LQ,

where we have defined

m~'=e'Q, Me'=(e$+2e'g )6,&+2e'$, f&, P=Q, +i $, , Q= j,—ig, . (8.4)



4542 ASHOK DAS AND MICH IO KAKU 18

The one-loop contribution to the effective potential at a temperature p
' is given by

l','(»') =s' &n fll f&»le'

=i 1n, ,[ [dP] exp[i(ib, „„+I~„w,„)], (3.5)

where I =jd»XZ and [dQ] stands generically for all fields.
We can, therefore, separate the one-loop contribution of bosons from fermions:

V'= V8 + V8
&boson & fera/on ~

V, b„,„=i ln ] [dye| „]exp(iIb„,„), (3.6)

Vif w =' ln "&faw exp '~fe~~o ~

Let us now evaluate the fermion contribution explicitly:

V aE =z ln dkdA d Ld I exp d»x(~i7Px+ig~pg~+ieg~xP ieig-~Q) (3."t)

Noting that both X and gz, are two-component spinors, the integral is easily evaluated to be

&,~ =-,'iln det (s'+2e' j,'),
which, following Ref. 6, one can write as

(3.8)

1n(k'+2e' jq')-zp

2 d'k ~ w'(2n+1)'~ln(2)' . —E'(k j)

=-4, —,'E(k, P) + —ln(1+ e ) (3 9)

where E'=k'+2e'g&'. Thus, we see that there are two contributions —one independent of the temperature
and the other depending on temperature:

d'Q

(2 v)'

4
1F 2 2P»

m' =2e'Q

dX X'»( 1+ exp[-(X'+ p'~')]), (3.10)

For small P, i.e., for very high temperatures, the second integral can be approximately evaluated and
takes the form

—
8 7 7T S2 tÃ 2 2 P8 C2 2 4

180p» 12 p~ 187f~ p 187f~

Therefore,

so that

(3.11)
8V~~ ) 0

5g,
The bosonic one-loop contribution has already been discussed in Ref. 6, and for completeness we give the
expression for the one-loop potential. If one works in the Lorentz gauge, then
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V,B-—V, + V,B
m2

V» = —m, ln, +3p2ln 2 +R,'ln, +R2 ln, -2e'm'"&'-
4 e +em2'p, '+a"

2

8» 2 2P4

(3.12}

dy y'(3 In(1 —exp[-(y. '+ P' p,')'~ ']] +In(1 —exp[-(y' + P'm, ')' ~'] }+In(1 —exp[-()P + P'R, ')' ~'] )

+In(l —exp[-(X'+ P'R, ')' '])),

m, '=m'+ —,
' e' j', and R;"s are roots of x' —m, 'x

+ n p, 'm22. It is not difficult to see that

gV8»
2

(3.13)

Thus,

gV8 gV8j.B ].E ) 0
6 j;&

so that

gV8
& 0.Q" 2

(3.14)

However, we know that the effective potential is
given by

V'= Vo+ V'
j. &

(3.15)

where for simplicity we have assumed that the
temperature-independent parts of the one-loop
potential have been conventionally mass renormal-
ized. Therefore, the minimum of the potential
occurs when

gV8 gV8
=2' =0, j=(y, ')'~', (3.16}i

The solutions to these equations are (1) y =0,
6VS/6p =0 for a physical nontrivial value of P, in

which case there is symmetry breaking and the
solution y =0 corresponds to a local maximum;
and (2) &V /&Q &0 for a physical nontrivial value
of P, in which case the minimum of the potential
occurs at P =0.

I,et us therefore analyze

5V8 5V. OV 8
+

Thus~

6P~

6yo

7e 2

12P'

e+-~=0 t

eg =0,

and hence
j. /2
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Thus, although we started out with a theory that
had spontaneous breakdown of gauge symmetry,
it is restored at temperatures higher than P, .
However, an interesting thing has happened as a
consequence, that is, since the potential now has
a minimum at y = 0, supersymmetry is broken
spontaneously. Thus, we have demonstrated that
no matter what is the signature of the parameter
$ at high temperatures supersymmetry is auto-
matically broken.

metry. Therefore, although we start with a theory
that has spontaneous breakdown of supersymmetry,
it is not restored as we go to higher and higher
temperatures.

(b) (& 0. In this case, Eq. (3.17) can have a
solution, and from the structure of 6 V,~/& j' it
turns out that the only solution is at y =0:

OV8 e V,', eV~8~

S=o ~P' o=o 6j'- y=o

3e' 3e' & 2e'
12P' 2 6 j 12P'

5e2
12P' 12P' 12Po '

+
2 Q 2

(3.1 I)

Without loss of generality we can choose e) 0.
(a) 4 & 0. In this case we note that since 6V,~/

6P & 0 the previous equation cannot be satisfied
for a physical p. Therefore, the minimum of the
potential occurs at g =0. However, from our an-
alysis of Sec. II we know that this corresponds to
the case of spontaneous breakdown of supersym-

IV. CONCLUSIONS

We now present a pictorial argument of why this
should happen. The symmetry restoration in ord-
inary theories can be easily understood as follows.
At low temperatures, the potential displays struc-
tures that determine the classical solutions. How-

ever, as the system is heated, energy is raised
and whatever fine structures one notices at lower
temperatures are completely washed away and the
vacuum becomes symmetric. We can extend simi-
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FIG. 1. Shape of potential at high temperatures
$ &(}.

FIG. 2. Shape of potential at high temperature for
$ &0.

lar observations to the case of supersymmetry
also (see Fig. 1).

The potential has structure at low temperature.
But the supersymmetric vacuums have lower en-
ergy, where gauge symmetry is broken. The local
maximum possesses gauge symmetry, but vio-
lates supersymmetry. Therefore, as the temper-
ature is raised the structure in the potential is
wiped out and one has a gauge-symmetric vacuum
which is not supersymmetric (see Fig. 1).

The potential has no structure. The minimum
is at P =0. This vacuum is gauge symmetric but
is not supersymmetric. As the temperature is
raised, the potential does not develop any struc-
ture and therefore the vacuum remains nonsuper-
symmetric (see Fig. 2).

What this analysis tells us is that if such theor-
ies are to be taken seriously, then one must learn

to live with the fact that at high temperatures we
do not have symmetry restoration. Whether this is
good or bad is not clear because there is at least
one other type of symmetry breaking that is not
restored at high temperatures, namely, dynamical
symmetry breaking. Yet dynamical symmetry
breaking has continued to be an attractive idea.
We cannot say anything about this question, in the
case of supergravities, because no calculable
model with symmetry breaking exists so far.
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