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Harmonic maps are an aesthetically appealing class of nonlinear field equations of which only a few

nontrivial examples have as yet appeared in physical theories. These fields appear well suited for describing

broken symmetries either in conjunction with or instead of the Yang-Mills equations. The harmonic mapping

equation is quite similar in many respects to the Einstein equations for gravitation, although simpler in

structure, and can describe any gauge symmetry group 6 broken to a subgroup K in a sense parallel to the

way the gravitational (metric) field breaks general covariance [local GL(4, R) invariance] down to local
Lorentz invariance. This paper outlines the basis for a program of exploring harmonic mapping theories to
see whether they may provide models of physical phenomena that either are not recognized, or are not
we11 fitted to more familiar field theories.

I. INTRODUCTiON

For about a decade before unified gauge theories
of weak and electromagnetic interactions were in-.

troduced', Yang-Mills ' theories continued to be
investigated as model theories on two grounds
more remote from phenomenology than their cur-
rent uses in particle physics (Weinberg' gives a
recent review). This paper proposes that another
class of theories, those based on harmonic maps' '
deserve some attention from theorists on similar
grounds, with a possibility open that direct appli-
cations in particle theory may also appear.

The two grounds that motivated studies of Yang-
Mills theories in their esoteric period were (1)
analogies to general relativity and (2) Pythagorean
prejudices. I will appeal to both motives as fav-
oring harmonic maps as well. . The analogy of
Yang-Mills theories to general relativity is widely
appreciated (e.g. , Utiyama') and was explicitly the
motivation for the detailed development of the
Feynman rules for these theories (Feynman, '
DeWitt, "' Faddeev and Popov, "and Mandelstam").
By Pythagorean prejudices I mean a particular
style of aesthetic or thematic (Holton"") considera-
tions whose description I defer a few paragraphs
so that uncommittedly skimming readers m~y be
first shown some familiarizing examples of har-
monic maps.

The wave equation or Laplace equation —depend-
ing on the signature of the metric g„„(x)—reads,
for a scalar field p(x),

v' jg I g"" = 0,

and characterizes harmonic junctions Q from which
the class of harmonic maps takes its name. But
the (typically) nonlinear geodesic equation,

(1.2)

is also a specialized subclass of the harmonic
maps. The generic harmonic map combines as-
pects of both these equations in the nonlinear par-
tial differential equation derived from the action
integral

1 sty A syBI = — v'Igl "cfgx""( )x„—„G„s(y). (1 3)

The model theories of this class that I expect to be
of most interest for physics are those where g'"(x}
is the flat Minkowski metric or, in some quantum
applications, its flat Euclidean continuation. A

nontrivial example of this class of theories is the
nonlinear o model" where G„s(Q) is the metric of
a three-sphere and g" are three independent fields
parametrizing four meson fields tt'(k=1, 2, 3}and
o that satisfy

tt its+ a'= f'= const

as an identity.
Note that when (as in the nonlinear o model) the

range of kinematically allowed field values p do
not form a vector space, so that aQ, + bit~, is not
even defined, there is no way to write (or define)
a linear field equation, and the harmonic map
equation is the simplest evident generalization of
the wave equation. To write it requires that the
space of field values have {or be given) a Riemann-
ian or pseudo-Riemannian metric G„n(g). This is
always possible, and introduces only a few arbi-
trary constants if the field values form a homo-
geneous space (Helgason"), i.e. , a coset space
G/H, the quotient of a Lie group G by some closed
subgroup H as in S'= SU(2)/U(1). (When G/H is
flat, a linear wave equation results. ) A simple
example from a class described more fully in
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another paper (Misner") is a field of Hermitian
projection matrices p, » parametrizing SU(n)/
[U(p} x SU(n —p}]. The Q'= p projection property

pcs b yb (1.4)

provides the essential nonlinearity (and a condition
trP = p with 0 &p & n for n x n matrices g guarantees
nontriviality). For these fields the natural har-
monic mapping equation is

(1.5)

in a matrix notation or more explicitly

where 0 = 8„8" is the wave operator in flat space-
time. Nate, in particular, that this equation can
be naturally written with nonlinearities in the lead-
ing, second-derivative terms, in contrast to Yang-
Mills equations where the leading terms are linear.

My acquaintance with harmonic maps began when
Matzner and P' found that Einstein's gravitationa1.
equations in a highly specialized case derived from
a Lagrangian

L= (&p)' —cosh'p(vo. ')',

that involved only flat-space gradient operators V
but implied a curved metric in the range space of
the field values (spacetime metric parameters) u
and P. Continued imluiry eventually revealed
(Smale, "private communication) that this geo-
metrically appealing class of nonlinear partial dif-
ferential equations had, as I had presumed, re-
ceived some study —a comparatively recent funda-
mental paper by Eells and Sampson. ' Thereafter,
Yavuz Nutku became infected fram my interest in
harmonic maps and has found useful applications
of them in solutions of Einstein's equations
(Nutku, "Eris and Nutku, "Eris," and Nutku and
Halil"). There appear to be no other deliberate
attempts to find a role for them in physical theo-
ries.

I find four principal lines suggesting that har-
monic maps deserve investigation and development
by theoretical physicists. Each is described more
fully in a later section of the paper. Section III:
The harmonic maps model, in a simplified form,
or a type of nonlinearity that occurs in the Einstein
equations, but different from that modeled in Yang-
Mills fields. Section IV: For any desired broken
symmetry (from any group G to a subgroup H), a
harmonically mapped bundle section is one con-
ceivable mechanism. Section V: Gauge vector
fields (connections in bundles) can be defined using
solutions of the harmonic mapping equations, in-

stead of the more familiar, inequivalent, Yang-
Mills equations. Section VI: For many harmonic
mapping theories, related ("relaxed" ) theories
should be renormalizable, and there are sugges-
tions for nonperturbative quantization attempts on
the strict harmonic mapping theories.

Let us now return to the Pythagorean motivations
for exploring harmonic maps. The thematic com-
ponent of science, according to Holton (Ref. 12,
p. l3) consists of "unverifiable, unfalsifiable, and
yet nonquite-arbitrary hypotheses" that "belong to
a pool of specifically scientific ideas but spring
from the more general ground of the imagination. "
One such theme is the hypothesis of atomism. Not,
to be sure, the known atom of Bohr or Schroding-
er, but the Holy Grail, the ur-atom, the funda-
mental discrete constituent underlying molecules,
atoms, elementary particles, quarks, etc. , from
which these more accessible objects are to be
constructed, and thus understood; The counter-
vailing theme, the continuum, of course also
lurks, and seeks a primary ether, less mechanis-
tic than discarded electromagnetic ethers, more
versatile than elastic, energetic, curved space-
time —an ether quantum mechanically stirring or
resonating as more and less sharply defined par-
ticles. By contrast to these, the "Pythagorean"
theme rejects or ignores the underlying physical
substratum as a significant constituent of human
insight into, or understanding of, Nature. It fo-
cusses instead on the program of reconstituting
appearances from substructure, on the network of
relationships and interaction among subentities
that organize them into other significant struc-
tures. "God is a Geometer" could be the motto of
this brotherhood. Note, however, that geometry is
currently a term of esthetic approbation awarded
selected architectures in a world of Bourbaki-
style" mathematical structures.

It is useful to claim lineage for themes in cur-
rent forms back through their historical antece-
dents, because the themes are valuable not for
their truth values, but as guides to significance.
A theory must explain Nature to Man, and no
amount of truth is explanatory if its bases appear
as capricious, disorganized, and inaccessible as
the relevant observatians themselves. Thus his-
torical themata are a guide to lines of thought that
would be satisfying (if found applicable) on the
basis of a prejudice that is at least cultural and
not merely personaL As Pythagorean styles in
modern times one can cite the current elaboration
of symmetries and conservation laws, Dirac's
algebraic insights, Cartan's invention of affine
connections to geometrize Newtonian gravity, Ein-
stein's general covariance, Clifford's space theory
of matter, Riemann's geodesy, etc. This list
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names only few and recent examples of many heros
who were at least as concerned to hear the har-
monies of the spheres as to see the instruments
on which this celestial music was played, and the
tradition continues back to Pythagorean ecstasies
in discovering that pure numbers could engender
things as diverse as geometrical shapes and mu-
sical chords. The beautiful. ly balanced and simple
variational principle (1.3) for harmonic maps may
be only an unsophisticated bauble like the crystal-
line spheres that moved in the heavens before
Kepler, but searching for its traces in Nature
would seem to be an honorable quest.

II. HARMONIC MAPS

Let M and M' be two pseudo-Riemannian mani-
folds, with x' coordinates on M and P" coordinates
on M'. We will normally think of M as space or
spacetime and will in most examples specialize
its metric

action is

d"g ~g '+sin'e ~C ', (2.6)

which would give the sine-Gordon equation in case
(V4)' were constant. The resulting field equations
are

me+ sine cose(vo)2 = 0,
~C 2cote(r e) ~ (VC)=O,

(2.7)

where a= -8„8" is a Laplacian or a wave operator.
Solutions have been known only in dimension z= 2;
they could k ear static soliton interpretations in a
three-dimensional Minkowski space, (see Duff and
Isham") or instanton interpretations for a two-di-
mensional spacetime.

For n= 2 choose polar coordinates rg in x space
and assume e = e(r), C = kP. This proves consis-
tent with equations (2.7) and gives a reduced action

ds'= g„„(x)dx"dx" (2.1)

to a flat Minkowski or Euclidean metric. The M'
manifold is the set of possible values for some
naturally nonlinear field P. The nonlinearity en-
ters because we think of the metric on M',

dL'= G„s(g)dg"dP

as being curved, since a flat dL' would only lead
to long familiar linear equations. A mapping

(2.2)

y: M-M', x-yx-=y(x) (2.3)

will be represented in coordinates as Q "(x"). It
will be called a harmonic map if it satisfies the
Euler-Lagrange equations of the variational prin-
ciple 5I = 0 using the action I (called energy by
Fuller') of Eq. (1.3). These field equations read

8 as
+ r"„(y), „,„g'"(x)=0. (2.4)

Here I'"ac are the Christoffel symbols of the &f&

metric dL' on M'. We will later condense this
equation to the form P"",„=0 with a suitable co-
variant derivative, and with p"„=sp"/sx". Let
us first study a simple but interesting example.

Let M be a flat Euclidean or Minkowski space,
and for M' take the sphere S' with its usual metric
and coordinates

dL'= dR'+ sin'Bd4'. (2.6)

A mapping is then a pair of fields e(x"), 4(x") sat-
isfying diff erentiability requirements derived from
the structure of S' and of the R" spacetime. The

de
dp —+ sin'8

4p
(2.8)

where, in the second form, p= in(r/R)~. The cor-
responding "energy" integral is

(de/d p)' —sin e, (2.9)

but only the zero-energy solution gives acceptable
behavior for p-+~. This solution, p= lntan( —,'e),
can be combined with C = kP, to give the mapping
in the form

(re"/R)'= e'' tan(-,
' e), (2.10)

depending on a positive or negative integer 0, the
degree of the map, and a scale parameter A. The
total action, I = 4w

~

k ~, is independent of R, how-
ever. Eells and Sampson' give essentially this
example in the form of a harmonic map S'-S'.
But they do not succeed in finding harmonic maps
S"-S" in higher dimensions n & 2 for degree k & 1,
and they show that no absolute minimum is
achieved by the action integral within the class of
sphere maps with fixed k&1 for any z&2.

Eells and Sampson' give a number of classes of
examples of harmonic maps that will be familiar
to some physicists. I have already mentioned (1)
harmonic functions, the case dim M' = 1 and (2)
geodesics, the case dim M = 1. In addition (3) any
isometry M —M or covering of Riemannian mani-
folds M-M is a harmonic map. Minimal (maxi-
mal) hypersurfaces are significant coordinate con-
ditions in constructing solutions of Einstein's equa-
tions, and (4) Eells and Sampson show that any
minimal immersion M -M of Riemannian mani-
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folds is a harmonic map. Further, (5} any homo-
morphism of compact semisimple I ie groups 6-G' is a harmonic map. The final class (6) that I
mention of Eell.s-Sampson examples is that of holo-
morphic maps of Kahler manifolds. This class of
harmonic maps supplies a number of interesting
examples in Appendix A.

Hells and Sampson' emphasize the importance of
curvature of the space M' of field values in limiting
the solutions of the harmonic mapping equation.
Their remarks apply strictly to compact manifolds
M with positive-definite (Riemannian} metrics.
Without attempting to prove rigorous theorems, I
shall try to indicate this curvature influence as it
appears in cases that may arise in physical mod-
els. First the appropriate covariant derivative
must be introduced.

In the covariant derivative V„ familiar from gen-
eral relativity [where I follow tbe notation and sign
conventions of Misner, Thorne, and Wheeler
(MTW) ] the connection coefficients I' ~„are in-
terpreted as arising from the use of nonconstant
basis vectors

V„e~=e 1"
~„ (2.11)

and give formulas like v . = &„v +L' ~,v~ for com-
ponents of the covariant derivative of tangent vec-
tors and their associated tensors. An ordinary
differential operator &&= v"8„, evaluated at a point
x (when acting on scalar functions) is a tangent
vector v„=(9~)„. The totality of these tangent vec-
tors v„associated with a given manifold M forms
the tangent bundle TM, and the projection g: TM
-M, v„-x is an important part of the bundle's
structure. Tbe space of all (tangent) vectors at a
fixed point x is the fiber M„—= v '(x) or tangent
space at ~. The covariant derivative needed for
discussions of harmonic maps generalizes this
standard covariant derivative in ways familiar
from gauge theories.

In a gauge theory the fields carry "is&spin" or
internal symmetry indices as in $= e, $' and the
basis vectors e, are not tangent vectors, To define
their covariant derivatives

(2.12)

one needs a field of connection coefficients j. '~„
that are usually called A.',„ in this context and
customarily obtained as solutions of the Yang-Mills
equation. The matrix A', „dh" represents an in-
finitesimal "rotation" in the internal-symmetry
space, end objects carrying internal-symmetry
indices such as $' have covariant-derivative for-
mulas of the form

(2..13)

A field value (e,$')„= g„at a point xc M is a point

in a bundle space E with projection»: E-M, („
but the fiber v (x) consisting of all "isovec-

tors" g„at a single point x can be a vector space
quite unrelated to the space of tangent vectors M„.

With this review in mind we now consider a map
f: M-M' into a pseudo-Riemannian manifold M'.
A Riemannian covariant derivative is defined in
the tangent bundle TM'. For instance, if v= v"(8/
8$„) is a vector field on M', then

v& p r& (y) va (2.14)

are the components of its covariant derivative,
where r"ac are Christoffel symbols of G»(g) in
the P" coordinate patch on M'. We now want to
introduce the induced bundle f*(TM') and see that
it inherits a covariant derivative. A point in

f~( TM') is a pair (v&&„&,x) where x cM and v«„&
(= M«„&, i.e. , v«„} is a vector tangent to M' at a
point f(x) in M'. But f*(TM') is a bundle over M
with projection»: f*(TM')-M, (vz&„&,x)-x. An
example may help (and will be useful in forming
the "geodesic deviation, " "Jacobi," or linear per-
turbation equation associated with a harmonic
map). I et f„be a family of maps f„: M-M' rep-
resented in coordinates by P"=f"(X,x"). Then n„
-=(9/9».)„cf,*(TM') is a differential operator that
acts on functions &): M'-R defined on M'. In co-
ordinates, if &)(y") represents &) on M', then

(8$/BX)„= (Bf~/BX)„8&&),

l.e. ,

(8/BX)„=(Bf"/8»)„(9/9$")«„&.

Thus n= (9/BX) is a vector field defined over M
whose values are vectors tangent to M'. One can
expand it in basis vectors as

(2.16)

n(x) = n"(x)e„(f(x)) (2.16)

where

(2.18)

are then the connection coefficients on M for the
bundle f~(TM'}. From

where, for this example, n" = Bf"/9».. Since co-
variant derivatives of the basis vectors e„are
defined on M' as

Ve =e„I'" (P)dQ

given g"=f"(x) one can easily decide to define

V„e =e„r" (f(x))B„f (x).
For the components of any field n"(x) [any local
cross section of tbe bundle f*(TM')] the formula
then reads

(2.17)
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[V„,V„]eB = eARAB„„ (2.19)

one readily computes the curvature of this connec-
tion and finds its components to be

manifold with negative sectional curvatures, since
upon integrating and neglecting a boundary integral
it yields

R" „„( )=R" (f( ))f,f „
with

f" (X) = SfA/-&Xu

(2.20)

(2.21)

n" „nA'"4 lgl d'x

n"p „RAcBDn pD" v' Ig I d'x, (2.28)

and where RABcD(lt ) give the Riemann curvature of
the metric GAB(g) on M'. In this induced connec-
tion one finds G», „=0 on M under the mapping f
as a consequence of the Riemannian condition

GAg c 0 On M
Let us now further assume that there is a metric

g, „(x) on M, then we can form the action integral
for harmonic maps

I =
2

v' Ig I d"x(p"„ltl "A
1

lldyll' *1,
2

(2.22)

where the indices on PA„=—alt A/&x" are each raised
and lowered by the appropriate metric. The quan-
tities QA„are components of a tensor

y, =dy = y"„(x)a„-(yx)dx" (2.23)

of a mixed type that is an element of the tensor
product bundle p*(TM') lgl TM* over M. The co-
variant derivatives of this tensor will reflect the
motion of both of the bases eA=(S/&lt A)u„and lD"

= dh". Thus for its covariant derivative we find

yA S yA yA pu +pA yB

Note that

(2.24)

(2.25}PyV VBQ

since S,QA = O'QA/sx"Sx" and I'AB„QB„
In this notation the harmonic map-

ping equation (2.4) reads simply

yA lu 0 (2.26}

0 &A ll +(RA yC yDI )+B
t

(2.27)

In many cases solutions of this equation are non-
existent or highly restricted if M' is a Riemannian

with the nonlinearities hidden in the fact that the
same map p appears both in ltlA, and in the semi-
colon that forms the covariant derivative (i.e. , in
pA )

We may consider linear perturbations of the har-
monic map P(x) by embedding it in a family of har-
monic maps f~(x) =f(A. , x} with ill =f,. Then n= (8/
8X), as defined in Eq. (2.15), will satisfy an equa-
tion obtained by differentiating Eq. (2.26) with re-
spect to X. The result (see Appendix 8 for details}
is the linear "Jacobi" equation

where the left-hand side is non-negative for
Riemannian (positive) metrics.

Eells and Sampson give an identity that does not
refer to perturbations. LetZ = BgA"QA„be the
Lagrangian in the action integral (2.22). Then in
Appendix B we repeat their computations to show
that

g ilk y ugyA

+~ A( BR u uR CBDAy 4' )~ 8

+ y,(y"„'").,„ (2.29}

and then show that for finite action in an asymptot-
ically flat space M, the integral of each side must
vanish. Under these circumstances, and for har-
monic maps'P, one obtains the integral formula

A C By DV

—ltlA R Bp"B)v'Igl d"x. (2.30)

This shows that negative sectional curvatures for
M' (with zero or positive Ricci curvature for M}
leave the possibilities for harmonic maps of the
strictly Riemannian manifolds M-M' very lim-
ited, e.g. , constant maps P(x) = p, c:M'.

None of the above integral formulas have obvi-
ous consequences in Minkowski spacetimes M, but
for Euclidean theories, i.e. , if either static soli-
tons or instantons are desired", they suggest that
range spaces M' with negative curvature should be
avoided.

The prime candidates for model theories involve
M' that are not merely homogeneous spaces G/H,
but those whose metrics involve the highest sym-
metry and therefore the least arbitrariness. These
would be the Riemannian symmetric spaces (Hel-
gason"), A simply connected globally symmetric
space decomposes as the product of three factors,
an uninteresting Euclidean type that is flat, a com-
pact type that has non-negative sectional curva-
tures, and a noncompact type that has nonpositive
sectional curvatures. The irreducible compact
types that thus appear most interesting consist of
the compact connected simple Lie groups and a
number of coset spaces G/H listed in Table II,
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Chapter IX of Helgason. These include SU(p+ q)/
SU(p) x U(q), similar quotients of orthogonal and
symplectic groups, a few mixtures like Sp(n)/
SU(n), and a dozen exceptional cases. Some, also
listed by Helgason, are Hermitian symmetric
spaces, i.e. , Kahler manifolds for which holomor-
phic maps C'-M' would be examples of harmonic
maps, as in Appendix A. These Hermitian sym-
metric spaces include SU(p+ q)/SU(p) x U(q) and
SO(2n)/U(n).

III. MODELING GRAVITATIONAL NONLINEARITIES

One reason for studying harmonic maps is to
better understand some of the nonlinearities that
occur in the more complicated Einstein equations
for general relativity. The Yang-Milks equations
have already played an important role as models
for gravitation theory, particularly as concerns
its quantization. I think that harmonic maps can
play a similar rol.e, but that something new will
be learned, as the nonlinearities they model are
of a different type.

To show the different character of the nonlineari-
ties in these three cases, I list their field equa-
tions in highly schematic form:

ond derivative terms contain and essential nonlin-
earity in coefficients like the g ~ shown explicitly
in Eq. (3.1). The harmonic' map equation (3.3) is
intermediate between these two. It is written in
equation (3.3) in a form that suggests its similari-
ties to the Einstein equation, i.e. , nonlinearities
in the second-derivative term, and homogeniety
in the total order of differentiation —exactly two
derivatives in every term. The nonlinearities in
the leading term ar' e, however, removable in the
classical field equations —it can be rewritten in
the "geodesic" form of Eq. (2.4). Also, the cha-
racteristics on which waves propagate are deter-
mined a pHori by the fixed Minkowski metric in
the Yang-Mills and harmonic mapping equations,
but are field dependent in the Einstein case.

In the case of quantum theory, the analogy be-
tween harmonic maps and the Einstein equation is
even closer. Factor ordering problems may pre-
vent the reduction of Eq. (3.3) to the form (2.4),
so the nonlinearities in the second-derivative term
are probably essential. Another way to see this is
to consider the action integrals for the three the-
ories. Again schematically, they read

(3.4)

a'g ~ag Zgv „( -xs )2 0
&x &x' (3.1) ~~M 2 e~+ (3.5)

(3.2) (3.6)

(3.3)

All three equations are highly nonlinear, and in
all three cases no coupling constant appears in the
"free" field equation, when no further fields are
included. The entire structure of the nonlineari-
ties is determined by symmetry considerations
in each case. [For harmonic maps this is true
only if M' is a Riemannian symmetric space whose
metric G„s(p) is essentially unique. In more gen-
eral homogeneous spaces the entire matrix G„~(P,)
at one point in M' might be a set of adjustable cou-.
pling constants. j The idea that one is dealing with
"naturally" generated nonlinearities (rather than
with self-interactions introduced pd hoc by adding
some higher-than-quadratic polynomial to a free
field Lagrangian) is the central theme that ties
these three theories together. Differences between
the theories can be seen by studying the leading
second derivative terms in the field equatioris.

For Yang-Mills fields, the second derivative
terms are linear, and nonlinearities occur only in
the lower-order terms. In this it differs signifi-
cantly from the Einstein equations where the sec-

In this form the notation has obliterated any dis-
tinction between the character of the Einstein ac-
tion and that for harmonic maps. [The essential
distinction is that a constant Minkowski metric g„„
=diag(-1, 1, 1,1) is hidden in Eq. (3.6) but does not
occur at all in Eq. (3,4).j It is quite clear that the
leading term (8 field) is much simpler in the Yang-
Mills case than in the more seriously nonl. inear
Einstein and harm. onic mapping actions. The sig-
nificance of this for quantum mechanics is most
directly suggested in the Feynman path integral
formulation, where the integrand, exp(-U/t), of
the functional integral shows that the form of the
action integral I is all important.

The dimensionality of the coupling constants
again shows (and follows from) the analogous
structure of the Einstein and harmonic mapping
actions. If all coordinates, including ~'= ct, have
dimensions of length (a presently convenient but
not always natural, choice in general relativity),
then the metric field g„„and the harmonic mapping
field p are both dimensionless while the gauge
connection A„has dimensions (length) '. [Mapping
coordinates p" will be anglelike coordinates in a
symmetric space of compact type; see, for ex-
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(hG/c') = l

for gravity, and

(3.7)

(ny'/c') = X' (3.8)

for harmonic mapping fields. Here l~= 10 "cm is
the Planck length for gravity, and K is a funda-
mental length associated with the harmonic map-
ping field.

The appearance of a dimensioned coupling con-
stant X' in the harmonic mapping action suggests
that these theories, like gravitation, will be non-
renormalizable in a perturbation theory quantiza-
tion. I hope that harmonic mapping theories con-
tain examples so simple that a rigorous nonper-
turbative quantization can be achieved for some
model theories.

ample, Eg. (1.4) where P,«must clearly be di-
mensionless. For Yang-Mills fields A', „I am
adopting geometrical units, where a gauge covari-
ant derivative is written p g'= &„g'+A'«„P«with
no coupling constant or other dimensional coeffi-
cient appearing in "minimal coupling" interactions.
Thus the geometrically scaled electromagnetic po-
tential A would be the quantity that is usually
written (e/8 c)A, .] The harmonic mapping coupling
constant y' has the same dimensions as the New-
ton-Cavendish gravitational constant G. In the di-
mensionless action integrals (Feynman phases)
E/ff, the coupling constants that appear are a di-
mensionless (e'/kc) in the Yang-Mills case (e.g. ,
the fine-structure constant for electromagnetism)
and

and its central idea, appear in the following theo-
rem from Husemoller's text (Ref. 26, p. Vl), orig-
inally due to Steenrod (Ref. 2V, p. 43).

Theo~em, Let H be a closed subgroup of G. A
principal G bundle $=(E,p, M} (or p: E-M) has
a reduction to a principal H bundle q= ("E,q, M)
if and only if g mod H (or $[G/H]) has a cross sec-
tion.

In this theorem )[G/H] is the G bundle asso-
ciated with $ whose fiber is the space G/H of left
cosets of II in G. Rather than explain the state-
ment (much less the proof) of this theorem (for
which see Husemoller), I will simply describe
gravitational fields as an example of it.

The Einstein equations are written gn a four-
manifold M that possesses no metric or other
structure beyond its differentiable structure.
Naturally associated with M are all the standard
bundles of tensors. These bundles are all asso-
ciated with, and derive their structure from the
principal bundle, or frame bundle $ = (E,p, M). A
frame e c E is a set of four linearly independent
differential forms F'= e'~Ch' at a point g cM; thus

e=(e', e', e', e', x)=(e', x)',

with p(e)=xr=M. The general iinear group G

=GL(4, R) acts freely on E according to

es=(e', x}s=(e's,', x),
where sc G is any nonsingular 4 x4 matrix.

Any metric field ds'=g„„(x)dx" 8 dx' allows one
to select a closed subset of E consisting of the
orthonormal frames "EcE defined by the condi-
tion that e c "E if and only if

IV. SYMMETRY BREAKING VIA HARMONIC SECTIONS ds„'= (q,«e ' 8 e «)„, (4.1)

Broken symmetries are a central idea in par-
ticle theory. One way symmetries can be broken
is by including in the action small" terms that
exhibit invariance under only a subgroup H of the

group G under which the dominant terms are in-
variant. . Alternatively, in spontaneously broken
symmetries, the vacuum state has a smaller in-
variance group than the action itself. General rel-
ativity can be regarded as a theory that incorpo-
rates yet another symmetry-breaking mechanism
by which the invariance of the action under arbi-
trary coordinate transformations is reduced to the
physical invariance of local phenomena under local
I orentz transformations. The symmetry reduc-
tion scheme used in general relativity can be ex-
tended to general gauge theories as will be broadly
sketched below, by introducing fields satisfying
gauge-invariant harmonic mapping equations. A
model theory of this type is described in another
paper (Misner"). The generality of this method,

where q, « is the Minkowski matrix diag(-1, 1, 1, 1)
and x= p(e). This set "E becomes a bundle q
=( E, q, M) by defining its projection q by the con-
dition q(e }= p(e }for e cX, i.e. , q = p ~

"E But the.
Lorentz group H=O(1, 3) acts freely on "E, since
if e= (e ', x) c "E so 8' satisfies (4.1), then eA
=(e'A«', x} also satisfies (4.1}for any Lorentz
transformationmatrix A cH. Therefore q is a
principal H bundle. This shows constructively how

a globally defined Minkowski signature metric field
ds' (which, see below, is precisely a cross section
of the bundle $[G/H] with fiber G/H= GL(4, R)/
O(1, 3)) gives rise to a reduction of the general
frame bundle $ to an orthonormal frame bundle q.
But the converse is also true. Suppose that any
reduction of the general frame bundle f is given to
an "orthonormal frame" bundle g, i.e. , to a prin-
cipal bundle over M wifh group H= O(1, 3). Then
at any point x cM, define (ds')„by equation (4.1),
using for e„any "orthonormal frame, " i.e. , any
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But s is not unique, for (sA)" = s'„A" also satis-
fies (4.2) when A is any Lorentz transformation
A cH= O(l, 3). The set of solutions s of Eq. (4.2)
is therefore an entire coset sH of the Lorentz
group, and any such coset determines g, „accord-
ing to e„„=q z(s ') „(s ')~„where every member s
of a coset gives the same g„„. Thus the matrices
g„„ofMinkowski signature' are in 1-1 correspon-
dence with cosets of H= O(1, 3), and therefore may
be regarded as coordinates on the fiber G/H of
g [G/H].

Steenrod's bundle reduction theorem (which we
have quoted from Husemoller") says that a reduc-
tion of local symmetry from G= GL(4, B) to H
=O(1, 3) is equivalent to defining a metric (G/H)
field. How is the field to be defined'P One method
(a priori geometry, external currents) is to re-
gard the metric field as fixed, given a priori or
ad hoc. Thus if ds is the flat Minkowski metric,
then the G symmetry (general covariance) can only
be introduced spuriously in the action functional,
and only Lorentz invariance (H symmetry) will be
physically significant. The same would be true
for any other fixed ds' (such as the Schwarzschild
geometry). No true general covariance would
exist in such a theory, as its action would look
simpler in some coordinate systems (as where

g „was time-independent} than others, yet local
Lorentz invariance would be a significant sym-
metry. But if ds' is chosen dynamically, as in
general relativity where a locally G-invariant ac-
tion integral is employed, and determines a G-in-
variant field equati. on for the symmetry-breaking
G/H (metric) field, both G and H play significant
roles in the resulting theory.

The corresponding dynamic symmetry breaking
in gauge theories requires a G-invariant action
integral for a symmetry-breaking G/H field, but
now G may be any semisimple Lie group. The har-
monic map action of Eq. (1.3) is readily general-
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element of q '(x). As these frames are all related
by Lorentz matrices A under which g,~ is invari-
ant, they all give the same metric ds', Ao a cross
section of $[G/H] has been constructed. Husemol-
ler's proof of the quoted theorem shows similarly
that a strong statement is justified, namely that
there is a 1-1 correspondence between cross sec-
tions v of )[G/H] and reductions i: "E-E of a G
bundle $ = (E,p, M) to an H bundle q = ("E,q, M).

A point that may require clarification in the
above discussion is the identification of a matrix
g, „with a point in G/H, i.e. , with a coset of the
Lorentz subgroup H of G=GL(4, H). Given the ma-
trix g„„, there will be a matrix s F G that reduces
it to its signature:

FOR PH YSICAI THEORIES

ized to accompbsh this by converting ordinary de-
rivatives to gauge-covariant derivatives. Thus
one writes

Q
3

I, = —,& lg1 d'xg""(x)G„,(y)v„y"v„y'. (4.3)2~2

Here one assumes that G is the gauge group of
some local symmetry, and that a gauge vector
field A„defines a covariant derivative in the prin-
cipal G bundle g. Then V„ is the gauge-covariant
derivative in the associated bundle g[G/H], and
the symmetry-breaking field P is a cross section
of $[G/H) satisfying the variational principle 5I,
= 0. The metric dI, '= G,~(g)dg"dP~ on the proto-
type fiber G/H is assumed to be invariant under
the transformations P - sg of G/H by any element
s of the gauge group G. It will then give a well-
defined metric in each fiber p (x) above a space-
time point x, whose components G„a(g) transform
contragrediently to VP" 8VQ under gauge trans-
formations, so I~ will be gauge invariant. Such
an invariant metric on G/H can always be found
when H is compact by taking an arbitrary (positive
definite) metric at the point P, =H c:G/H, averag
ing it under the action of the isotropy group H&G
at that point, and then translating by the action of
G on G/H, If G/H is an irreducible Riemannian
symmetric space it has an essentially unique met-
ric that is invariant under G.

Equation (4.3} of course only gives the (Bp}'
terms in the action. The. total action would con-
tain in addition a term „I( suhcas a Yang-Mills
action) with (BA)' terms to give the equations for
the A„ field, and possibly other terms I„for vari-
ous lepton or meson fields. The full action would
be gauge invariant under the gauge group G, yet
any term involving the field p would have an H
symmetry that would be stronger than its G sym-
metry because the H symmetry would persist even
when P was considered an externally fixed back-
ground field.

V. HARMONIC CONNECTIONS

Harmonic maps can be used to define gauge-co-
variant derivatives as an alternative to the usual
Yang-Mills equation for gauge connections A,„. As
I am not sufficiently familiar with the mathematics
of connections in other-than-vector bundles, I
shall not attempt a general theory, but just give
some highlights of models developed further else-
where (Misner"). These theories are motivated
by questions about generalized magnetic monopole
charge, i.e. , topological invariants of bundle struc-
ture. Let us, however, consider the electromag-
netic example. On a spacetime manifold M con-
sisting of Minkowski space minus a world line
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(source at the spacial origin) Maxwell's equations
admit solutions A„with arbitrary electric charge

but the magnetic charge

1 E Ch" r Ch"=IgV

d'x tr [(s„y)'(s"y)]
y

(5.1)

is invariant under the symmetry transformations
g - sist for s cSU(n) which also preserves the
Hermitian condition P~= P. With only the linear
constraint p~= p imposed, the action (5.1}corre-
sponds to n' real free scalar fields and gives lin-
ear field equations. But if we now impose the
further, nonLinear, constraints

is always zero. This corresponds to a gauge sym-
metry in which the principal U(1) bundle g is a
simple product bundle p: U(1) xM-M, (u, x)-x
in which v e = -iA„e for a basis e: M - U(1), x- e(x). With a twisted bundle structure (nonpro-
duct} for $ where no global basis exists, Maxwell's
equations allow nonzero magnetic charge I', but
it is again not a proper ty of the solution A „one
chooses —all solutions for a given bundle have the
same magnetic charge. This seems unsatisfac-
tory. The monopole charge I' is built into the g
priori bundle geometry that the theorist chooses
before the field equation I'".„=0 is well defined,
it does not arise from any dynamics in the theory.
In the examples that follow, the bundl. e structure
is not assigned a priori, but determined by a bun-
dle structure field P that satisfies a (harmonic
mapping) wave equation. One could then expect
that quantum excitatioiis from one. state of the p
field to another could change the generalized mono-
pole charge associated with the bundle, and that,
classically, different monopole charges P (all
integers) could arise as different solutions of the
same equation for Q.

Consider for simplicity a theory with a global
(rather than local or gauge) symmetry group G
= SU(n}. (There are no obvious difficulties in re-
placing 8„by a G-gauge-covariant derivative in
all that follows. } If P =(P'~) is a Hermitian matrix,
then the action

symmetric space SU(p+ q)/SU(p) x U(q) where p+ q
=n. This is a space of real dimension 2pq. The
field equation corresponding to 5I ~

= 0 is (1.5).
[All the properties of this model have obvious par-
allels, replacing complex numbers c by real num-
bers R or quaternions H, for the symmetric spaces
SO(p+ q)/SO(p) x SO(q) or Sp(p+ q)/Sp(p) x Sp(q} ob-
ta, ined from orthogonal or symplectic groups. ]

Now let us use the harmonic field P to construct
a buridle with an H-covariant derivative and a gauge
group lI= SU(p) x U(q) =-S(U~x U,) consisting of unit
determinant matrices from U(p) x U(q). Let Q=(g')
be set of n= p+ q spinless complex fields with the
global symmetry g- sg for s c G= SU(n). The ac-
tion integral for the g field will be

(5 4)

where

Dl all

is a gauge-covariant derivative with

D„'=ps,4, i e , D'„y.=.4s„(4q),
and

(5.5)

(5.6)

Writing g= pre„ in an orthonormal basis e„ that
satisfies ge„= e„ for 1 ( x (p and pe„=0 for p+1
& r (p+ q, one can put the covariant derivative D
in the familiar form

(D y)r S yr+gr. ys (5.8)

where the A, are traceless anti-Hermitian ma-
trices in (p+ q) block-diagonal form. Given a basis
(gauge choice), the A, are computable from p,
and in the original basis where 8„e,= 0 one finds

(5 9)

which is clearly traceless and anti-Hermitian but
not block diagonal. [The identity p(s„p)p = 0 that
follows from g'= g is useful. ] The curvature is
also readily computed, either from

(5.10)

(5.7)

Since (D', $)t(D"g) = 0 from P(1 —p) = 0, the action
decomposes into two parts, I,= I'+ I", one being

2=

trp =p,

(5.2}

(5.3)

using (5.9) for A=A„dx", or from equivalent defi-
nitions such as

(5.11)
then the action (5.1}is highly nonlinear in the in-
dependent parameters needed to specify a unique

g, and is a harmonic mapping action. With these
constraints Q c G/H is a, point in the Riemannian

The result is

I"»= I" V+ I"~V (5.12)
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with

and, in the alternative notation, similarly

E"=(1-y)dy ndy(1 -y).

(5.13)

(5.14)

Note that D„' and D„" commute, with D„'D„"=0.
A model theory in which a bundle structure field

g = P~ provides interactions among p+ q (complex)
meson fields g is defined by the constraints (5.2)
and (5.3) together with the action I= I~+I~. This
differs from a Yang-Mills interaction among the
mesons in several respects. First there is the
dimensional coupling constant that appears in
(5. 1), while. for Iv„=I„+I„the action I„of
the Yang-Mills field would have dimension-
less coupling constants. Secondly, although in
both cases I~ can be written in the same form with
D„=8„+A„, the independent fields comprise dim
H= p'+ q' —1 real vector fields A, =A„'+A„" in the
Yang-Mills case, but dim(G/H) = 2 pq real fields
p in the case with the harmonic connection. Thus
there can be a different number of gluon fields in
the two theories; the harmonic gluons are spin-
less, while the Yang-Mills gluons are vectors;
the H-bundle structure must be given a priori for
a Yang-Mills theory, but is dynamically deter-
mined by the harmonic gluons; and, finally, the
SU(p) and SU(q) mesons interact only electromag-
netically [via the U(1) in S(U~ && U, )] in the Yang-
Mills theory, but more strongly via P for the har-
monically connected theory.

The covariant derivative (or harmonic connec-
tion) „D=ps„p (+1 —p)s, (1 -p) can of course be
used in Lagrangians for multiplets of quarks or
other fermions as well as in the for scalar multi-
plets such as g in Eq. (5.4). This approach seems
well adapted to giving strong interactions via glu-
ons that do not show up as free particles. Vector
gluons would not materialize because the A„con-
nection vectors are merely derivatives [Eq. (5.9)]
of the underlying scalar harmonic projection fields

But scalar particles corresponding to the p
fields would also not seem to appear, as one can
always (and naturally) choose gauges —those that
make A„block diagonal in Eq. (5.8)—in which P is
just the constant matrix with unity in the first p
diagonal entries and zero elsewhere. A gauge-in-
variant. way of stating this (see Misner'") is to note
that when D, is extended in the usual way to act on
gauge tensors P'~ as well as gauge vectors P, it
gives D„&f& = 0 for the field g used in the definition
of D„. Thus g is covariantly constant in the bundle
structure and connection it defines, even though it
gives interactions among other fields that live in
this bundle, and may be an entirely nontrivial solu-
tion of its harmonic mapping wave equation.

VI. QUANTIZATION

I can offer three remarks concerning the quant-
ization of harmonic mapping fields. One is a pious
hope that functiona/ integration methods of Eucli-
dean field theory (see Glimm and Jaffe28 for an
introduction) might provide a genuine quantum
fiel.d theory for some model in this class. The
second is an indication that these are not the worst
of nonrenormalizable theories since many of them
have renormalizable relatives ("relaxed theories" ),
in the sense that the nonlinear o model is related
to the renormalizable 0 model. The other com-
ment, elaborated first below, is a suggestion that the
compactness of the range space of P values together
with the uncertainty principle leads to an expectation
that the quantum behavior of harmonic mapping fields
at short seavelengths may be quite simple but very
different from free fields.

Short zvavelengbh behavior. What can one expect
from the quantum theory of a Q field defined on four-
dimensional Minkowski space with values in a com-
pact Riemannian symmetric space of positive sec-
tional curvature? For some clues consider making
a lattice model with. discrete spatialsites x„whose
nearest neighbors on a simple cubic lattice will be
called x„.. From the action (1.3) or (5.1) we can
write I= J ddt with

d'x —,II —II'-llv@ll' (6 1)

where

Approximated on a lattice this becomes

1@c 3

n

—2~, Q lip„,--y„ll'),

(6 2)

(6.3)

where ~ = Lx= 4y = 4z is the lattice. spacing, and
the meaning of II &, —&P,ll' becomes a significant
question. One possibility is to take llg, —g, ll

= d(g„Q,) to be the Reimannian (least geodesic)
distance between P, and P,. A simpler, and ana-
lytic, choice that fits the projection operator ex-
amples like G/H=SU(p+q)/S(U, x U,) of Sec. V is
to take

(6.4)

but remember p'= @. This choice, like d', re-
duces to Eq. (6.2) when p, and p, are infinitesimal-
ly close. What I am attempting to avoid is an ap-
proximation that ignores the finite volume or di-
ameter of G/H and treats it as a vector space. In
contrast, Eq. (6.4) gives a finite maximum, e.g. ,
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II &f&, —g, l I

' ~ 4p if p„y, cSU(p+ q)/S( U, x U, ) and

p & q. This maximum uncertainty in the variable
g, —p, gives rise to a minimum lip»'ll for its con-
jugate momentum by the uncertainty principle.

The Hamiltonian corresponding to (6.3) is

(6.5)

12 2 2 P + 0

with Q, a constant. The eigenfunctions, and the
spectrum of H»/(tihc/4') —i.e. , the pattern of
eigenvalues —depend only on a dimensionless num-
ber Z' = s'/X'. Since II @ —P,ll' is bounded, we see
that for %.'/6'» 1 the interaction term can be neg-
lected. This suggests that for all modes lith
scale length k '«X the space derivative termsin
the action (6.1) are negligible. The simplest ex-
ample in which to attempt to verify this conjecture
would be that with G/H= SO(2)/SO(l) x SO(1)= S'.
Then by (6.4)

II@ -@,II'= 4»n'(~8), (6 8)

where &I9 is the angle between the two lines in 8'
onto which P and P, are the projections. One then
readily verifies that, although many of the low-ly-
ing eigenstates of

H„„=—,
' [J' 'pe'+ 4 sin'( —,'8)] (6.9)

have E„=J '(n+ —, and fit the harmonic-oscillator
approximation

~

8 «1 if 4' » 1, those with E„&1
do not. When J'«1 one has E„=1+(n'/2J') for
all n and even the ground state gives (2 sin'(r. 8))= 1.
This Hamiltonian (6.9) of course just describes a
simple pendulum with unit frequency e,'=g/I = 1,
but with an adjustable unit of action J= ml'&u, /8'.
A strongly quantum pendulum with J«1 does "un-
certainty prmciple loop-the-loops" even in its
ground state.

In the harmonic projection field of equation (6.1),
the harmonic oscillator limit J»1, or kX«1,

where p„= Ii '82/sp„ is scaled to give dimension-
less commutation relations

(6.6)

so that all dimensional quantities are manifest in
Eg. (6.5). The collective modes of this Hamilton-
ian need careful investigation. Modes where all
II@,. —Qzll'«1 should behave as free field modes,
but modes with a characteristic scale length near
6 should act qualitatively like a single nearest-
neighbor pair for which the Hamiltoniani is approx-
imately

gives free field behavior, while the highly quantum
limit J»1 or kX «1 suggests some kind of non-
propagating or at least nonrelativistic (v «c) ex-
citation in the harmonic projection field. The lim-
iting case for kK» 1 would appear to be a form of
ultxaloca/ field theory. Such field theories, whose
action integrals involve time derivatives but no
space derivatives, have been studied by Klau-
der" "and others whom he references, and give
exactly soluble models. However, ultralocal quan-
tum field theory models with compact range spaces
have apparently not been constructed.

Relaxed theories. As we have seen in Sec. V, for
many significant examples (projection operators on
R", C", or H") the harmonic mapping action can be
written as a free field action

(6.10)

= I —, d' xtr [(y' -y)'] . (6.11)

Now all n' compontents of P = Pr can be indepen-
dently varied, allowing p'wp. If p'&0, the "va-
cuum state" of this action will satisfy p'= p,
since we have added a term in the Hamiltonian
that is non-negative and vanishes only when P'= P.
(We continue to assume pr= g, and the other linear
constraint trace g = p also causes no trouble. )
Then p'+ q' —1 fields p have mass p(|i/X'c) while
the other 2pq fields g remain massless if g was
an n ~n matrix with n=p+q.

Because the added term is merely quartic, the
theory defined by Eq. (6.11) should be renormal-
izable. This conclusion remains valid if we re-
place 8„by V, = 8, +A„and add a Yang-Mills term

I„=-(ii 'c/8e') tr(Fr„„F"")d'x (6.12)

to the action (6.11). The fully constrained theory
and the quartic theory differ by the presence of
the p'+ q' —1 Higgs mesons of mass p(k/&c), and
the constrained theory would, one hopes, inherit
some good manners from the P -~ limit of S-ma-
trix elements computed in the renormalizable the-
ories.

I. Nnctional integration. My third comment on
quantization of harmonic maps is an attempt to

supplemented by a constraint P'= p. Although this
action is not expected to give a renormabzable
perturbation expansion, it is closely related to a
theory that is.

To relax the Q'= P constraint without removing
it completely we add a constraining term to the
free action (6.10),

I = I~+ I~



18 HARMONIC MAPS AS MODELS FOR PH YS ICAL THEORIES

ffg(= Jd'~f 4= d'~f(((~)*l,(6.13)

is meaningful and defines a functional of g. If a
probability measure dl((p) were available on the
space of cross sections of N, one could define a
kind of Fourier transform of dp by

S[f]= Jt e'+o'dp((t() (6.14)

The problem of defining dp(p) would then be equiv
alent to that of defining an S[f] having appropriate
behaviors.

Tbe formula (6.14) is heuristic in that the class
of functions f is not specified reasonably. I expect,
that one really wants to have p= e'~, when re-
stricted to a single fiber of N, involve the spheri-
cal functions of positive type on M'. Not all such
functions admit a representation of the form e' "

suggest by entirely formal analogies that the func-
tional integral for a Feynman sum-over-histories
quantization of a harmonic mapping theory is very
close to the quadratic integrals for free fields. The
first few pages of Glimm and Jaffe's" introduction to
Euclidean field theory include the basic structures I
will use in these formal parallels, namely measures
on function spaces, and their Fourier transforms.
I find it quite remarkable that the formal structure of
harmonic mappings into Riemannian symmetric
spaces is so rich that one sees not just the first
steps in beginning to define the functional integral,
but a number of touchstones along the way, and
even suggestions for the form of the answer.
Among the tools available are spherical functions
of positive type. These functions X: M'- splay
the role on a symmetric space M' that y= exp(ik (((()

plays when M' is a vector space, and a Fourier
transformation theory is available using them.
The positivity condition (stated in Helgason, Ref.
15, Chap. X, Sec. 4) implies y(p)= y(p) where the
bar is complex conjugation in z, but on M it is
the involution characteristic of Riemannian sym-
metric spaces o: M'-M', Q-oP =&]&, with o'(t(

For M' a vector space one has Q = -P for the
involution, and, of course, e '~~ being the complex
conjugate of e ~~ is familiar. This positivity pro-
perty appears well adapted to giving the Oster-
walder-Schrader positivity condition on generating
functionals in field theory.

It will be convenient at times to replace the map
M-M' by its graph (t(: M-M' xM, x

-((t((x), x), which can be regarded as a cross sec-
tion of the product bundle N=M' x M-M, ((t(, x)
-x. Generalizations to a nontrivial bundle N are
often apparent. Let f: N- 8 be any scalar func-

. tion on N Then for a. ny cross section P of N,
f 0$ is a function on M, and

(6.15)

where the action of tbe harmonic mapping p (con-
tinued to Euclidean spacetime) appears in the ex-
ponential, and

where dP„ is a volume element on the fiber m '(x)
=M'. To the extent that the measure dp, behaves
like a %iener measure, one can evaluate the func-
tional integral by the method of steepest descents
and is forced to consider the variational problem

d'x(--."y"„y„"+ff.y) = O (6.16)

for which the Euler-Lagrange equations are Q„".„
+if „(p)=0. Here (1(„'.„ is the expression that ap-
pears in the harmonic mapping equation p„".„' = 0,
and f „is the vertical derivative of f (tangent to
tbe fiber M') at fixed x, and f „((t) means f „op.
The imaginary i in this equation arises because
the method of steepest descent applies only when
analytic continuation in p is defined. I regard it
as a reminder to use a correct sign in the expo-
nent of Eq. (6.18) below where p' occurs. The
equation that needs attention is really

(6.17)+f „(4)=o
or some better equation with X = e' in its source
term.

Equation (6.17) is a well-posed (covariant) ellip-
tic equation, and by analogy to linear equations it
would most likely have a unique solution for given

f if P„., = 0 had no nontrivial solutions. As dis-
cussed in Sec. II and Appendix A, this is most
plausible when M' has nonpositive sectional curva-
tures. But the classically attractive harmonic

—the. Bessel functions are an example —but
many admit integral representations of an expo-
nential type that may suffice. (See Helgason, Ref.
15, Chap. X, Theorem 6..16.) What equation (6.14)
means then is S[x]= f y [&[&]d(u((P) where X[&] are
functionals of cross sections g: M-M' &&M that
derive from a complete set of functions for Fouriei
analysis in the fibers, incorporating positivity con-
ditions that would imply, for example, X[/] = y[g] .
This last is sufficient to prove that S[y] is real
when the measure has the symmetry dp(g) = dp(p)
under Reimannian symmetric involutions in each

. fiber of N=M' xM.
I continue to use Eq. (6.14) for heuristic pur-

poses, lacking an adequate development of "Fou-
rier functionals" g[(t(]. Another, more familiar,
heuristic notation is to write
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mapping theories involve fibers M' that are Rie-
mannian symmetric spaces of compact type for
which the sectional curvature is non-negative.
This contrariness impells one to consider whether
the continuation of the action from its Minkowski
(classical) form to a, ("quantum") form with a Eu-
clidean metric on the spacetime M mill also in-
volve the duality (Helgason, Ref. 15, Chap. P,
Sec. 2) by which compact-type symmetric spaces
are associated with unique (dual) partners of non-
compact type.

CouM the evaluation of the Fourier transform
(6.14) lead to a simple result? I would hope, by
analogy to simple linear free fields, that the re-
sult mould be

A&g A

which gives the standard formula for S[f] for a
Euclidean free field.

S[f]= exp(--,' ll fll „„'), (6.18)

where, in spite of the notation, II fll„M is not a
simple linear norm but is defined by

II fll„'=
J d'xg„"(f)@"„(f) (6.19)

(6.20)

on N= M' && M. The functional f [g] defined in Eq.
(6.13) is then the usual linear form

(6.21)

and P( f) is the cross section defined by the non-
linear equation (6.17) for g, with the function f:
X=M' XM- R given as a "source. "

To lend some support to this long series of con-
jectures, let us verify that they lead to standard
results in the case where M' is a vector space.
Then for e'~ to be a "positive-definite spherical
function" of (t) for each fixed x, under the transla-
tion group of the fiber, the function f must be a
simple linear function on each fiber. Thus
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APPENMX A: EXAMPLES OF HOLOMORPHIC MAPS

The example given in Eq. (2.10) of a harmonic
map E'-S' can be recognized as an holomorphic
mapping c'- P', (x+iy) = e-(e', ft') as follows.
A point in complex projective space P is an equiv-
alence class of nonzero vectors $=((„(„.. ., $„„)
c C"" under the equivalence $

—= X$ where X is any
nonzero complex number. To define e, 4 coordi-
nates ln P' = S' me write

and (6.14) is the usual functional Fourier trans-
form. With the choice (6.20) for f, and with
G»((t)) = 5» for a flat vector space M', Eq. (6.1"1)

reads

(6.22)

where &= -„&„ is a I aplacian with a positive
spectrum. Then the "norm" II fll» from Eq. (6.19)
becomes

(]„(,) =X(e'o 'sin-,' 8, e 'o 'cos-,'e)
=(e' tan-.' e, 1)

(the equivalence holds only for ex 7(), where ((„$,)
is any representative of its equivalence class. In
this holomorphic map form, the above example
can be generalized to give a solution of Eqs. (2."I)

on Euclidean four-space F'. Identify E'= c' by
(u, v) = (x+iy, @+it)c c'. Then define a holomor-
phic map
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C'- P', (u, v}-(u'v', R'")

or view it equivalently, as P: E4-S',

(x+iy)~(a+it)'/R" = e'o tan-', e.

(A2)

(A2')

This mapping does not have a simple asymptotic
behavior near in E, but for k, l » 2 the total
action (1.3) or (2.6} is finite. Its possible signi-
ficance as an instanton solution for a nonlinear o-
type field theory M'-S' is unclear to me. In the
usual mathematical sense the map (A2) is topo-
logically trivial, i.e. , homotopic to a constant.
To see this, one sets R= A.

' and considers the
map

[0, I ] x c'- P ', (x, u, v) - (x"'u'v', I),
which is continuous (even analytic), with g, = const
for X= 0. For application to physical model theo-
ries, however, this may not be relevant, as this
homotopy does not keep the action integral I~ con-
tinuous (and hence bounded) on 0 ~ X ~ 1. In fact
one can easily see, by a change of coordinates

absorbing the X into u and v, that

for this family, so I~- as X-0. It is thus not a
"bounded action homotopy. " (Note: the homotopy
attempt that uses (A2} for 0 ~ R ~ 1 keeps the action
finite, f(R}=R'f(1), but cannot be defined so that
the mapping is continuous at the point (0, 0, 0) of
[0, 1) x c'.)

Another set of harmonic maps, obtaine~ from
holomorphic maps, that may provide interesting
model theories are maps p'- P'. One obtains
Euclidean four-space E'= C'( P' by identifying

(x+iy, @+it, 1}= (u, v, 1) c P '

as a point in E4 or c'. The range space p' could
occur in models of symmetry breaking since P '
= SU(3)/SU(2) x U(1). The following is an example
of a holomorphic map g: P'- P' that can be re-
stricted (require w 40} to a holomorphic map C'- p'. Let (u, v, w) —= (Xu, Xv, Xw) represent a point
in the domain space. Then the map

P P, (u, v, w)-((u —av)"(v -bw)', (w -au) (u -bv)', (v -aw)~(w —bu)') (A3)

is holomorphic for k& l»1 if a and b are distinct
nonzero complex numbers that are not cube roots
of unity. For /=0 the map is holomorphic if g 1,
and homotopic to the case 1=0, g=0.

APPENDIX B: IDENTITIES AND INTEGRAL FORMULAS

In this appendix I derive the Jacobi (perturba-
tion} equation (2.2V} (see also Duff and Isham'4),
the identity (2.29), and the integral formula (2.30).
Start from the harmonic mapping equatiori f"„'"= 0
for a family of maps f(a, x) and apply the deriva-
tive n=(8/8X)„. One has 8fA/81= 8 fA/8X8x" = 8„n"
since n" = 8fA/Was in Eq. (2.15).. It is convenient
to use normal coordinates so that I"B„(x,}= 0 and
I""Bc(f(X„x,)}=0. Then 8„I' B„appears in neither
n" „'"nor 8(fA'")/Wand the 8I'"Bc ter. ms can be
identified with R ~~D at this point, yielding the
Jacobi equation (2.2"I).

Hells and Sampson, ' along lines indicated by
Bochner, "corisider g,,„'"where 2= ~/A/A„ is the
harmonic mapping Lagrangian. One first uses
Eq. (2.25), then the Ricci identities such as n .„„
= n~. „„+n~R"~„„ to find

yA «n yA; lk

R$P

yA«n + yBRA n WAAR««n (B])

This cari be rewritten as

+ ( ABRaB ACBD~n4' gus}4'
in —(—y yAn) «n (y yAn) n

yAu(y «n) + y yA ; aB

+ p p ( AB nB ABCDpu p~s

or, equivalently, Eq. (2.29). For a harmonic map,
with pA„' = 0, in an asymptotically flat Riemannian
n-manifold M, suppose the integral of the right-
hand side of (B3) were finite but nonzero. Then asr- ~ in M one must have M(const)r' " (or 2-1nr
for n= 2) from the monopole term in 2 as a solu-
tion of this scalar Laplace equation. But then
I= JZO'IgI d"x diverges. We conclude, that for
finite action solutions of the harmonic maPPing
equation on asymptotically flat Riemannian mani
folds, Eq.c(2.30) holds, that is, the integral of
the right-hand side of Eq. (B3) must vanish. We
can therefore draw similar conclusions in this
asymptoti:cally flat case to those Hells and Samp-
son drew for a compact M. For instance, suppose
the Ricci curvature of M is non-negative, and the
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Riemannian (sectionai) curvature of M' are non-
positive. Then a finite action map g: M- M' is
harmonic if and only if it is "totally geodesic"
(i.e. , satisfies p„.~= 0). Furthermore, if the

Riemannian sectional curvatures of M' are every-
where negative, then every finite action harmonic
map f: M-M' is either constan't or maps M onto
a geodesic of M'.
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