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We consider the possibility that the observed particle-antiparticle imbalance in the universe is due to
baryon-number, C, and CP nonconservation. We make general observations and describe a framework for
making quantitative estimates.

I. INTRODUCTION

Evidence exists' that the universe contains many
more particles than antiparticles. A quantitative
measure of this particle excess is given by the
number of baryons within a unit thermal cell of
size R= T '. Such a cell contains a single black-
body photon. ' In current cosmological theories it
is a box, expanding according to'

In the very early universe there was approximate-
ly 1 of every species of particle within a unit cell.
However, the unit ceD today contains only 10 '
baryons and essentially no antibaryons. If baryon
number is conserved then the unit cell has always
contained a baryon number of order 10 '.

One cannot rule out the possibility that the uni-
verse was created with net baryon number and no
explanation is needed. However, to quote Ein-
stein: "If that's the way God made the world then
I don't want to have anything to do with Him. " In
fact modern theories of particle interactions sug-
gest that baryon number is not strictly con-
served. "If this is true then today's baryon num-
ber is as much dependent on dynamical processes
as on initial conditions. Indeed Yoshimura' has
made the exciting suggestion that baryon-number
violation can combine with CP noninvariance to
produce a calculable net baryon number even
though the universe was initially baryon neutral.
Yoshimura has also made estimates' which indi-
cate that this may be quantitatively plausible.

There are three interesting reasons to believe
that baryon number is not exactly conserved:

(1) Black holes can swallow baryons. '
(2) Quantum-mechanical baryon-number viola-

tions have been discovered by 't Hooft in the
standard Weinberg-Salam theory. '

(3) Superunified theories of strong, electromag-
netic, and weak interactions naturally violate bar-

yon number at superhigh energy. '
Although baryon-number violations are minute

at ordinary energy, in cases (2) and (3) they may
become significant at sufficiently high tempera-
ture.

Baryon-number violations is not enough to create
an excess of baryons. The process itself must be
particle-antiparticle asymmetric. ' Otherwise the
sign of the effect will be random and cancel in
different cells. In this case the total baryon ex-
cess would be of the order of the square root of
the total number of photons. However, the total
number of photons in the observed universe is

I088 and the baryon number is -10".
The required particle-antiparticle asymmetry

is known to exist. Indeed charge conjugation is
maximally violated in ordinary weak interactions.
Were this the only asymmetry, CP invariance
would destroy any possible effect because total
baryon number changes sign under CP as well as
C. Luckily CP violations are known to exist. '

CP T invariance also imposes a very interesting
constraint on the expansion rate of the universe.
As we shall see, CPT invariance ensures vanish-
ing baryon density in thermal equilibrium. There-
fore the expansion rate must remain rapid enough
to prevent the baryon-number-violating forces
from coming to equilibrium.

In this paper we will discuss how baryon-num-
ber, C, and CP nonconservation can conspire with
the early Hubble expansion to produce an observ-
able baryon excess.

As we shall see, the baryon excess may origi-
nate at or close to the very earliest times, -10
sec. At that time the temperature, energy den-
sity, and local space-time curvature are assumed
to be of order unity in units of the Planck mass.
The metric in Planck units is of the Robertson-
Walker type'

(ds)' = dt ' —R(t )'dx, dx, , .

where B(t)-1 at the Planck time t = 1.
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I et us follow the evolution of a single unit coor-
dinate cell of dimensions Ax,. =1. At the earliest
of times it is a cube of unit volume (10 'o' cm')
in Planck units. We will assume that quantum
fluctuations and gravitational interactions between
gravitons and matter rapidly bring the universe
to equilibrium at a temperature of unity. It follows
that our unit cell initially contains about one elem-
entary particle of each species. In current unified
theories this means -100 particles (photons, lep-
tons, gravitons, intermediate bosons, quarks, vec-
tor gluons, Higgs bosons, superheavy bosons, ... ).

As the unit cell evolves it expands and cools.
The process is not too different from the slow ex-
pansion of a box containing radiation. As in this
case, the entropy within the cell is not significant-
ly changed during the expansion. Roughly speaking
this implies that the number of particles within
that cell is the same today as it was at creation.
Of course, by now, the only particles left are pho-
tons, neutrinos, and any excess protons and elec-
trons. The others all annihilated or decayed when
the temperature decreased below their mass.

The excess, expressed as a baryon number in
the unit coordinate cell, is a number of order

N

where Es/Nz= 10 ' and nz is the number of photons
in the unit cell today. Assuming it is of the order

-of the number of elementary particle types, we
must account for 10 ' baryons per box.

The estimates made in later sections for the
baryon excess are too uncertain to be taken seri-
ously. In addition to particle physics uncertain-
ties, the properties of the initial conditions at
creation are unknown and can influence the result.
Our estimates are made for the most pessimistic
case which we call "chaotic initial conditions. "
Such an initial condition is described by a density
matrix p which is diagonal in baryon number and
symmetric under the interchange of baryons and
antibaryons. It is the sort of initial condition
which would describe equilibrium if the earliest
interactions respected baryon-number, C and CP
invariance.

II. CPT AND EQUILIBRIUM

It is self-evident that if G' or CP are symmetries
of the equations of motion then no global baryon
excess can result from baryon-number-violating
processes. To illustrate the constraints imposed
by CPT in an expanding universe we discuss some
examples.

Consider a complex scalar field g(x) in an ex-
panding universe described by the metric

(ds)' = (dt )' —R(t )'(dx)'.

The action for this. model is taken to be

s = d'xv'- g [g""s„ys,y+ —V(y)],

where

1'(4) =~(ee")"(4+4*)(&4'+ "4*')

(2.1)

(2.2)

(2.3)

and n is a complex phase. The baryon current
density is

a„=4-g ipse 0* (2.4)

Note that V(P) violates baryon-number conserva-
tion, C invariance (g -g*), and CP invariance.

The Hamiltonian for this model is

'x „,,— +R(t)~Vy~'+It'(t) V(y) .

(2.5)

This Hamiltonian is invariant under the following
CP T transformation'.

y(x) -y(-x),
v(x) - -v(-x) .

The baryon number

B„(x)=
i(Pn' —n'*P*), p, = 0~

~g-gi PVQ*, p. =i

(2.6)

(2.7)

(2.8)

changes sign under (2.6) and (2.7).
The CPT transformation is a symmetry of the

spectrum of the instantaneous Hamiltonian but not
of the equation of motion because of the explicit
time dependence of II.

Now consider the case where the universe ex-
pands so slowly that at every instant it is in ther-
mal equilibrium with respect to the instantaneous
Hamiltonian H(t). The density matrix at time t is

p(t) = exp[-P(t)H(t)]. (2.9)

Since CPT conjugate states carry equal energy but
opposite baryon charge B the expectation value of
B vanishes,

(8) = Tr(e 8'"s'"B) = 0 (2.10)

Therefore the only hope of generating baryon
excess is for the baryon-number-violating inter-
actions to remain out of thermal equilibrium. This
implies that the rate of expansion of the universe
has to be faster than the baryon-number-violating
reaction rates.

Now we will discuss a second model to illustrate
the possibility of baryon-number generation if we
are out of equilibrium.

Consider a time-independent Hamiltonian H=H,
+ V. 80 is baryon-number, C, and CP conserving
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and Vis a small perturbation which violates these
quantum numbers. Suppose that at time t = 0 the
system is in thermal equilibrium with respect to
the Hamiltonian H„

p(()) e- 8Hp (2.11)

The mean baryon number is

(B(t)) = Tr[e 8"OB(t)]/Trp .,

where

B(t ) ei HtBe- i Hi

The CPT invariance of H and Ho implies that
(B(t)) is an odd function of time

(B(t)) = Tre 8"OB(t)

=Tr[8e "08 '8B(t)8 ']
= Tr(e '" [-B(—t)])
=-Tr[e HHoB(-t)]

= -(B(-t)),

(2.12)

(2.ls)

(2.14)

(2.15)

where 8= CPT. This antisymmetry of (B) with
time is the only constraint implied by CP T.

Interesting information can also be extracted by
looking at the rate of change of B,

Under the action of the full Hamiltonian the den-
sity matrix at time t has evolved to

p(t) H-iHte-SHpe+iHi

The expansion rate in the radiation-dominated
epoch i.s given by

R
(2.19)

where the temperature T and time are in units c
=k= G=1.

The dependence of the reaction rate on tempera-
ture can be obtained from dimensional considera-
tions. For example, in a renormalizable theory
with all mass scales much lower than T the reac-
tion rate must be proportional to T. This is be-
cause coupling constants in renormalizable theo-
ries are dimensionless. Accordingly the condi-
tion for equilibrium is

T &T (2.20)

or

If the universe expands and cools sufficiently ra-
pidly the baryon-number-violating forces may not
have time to come back to equilibrium. This is
especially true if the reaction rates for these pro-
cesses are rapidly faQing with decreasing temper-
ature. In order to estimate if this is so we con-
sider the quantity R/R which measures the rate
of expansion of the universe. The condition for
equilibrium is

R—& reaction rate . (2.18)

(B(t)) = t Tr(e '"'[e "o, V]e'"'Bj. (2.16) (2.21)

If we approximate e '"' by e '"o' then (B) must
vanish since [B,II,]=0. This implies (B) is at
least second order in Vand first order in time,
(B)-t. But since (B) is an odd function of t, (B)
must be even and cannot be of order t . It fo11ows
that (B) is at least second order in t and (B) is
third order:

(B(t))-t'. (2.17)

That baryon-number excess vanishes to first
order in V is to be expected. The nontrivial part
of the time translation operator U is anti-Hermi-
tian to first order. Therefore amplitudes changing
B by opposite amounts have equal magnitude and
cancel. The relation (B)- t ' shows that baryon
excess builds up slowly in the beginning.

In this example, a period of time will elapse
during which (B) is not zero. Eventually the inter-
actions in V will restore the system to true ther-
mal equilibrium with vanishing (B). If, however,
the baryon-number-violating force is switched off
after a finite time the system will retain a finite
net baryon excess.

The process of early expansion can disturb ther-
mal equilibrium and lead to a temporary excess.

Therefore the condition for thermal equilibrium
in renormalizable theories is increasingly satis-
fied as the universe cools. This continues as
long as explicit masses can be ignored. From
these arguments it is easy to see that ordinary
strong electromagnetic and weak interactions are
in thermal equilibrium from superhigh tempera-
t'ures (-10"GeV) down to ordinary temperatures
(-1 GeV).

In superunified theories baryon-number-viola-
ting processes are effectively nonrenormalizable
Fermi interactions below energies -10"GeV.
This energy corresponds to the mass M of the
superheavy bosons which mediate the process.
The effective Fermi coupling constant is

-- —10-» Gey-20
M

(2.22)

The condition for equilibrium becomes

T &G T (in Planck units)

The reaction rate is proportional to G' and by di-
mensional arguments is

(reaction rate) = G'T'.
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or

(2.23)

For M -M„,„,„ it is unlikely that the baryon-num-
ber-violating forces were ever in equilibrium.

Note that the baryon-number violations are of
order e at temperatures -10"GeV. Effectively
we are in a situation where these interactions are
switched on for a brief time interval and are then
switched off. These considerations indicate that
the possibility of generating baryon excess is
viable.

HI. MODELS VGTH BARYON-NUMBER VIOLATION

(3.1)

We mill assume M is approximately the Planck
mass and set it equal to unity. This assumption
simplifies our discussion.

At energies below W& the baryon-number-viola-
ting processes are effectively described by four-
Fermi interactions. The coupling constant is ap-
proximately

(3.2)

By a unified theory' we mean a theory in which
the strong, weak, and electromagnetic gauge in-
variance are embedded in a simple unifying group.
Such theories involve a single coupling constant
of the order of the electric charge. Both leptons
and quarks appear in the same multiplets. There-
fore quarks can turn into leptons by the emission
of vector bosons called Pv'. For example, in the
SU, theory of Georgi and Glashow the process
shown in Fig. 1 j.s possible. This process implies
that a proton can decay into a positron and pho-
tons.

In order to suppress the decay of the proton, the
mass of the 8' must be made large. Consistency
with the empirical bounds on the lifetime of the
proton requires

M &10"GeV.

is CP violation. ' In principle the observed CP
violation could arise spontaneously' or from ex-
plicit asymmetry of the Lagrangian, " If it arises
spontaneously then it disappears at temperatures
well above 1 TeV. In this case the CP and baryon
processes cannot combine to yield an excess.

We will assume that a CP violation, perhaps un-
related to observed CP violation, exi.sts at the
superheavy scale. We might suppose that this
breaking is also spontaneous. However, in this
case it could not be effective in producing an ex-
cess. The reason is because the radius of an
event horizon is very small at the time when the
baryon excess is produced. This means that un-
correlated domains of different CP directions must
occur with small spatial extent. Within these do-
mains the baryon excess will have opposite sign
and therefore cancel. Thus we must have an ex-
plicit CP violation in the part of the Lagrangian
which is relevant at superheavy scales. This does
not exclude the idea' that the observed CP viola-
tion is spontaneous.

For definiteness we will assume explicit four-
Fermi vertices which break both CP and baryon-
number conservation.

A second source of baryon-number violation has
been discovered in the standard Weinberg-Salam
theory. In this model the baryon-number violation
is of purely quantum-mechanical origin. ' There
exists a discrete infinity of classical degenerate
vacuums" labeled by the "winding number" n.
Quantum-mechanical transitions between these
classica1 vacuums can occur by tunneling through
an energy barrier. These events are called in-
stantons. The physics is analogous to tunneling
between the minima of a periodic potential. As
't Hooft first noted, 4 each instanton event is ac-
companied by a change in baryon number. A
change in lepton number also occurs in order to
compensate the electric charge. The tunneling
ampbtued at zero temperature is proportional to'

~-8w /g
2 2

in Planck ~Inits. The baryon-number-changing in-
teractions obviously are unimportant for tempera-
tures very much smaller than M.

The other ingredient needed for baryon excess

e+

U d

FIG. 1. Baryon-number-violating process occurring
in the SU5's unified theory.

which is of the order of 10 ". At very high tem-
peratures T& 250 GeV two qualitatively new things
happen. First, the Higgs vacuum expectation val-
ue goes away. " Second, there exists a lot of ther-
mal energy available. This can be used to over-
come the potential barrier.

To estimate the importance of this effect we
must compare the barrier height with the avail-
able thermal energy. Consider an instanton of
space-time radius p. For temperatures»250
GeV the expectation value of the Higgs potential
vanishes and the action of an instanton is roughly
what it would be for pure Yang-Mills theory:
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action = 8v'/g'.

The tunneling barrier is estimated by dividing
this action by the duration of the event p,

V= 8v'/g'p .

(3.3)

(3 4)

ds' = (dt )' —R(t )'(d x)i'

= (dt)' —t (dx)'.

(4.1)

(4.2)

We are going to consider a field theory in an ex-
panding universe described by the metric

[We remind the reader that Eq. (3.4) only applies
above the transition temperature for the Higgs
field to disappear. ]

Equation (3.4) suggests that we can always lower
the barrier as small as we like by considering
arbitrarily large instantons. This is not so. The
reason is that a tunneling event is a coherent pro-
cess in which the instanton density I „,I'„, is of a
definite sign over the size of the tunneling region.
Thus p cannot exceed the coherence length mhich
is given by the Debye screening length in the
gauge-field plasma. " This is given by the plas-
mon Compton wavelength which for pure Yang-
Mills theory is

The choice R = ~t is appropriate to a radiation-
dominated epoch. We will illustrate such a sys-
tem by considering a scalar field with action

(4.3)

ds' =p'(x) [(dx,)' —(d x)']. (4.4)

In particular, if we change variables from t to v.

= (2t)'~' then

ds' = 7(d~' —d x') . (4.5)

Now the metric in Eq. (4.2) is of the conformally
flat type meaning that by a change of variables it
can be brought to the form

(gT -1
+plasma

]
r pmax ~

I&6
(3.5) Now the reader can verify that if the field P is re-

placed by
The thermal energy within such a volume is
-( a/2)p 'T - (v'/2) T X~'. The condition that this
thermal energy overcomes the barrier Vis

4, 8g—T A.
2 g' A.

s=p 'P,
then the free part of the Lagrangian becomes

S= d'xd7 (——(vs)'
(d7

(4.6)

or (3.6) + pure divergence. (4.V}

2

(18 —8g ') —,o 0.

This appears to be satisfied for the coupling con-
stants chara, cteristic of weak-electromagnetic
theories.

These crude estimates only suggest the possibil-
ity that baryon-number-violating interactions are
not suppressed at T&250 GeV. Quantitative cal-
culations are needed to decide the importance of
this effect. In particular, the effects of fermions
will probably suppress the tunneling. For the re-
mainder of this paper me mill ignore this quantum-
mechanical source of baryon-number violation,
although it is possible for it to seriously alter
the results of this paper.

Furthermore, if a renormalizable g interaction
is present in V then it is replaced by s'. lf on the
other hand nonrenormalizable terms such asP"'"are present they are replaced by

S4""
V(s) = (4.8)

Thus, in the new time coordinate, the free and re-
normalizable terms in the action take their flat-
space form and appear to be 7 independent. The
nonrenormalizable terms appear time dependent
with rapidly falling coefficients.

Similar results hold for more general theories.
If we consider the usual type of theory containing
scalar spinor and vector fields 4}, (, A„and de-
fine conformal fields by

IV. BARYON GENERATION MECHANISM

IN FIELD THEORY

In this section we will describe field-theoretic
methods for computing the baryon-number excess
in an expanding universe. For definiteness we
mill consider a model in which both baryon and
CP violation are mediated by superheavy bosons
of mas s Mp~ k In practi ce thi s means that these
interactions are described as four-Fermi cou-
pling s.

A.~-Aq,

(4.8)

then the free and renormalizable terms take their
flat-space form. The nonrenormalizable Fermi
couplings are replaced by their flat-space counter-
parts times the factor 1/~'. Thus the form that
the action for our model takes is
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(4.10)
Thus using [B, U,]=0,

(B(v)) = Trp(1)Ut(~)BU (7). (4.15)

e=e, + v(7), (4.11)

where H, is baryon-number and CP conserving.
V(~) contains the violating terms and scales like
7 '.

Suppose the initial density matrix at the Planck
time r = 1 is given by p(1). The expectation value
of the baryon number at this time is

where L,, is a renormalizable v.-independent La-
grangian containing all the usual interactions and

LI is a four-Fermi coupling containing the super-
heavy mediated effects.

We will make two cautionary remarks before
proceeding to study baryon-number excess gener-
ation. The first is that the flat-space form for
renormalizable theories ignores mass effects.
Since we only use if for very high temperatures
this is no problem. The second remark concerns
ultraviolet divergences. The above analysis was
purely classical and fails when renormalization is
accounted for. However, because the unified cou-
pling is small at the Planck length, the failure
only involves very weakly varying logarithms. In
fact, these effects would show up as logarithms
of ~ multiplying the renormalizable interactions.
They are completely unimportant for our problem.

Let us now return to the baryon excess problem.
We write the Hamiltonian resulting from Eg. (4.10)
as

Graphical rules are derived in Appendix A for the
evaluation of (4.15). The following features
emerge from analysis of these rules:

(1) For the case V(r) -1/v' each order has a
finite limit as v -~. These limits give an order-
by-order expansion of the final baryon-number
excess.

(2) The first order in which a, nonvanishing ex-
cess occurs depends on certain features of p(1).
In particular, if [p(1),Bj= 0 then the first order
vanishes.

(3) If in addition to p(1) being diagonal in baryon
number it is CP symmetric then the second order
also vanishes. Thus in the case of initially chaotic
conditions, baryon-number excess is a third-order
effect. Thus, since we suppose [see Eq. (3.2)j that
V-z, baryon-number excess will be -e' for an
initially chaotic p.

We are currently constructing Feynman rules
for the evaluation of Eq. (4.15). These rules will
be applied to some unified models in a future pa-
per.

V. SCALAR TOY MODEL

Consider the model introduced in Sec. II [Eq.
(2.2)]. In conformal coordinates the action be-
comes

(B(1))= Trp(1)B

At a later time ~ the value of (B) is

(4.12) S= d'xd7 ~ —~vy~'-, „(pp*)"(Q+p*)

(B(7)) = »p(1) Ut(~)BU(&)

= TrU(~)p(1) Ut(r)B, (4.13)

(4.14)

V, (7) = U,'(7) V(7) Uo(r) .

where U(r) is the time translation operator from
v=1 to ~.

For the case that V(r) is r independent (renor-
malizable interactions) we may immediately con-
clude that as v. -~ (B)-0. This is because a
field theory with time-independent Hamiltonian
will eventually come to thermal equilibrium and
we have seen that CPT ensures 13=0 in this case.

On the other hand, if V(~) -0 fast enough we can
use ordinary perturbation theory in V to compute
the baryon-number excess as'~- ~. To do this
we use the standard interaction-picture formalism
to obtain

U(r) = U, (~)Uy(~), U (~) =De '"'" ",

x(nP'+ n*P*') g(Py*)', , -(5.1)

where we have added the renormalizable term
gP' to represent all the renormalizable interac-
tions. In this section we will make some very
crude approximations which reduce the system to
a single degree of freedom.

First we shall assume that the initial density
matrix is in thermal equilibrium at a temperature
-1. If we ignore the small (-n) nonrenormalizable
couplings then the system will remain in equilib-
rium at this temperature for all ~. (Note that in
transforming to the original coordinates the tem-
perature becomes 1/~ since it scales like energy. )
Thus the average value of I P I will remain con-
stant of order unity. Indeed the first simplifica-
tion will be to replace l P i by unity.

The other drastic simplification will be to fo-
cus on a single unit coordinate cell over which P
will be assumed spatially constant. Setting P
= e' we obtain a system described by the Lagran-
gian
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d0
(5,2)

The baryon number of a unit cell is given by
Eq. (2.4):

B=il (t)its, g*

d0=2—. (5 3)
FIG. 2. Graph contributing to baryon dissipation.

d20 Q V d0
d1 80 d7

+ 7' " +f(T)—= 0. (5.4)

The computation of friction coefficients in non-
equilibrium statistical mechanics typically in-
volves the computation of the absorptive (imagi-
nary) part of some thermal Green's function. "
That is to say, we calculate the width of some ex-
citation which propagates in the medium.

In the case of electrical resistance we calculate
the absorptive part of the plasmon propagator. "
In our case, a nonzero baryon charge must dis-
sipate as equilibrium is restored. Accordingly
we must compute the width of the charge-carry-
ing excitation described by the field P due to
baryon-number-violating processes. In the model
field theory with interaction V(P)
=X(g*g)"(p + P *)(n &)

'+ n *g*') the relevant width is
described by graphs shown in Fig. 2. Dimension-
al arguments require the temperature-dependent
width to be

Equation (5.2) describes a pendulum in a time-
dependent unsymmetric potential and Eq. (5.3)
says that the ba,ryon number of a single cell is
given by its angular velocity. The CP. T invari-
ance of the original instantaneous Hamiltonian
corresponds to the time-reversal invariance of the
pendulum.

The approximation of ignoring the interaction of
neighboring cells is surely too severe to correctly
describe the high-temperature nonequilibrium
properties of the subsystem. In particular, it is
impossible for the single pendulum to relax to
thermal equilibrium if it is disturbed. For ex-
ample, if the pendulum is given a hard "clock-
wise" swing it will forever continue to rotate so
that t}$0. But in thermal equilibrium (8) =0 by
the same arguments which we used to prove (B)
=0.

By ignoring the surrounding heat bath we have
eliminated the possibility of dissipation. A sim-
ple method for incorporating it is to introduce a
dissipative damping term into the equation of mo-
tion. Thus we write the equation of motion

is B, the number lost by dissipation is

~

—a~„,=-ay = a~'r-4"+'
&dt )" (5.6)

or

dJ3 A. 'B
dt 7

(5.7)

Recalling that J3 is identified with d8/dr we inter-
pret Eq. (5.7) to mean that the coefficient f in Eq.
(5.4) is X'/~'":

d 0 BV A, d0
(5.8)

d0 8V,' AT"" ' x'T""—"=0.dt' 80 dt (5.9)

Equation (5.8) defines the toy model.
To see how the toy model can lead to an asym-

metric distribution of baryons and antibaryons
consider a V(8) which looks like Fig. 3, i.e. , it
has no point of reflection symmetry. Now suppose
the initial probability density in 0 and 0 is uniform
in 0 and symmetric under 0- -0. We observe that
a particl. e has a large probability to get a small
kick to the left and a small probability for a large
kick to the right. Thus the probability distribu-
tion becomes asymmetric. However, to first or-
der in time no average change in 0 occurs. This
is because the average force 8 V/88 vanishes for
a uniform distribution in 8. In fact (8) only be-
comes nonzero in order 7'. Furthermore, the
first nonvanishing order in Vis third order.

If the universe were a nonexpanding box at fixed
temperature then no net baryon excess could be
maintained at long times. Indeed the toy model
is consi. stent with this. In a nonexpanding uni-
verse the form of the toy model is

y(7') =~ '7 4"+' (5.5)

Thus if the number of baryons in the unit cell FIG. 3. A potential which violated V(8).
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Let us suppose after a long time that the baryon
number T'd8(dt is constant. Then

A.
T2n+2 X~ T2+~+~8 —0

8t9
(5.10)

,„date, Z
dw = -2x', „dv, (5.11)

where K= —,'(d8/dv)'. After a long time, this equa-
tion effectively becomes

Integrating this over a period and using the peri-
odicity of V(8) we see that the baryon number has
to vanish. Note that both the periodicity of the
potential and the existence of the friction term are
important in reaching this conclusion.

Now we find the conditions that will allow a non-
vanishing baryon number at large times. Multi-
plying Eq. (5.8) by v'" and integrating over a period
we obtain

heat up the system. " Eventually this heat must
appear as photons.

Unfortunately this optimistic picture mhich
emerges in unified theories may be drastically
changed if the baryon-number-violating tunneling
events are really important. The point is that
the rates for these processes are of the renor-
malizable type for T & 250 GeV. Thus they can
allow the system to return to equilibrium and may
wash out any excess which developed at superhigh
temperature.

Of course as the temperature goes below 250
GeV the tunneling processes also go out of equi-
librium. In principle the observed baryon-num-
ber excess could be attributed to this final stage
of baryon-number violation. In this case the num-
ber of baryons in the universe is independent of
the initial conditions and the details of the par-
ticular unified model.

dK, K
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VI. CONCLUDING REMARKS

In this paper we have argued that a baryon-num-
ber excess may be produced in an expanding uni-
verse even though the initial conditions are sym-
metric. For the case of unified theories the ex-
cess is developed at times of order 10 "sec while
the temperature is comparable to the Planck mass.
An admittedly oversimplified model yields a small
number of baryons per unit cell of the order n'.

The conclusion that the effect is -n' does not
appear to be general. It is a consequence of re-
placing the superheavy interactions by four-Fermi
interactions. While this helps us visualize the
process, it is not entirely consistent. . This is be-
cause the main action occurs at energies of order
.V and not much lower energies. Therefore it is
important to open up the "black box" hiding the
superheavy-boson exchange. As far as we can
tell there are then order-n' effects. This is some-
what too large empirically but we must keep in
mind that there are effects which we ignored which
decrease N~/N„. We have treated the universe
expansion as if it were a reversible process mith
respect to the ordinary interactions. In fact there
are possible sources of irreversibility which can

/4z

)f +2

z) Zl

--z=l
p(l )

FIG. 4. Graphical notations. Solid lines represent
propagating state vectors. Crosses represent the action
of V. The balck dot represents the initial density matrix
and the wavy line represents the measurement of baryon
riumber.

APPENDIX A

Graphical rules for computing (B(v)). Consider
a theory of fermions interacting with baryon-num-
ber-, C- and CP-violating four-Fermi forces.
The Hamiltonian of this theory in the expanding
universe in terms of the conformal coordinates is
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(a) (b) (c) (a) (b) (c) (d)
FIG. 5. The second-order contributions to (B(7)) . FIG. 6. The third-order contributions to (B(v)) .

of the form

H=0, + V(r).

The baryon-number-violating piece V(~) is of the
form

v(T) = , d—'x(pry)' -=-, .T' T'

The graphical rules for the evaluation of (B(7)) can
be deduced from the expression

(B(T))=Trp(1)Uy (T)Us (7)BU» (T)Uy (T), (A1)

where

U„(~)= Texp -i
0

e-iH 0 &T-1)
)

H, (r')d7'

V~ (r')d7'
T

U» (~) = Texp -i (A2)
I 1

V~ (r) = Ut (7') V(T) U„(r) .
Since IIO conserves baryon number, expression
(A1) simplifies to

(B(r)) = Trp(1)U (r)BU (r). (A3)

The graphical rules for the evaluation of this quan-
tity are the following:

(1) Draw the closed loop shown in Fig. 4 in order
I+ y'.

(2) For each cross on the right write ie'"o"
&ve ' 0" ". For each cross on the left write

ei Hp (T-1) -t HO &T-1
0

(3) Write down the terms indicated in Fig. 4 in
anticlockwise order and take the trace.

(4) Carry out the time integrations with weight

APPENDIX B

Here we will show explicitly that for the model
discussed in Appendix A the second-order contri-
butions- to (B(T)) vanish. We shall label each state
solely by its baryon number In). The CP T con-
jugate state willbedenotedby

I n), an-d by CPT in-
variance, p„(1)=p- „(1). Since[B, p(1)] =0, p„(1)
=—p„=p„6„. Since Bis CI'T odd, B n=-Bn. The
second-order contributions to (B(3.)) arise from
the graphs of Fig. 5. The contribution of graph
(a) is

'd722 ~ ei6n T1 p e-ifmrl B eicmT2T'P" nm m
2

XV e ~enT2 = Qmn

In deriving this we used the CPT invariance of the
Hamiltonian Q

s„=+s .and I~..l'= I~ .. .I'.
The contribution of graph (b) i.s

'dT2

2

2dT 1 n B e~~nT2V e-i&mT2et&mrl
T 2pn n nm

1

XV ne ~~nr1 = Q.

This vanishes for the same reason with graph (a).
The vanishing of the second-order contribution to
(B(~)) is not a general feature of all models. It
only happens because the explicit time dependence
of V(3) can be factored out.

I/q-'. Respect time ordering.
Do the same for the l+ r+ 1 graphs appearing in

order l+x. Note that the lines in Fig. 4 are not
particle 1ines. They represent propagation of states.

APPENDIX C

In this appendix we write down the third-order contributions to (B(r)) for the model of Appendix A. The
graphs contributing are those of Fig. 6.

Graph (a) contributes

dT 3dT 2dT3 B ei enT3V e-~~m &T3 2)V e ~~e &T2 T1 V e- nr1
2 2 T 2Pn n nm me en

3 1 2 1 1
dT ~ 3dT ~ 2 dT

( i)3 3 ei T3 (en-em) 2 e(T2(em e) e1 eir1(ee en)n B v ()-v ~2 2 2 f n n nm me en'
1 3 1 2 1 I
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Graph (b) contributes

T3 dT T2 dT e"n'1V e "m']. 2V e e 2 V e 'nr
2 2 T 2Pn n nm me en

I 2 1 1

dT dT
3( e n —e 2(~m e) 1 e' 1~'n- m)nT' T3 T' f-n n nm meVen'

3 1 2 1 1

Graph (b), of course, is just the complex conjugate of graph (a,).
Graph (c) yields

dTI . , r dT/ ZX2j& I2 11 ef(Cn-&m)r t(cm- E'e)T

1 1 T2'

T2 dT1 i(ee-en)T
Pn~nm~m me en

T1

Graph (d) yields the complex conjugate of (c),
rdTr T2dTI r Td7

22( 2)
2 gtr2(em )en~pi len m~ 1 cital(ee enon g g-

l2 /2 2 Pn nm me e. en'
1 2 1 1 1 1

These expressions do not vanish in general. They, of course, vanish if me assume C- or CP-invariant
matrix elements for v.
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