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Arguing that high-energy (Froissart) boundedness of gravitational cross sections may make it necessary to
supplement Einstein's Lagrangian with terms containing R ' and R""R„„,we suggest criteria which, if
satisfied, could make the tensor ghost in such a theory innocuous.

I. PROPOSALS FOR RENORMALIZING GRAVITY H. STABLE HIGH-DERIVATIVE THEORIES

At present there are two views about renormal-
ization prospects of quantum gravity.

(i) S-matrix elements, as contrasted to Green's
functions, may be finite. This result substanti-
ated at the two-loop level for the S matrix in ex-
tended supergravities, may, it is hoped, hold also
for Green's functions, once supergravities are
formulated within a superfield formalism. '

(ii) Gravity may be renormalizable, but non-
perturbatively. Two nonperturbative techniques
have been suggested: (a} the nonpolynomial tech-
nique, ' which relies on a summation of "cocoon"
graphs, using the formula

n

(y"(x)y"(O)) =n l —,);
(b) the gauge technique, ' which relies on a solu-
tion of Dyson-Schwinger' equations, by making
use of a nonperturbative solution of gauge iden-
tities connecting the inverse Green's function &"'
with the vertex operators I'.

Both proposals (i) and (ii) (a) but not (ii) (b) suffer
from one serious defect. The high-energy behavior
of matrix elements in each order of approximation
increases like (K'k')". Thus any (Froissart}
boundedness of cross sections' can become man-
ifest only after a further summation of the per-
turbation series —a task surely not to be under-
taken lightly.

In order to improve high-energy behavior, we
wish to revive the suggestion' that the Einstein
Lagrangian (R) should be supplemented by higher-
derivative Lagrangians containing terms of the
type' 8""A~„and 8'. Such Lagrangians have been
shown to be renormalizable. ' However, they con-
tain ghosts. Based on a renormalization-group
investigation, we suggest criteria which, if
satisfied, could make the ghosts innocuous.

4
4xzz -" (g4M ) (4)

All g's are dimensionless. The theory contains
a positive-norm massless and a negative-norm
massive particle of mass M. Since

(yq )„=,M' logx', i.e., (—- (logx') ~',(y

Since the Lagrangians we wish to consider con-
tain higher than second-order derivatives, we
first examine these for high-energy stability.
A theory is stable if, in each order of a perturba™
tion expansion, the high-energy behavior in mo-
menta k does not increase, except to the extent of
powers of logarithms (logk'). Conventional re-
normalizable theories are stable'; so are higher-
derivative theories, provided the number of
derivatives in the interaction Lagrangian does not
exceed the number in the free Lagrangian.

A. Conventional renomsalizable theories. Pro-
totype 4 = z(&y)' - Ap . Since (yrp) = 1/x', y -1/x
for x-0 in the Wilson-product-expansion sense,
and 4 is no more singular than 1/x~. For such
theories, matrix elements F (k) with E external
lines are stable and behave like k' (barring
logarithmic factors). A y' theory (y'-1/x') is
suPerstable with I' (k)- k' ", where n is the
order of perturbation.

B. Hi gher-derivati ve theories.

I z+ Lzz+Lrzz
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barring logarithms, I z behaves as x- 0 like 1/x2

(superstable), L» like I/x' (stable), and L»q like
= 1 (superstable). The high-energy behavior of
matrix elements with E external l.ines is given by

y r (a)=a'(&)' M2 "~ „„M' "~C„„„„[tog(k'/M')] g, 2 g,"g,"2 g,
Fl~ g2s83 84

(1) Note the difference from the conventional renormalizable case; here I' k rather than k' with
no variation with &. Ori the face of it, this behavior (k ) is non-Froissart for the scattering process
(@=4). For gravity theory, however, there may be an amelioration on account of gauge invariance, since
at least two of the k factors must refer to the external-line momenta.

(2) The theories are "renormalizable"; infinities for all matrix elements are quartic (unless gauge in-
variance diminishes them), but absorbable in the type of ter'ms shown, Provided I„I„I„.. . , range over«l -1, i.e, provided such theories are intrinsically nonpolynomial, and there are an infinity of coupling
constants g~', g, ', . .. .

(3) One may set up renormalization-group equations in the conventional manner. Write y/M = qr, so thatI reads

III. THE GRAVITY THEORY

The stable gravitational Lagrangian we wish
to work with is given by

I

I.=V'-g R/K2+ —(-'R2 R""R„„)+—-,2R2
gp

As shown by Stelle, ' the theory possesses a
tensor ghost of mass

Mo =g2 /Ko (8)
and a good scalar positive-norrp particle of mass

~ 2 ~gl2/K 2

The first term in the Lagrangian has the form of
L~ of Eq. (1); the remaining terms have the form
of L». [If we had started with a cosmological"
term, this would have resembled I qqq of Eq. (1).]
To simplify the discussion and to bring out the
main points we shall, for the time being, neglect
the good positive-norm scalar particle (m, =~,
1/go" =0), ignore gauge-breaking terms needed
to define the theory, as well as the Faddeev-

f =[ (~'0')'+g (s'0 ')'(4"') 2+a (84')'(0')"] +[~M

The "super-renormalizable" terms in the second
and third sets of brackets may be treated formally
as perturbations in M', though this procedure,
emphasizing as it does the dipole-ghost produced
by the first set of brackets, militates against the
physical acceptability of the theory, for which
renormalized M' must go to ~ (freedom from
negative norms). We shall come back to this
problem.

The renormalization-group equations we shall
need are similar to those written down by Wein-
berg, Collins and Macfarlane, and Lee.' We
follow, in Sec. IV, Lee's treatment, which relies
on the dimensional-regularization' method.

(6)

we obtain

4.I' = (K.4.)'&'g (g.')' '

n

x P (; C, „[log(tC,'k')t.
n

Here, n is the order of perturbation for L E;„„„.„
= 4-gR/Ko' and I is the number of loops. Note
that on account of (8), the matrix elements de-
pend on two independent parameters only; either
go and M2 or, equivalently, go and K,. [For the
one-loop case, the explicit dependence of (11) on
g,' drops out. ] Since the theory is renormaliz-
able, these constants, after renormal. izations,
are replaced by their renormalized counterparts,
gs and Ms (or gs and Ks). In the simplified ver-
sion of ignoring all but the spin-2 parts of the
propagator (and suppressing the indices), the
relation between renormalized and unrenormalized
parameters is given by the spectral function for
the spin-2 inverse propagator. Thus we write

2dp
O'(P ) 2

Kp=Z Kg,-gl2 x/2 (Isa)

'(sP')'(I+g, (4')")]+[(g M')(4 ')"]
'Popov terms. ' Nothing essential is lost. so far
as problems discussed in this note are concerned,
though the exact counterparts of Eqs. (13)-(16)
below are much more complicated if this is not
done.

Writing" g„„=q„„+K0$0„„,we can estimate the
high-energy behavior of matrix elements using
Eq. (5). Setting

g, ' = (KPS,)', g, ' = (K~,)', g, ' = (Kyf, )',
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Equation (13a), a consequence of gauge invariances
of the theory, ensures that

g». n-». + (K04,)». n—».+ (Ksks)»' (13b)

The integration in (12) may be expected to range
from 0 to ~, assuming that there are no tachyons.
The negative norm of the massive spin-2 ghost
(as well as the gauge character of the theory, and
the presence of Faddeev-Popov ghosts} implies
that no statement can be made about the sign of
~(~')

Writing

l g lg l
o 8

one may infer

2 +~ 2 ~2 4d
8 &P -& iP

(14)

Z= ~ =1- ~dp. 'K' o
~2 p2 (15)

2 2 + 2 ~4dP'
1 1 1

(16)
go z &Z

If g'c's(g')- p.4 for large ij,
' (Ref. 11) [as expected

from Eq. (11)], Z (or, equivalently, I/Ko' or Mo')
would be quadratical. ly divergent and g, ' logarith-
mically divergent [cf., Eqs. (15) and (16)]. Frad-
kin and Vilkovisky" have computed o& for the
pure Einstein Lagrangian and give

Z =Ks /Ko =1+ — Ks L23
96m

(17)

IV. THE GHOST PROBLEM AND

THE RENORMALIZATION GROUP
/

We are now in a position to consider the ghost
problem. ' The measure of the problem is this.
We would like to compute physical quantities as
functions of Ks' and gs', with possibly large (but
finite) values of external momenta, and then take
the limit g&2- ~, corresponding to the ghost mass
Ms'=gs'/Ks'-~. Clearly, from (11), this is not
possible, except in a nonperturbative sense. That

and the leading terms of the spin-2 part of the
inverse propagator as

1 ——

~ (Ks*k' 1LKs*l @*I+ere(k*)lf„*k') .
(18)

Here, I.' is the quadratic infinity. Note Z & 1,
and (relatedly) there is no Castiilejo-Dalitz-Dyson
(CDD} zero" for spacelike k2 (k'&0}. (There is'
of course no real zero for k2& 0, since the physical
threshold lies at k' =0.)

such a limit may be feasible, if one does sum the
perturbation series, can be seen by examinirig
the expression (14) for b ", where the limit Ms'- can indeed be taken, with o„self-consistently
computed from the Einstein part of the Lagrangian
alone. Starting, for example, in the one-loop ap-
proximation, we would get the CDD-zero-free
expression (18) for the leading part of the inverse
spin-2 propagator. The important point is that
this still exhibits a k4 dependence'4 for large k,
so that the use of the corresponding (ghost-free)
propagator in a Dyson-Schwinger scheme would
continue to produce a renormalizable set of
Green's functions. (The gauge technique of Ref. 2,
would be needed to compute self-consistently the
corresponding vertex functions I'. )

Unfortunately, a scheme of the type described
above has not been developed sufficiently far. to
constitute a basis for a claim that (a) the ghost
in (7), (b) the presumed unboundedness from below
of the corresponding Hamiltonian, as well as (c)
the infinities of the Einstein Lagrangian can all be
laid to rest, by taking Ms' to infinity self-con-
sistently, at the end of the calculations with the
Lagrangian (7).

But what we can examine, with more confidence,
are the criteria which may ensure that when all
momenta in the theory grow by scaling (k- teak) in
a renormalization-group sense, the correspond-
ing effective mass M'(z) should also grow to
infinity when tc ~. That is to say, while we are,
for technical reasons, unable to make a dent on
the problem of whether the limit of the theory
exists when M&'- for momenta large but yet
smaller than M~, we may be able to answer the
question one way or another of whether M'(z}- ~,
when the momenta and the effective, mass are
examined for growth together; this to be accom-
plished through using the superior techniques of
the renormalization-group method, and the per-
turbation summation implied by their use. Nat-
urally this will entail calculations of the appropri-
ate renormalization-group functions with the La-
grangian (7), or possibly its supersymmetric
variants. "

To formulate these criteria, we follow the
procedure and notation of Lee.' If g(&) and M'(a')
g,re the effective parameters of the theory. and p
a reference mass, we expect

I' (xk, g„,M„', p, ) = z41' (k, g(K), M (K)). (19)

Here F' is I' of Eq. (11)with K, left out. [On
account of (13b} it is advantageous to leave out this
factor and also the Z factors for field renormal-
ization. J From the remarks made at the end of
Sec. II and the degree of divergence revealed by
relations (15) and (16) for the relevant functions,
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we may write

(~-o)g~ ~& (gs)
go=A gB+ ~ (+

l=g

M o/M 2 +2 1 g, al(gB)
o B — +

(20)

(21)

I2

= (-,'g" +~og')X+ o(g" + 5g')If '.

(26)

(27)

(28)
Defining the usual quantities

8M ' &gP=v
Bp,

(22)
The dimensionless couplings g and g' can be re-
lated to the masses of the tensor ghost and scalar
particles, respectively,

one can show as did I ee that"
g =SPM and g'2 =CPM'2 (29)

M'(x),
I
",d&'

= x ' exp —
J H„(g(a'))

8 1 K

where

88'
& =~go 8'z

(23)

(24)

According to Julve and Tonin the Callan-Symanzik
ecluations read (using 16m'r = inc')

98 4~g (25)

Our criterion for the innocuousness of the tensor
ghost then is that the exponential factor in (22)
should grow at least as" fast as 8 (logtP)', e&0
[for example, H„(g )(-2, whereg is a zero of

P(g )], so that M'(&')-~ as z ~. The task of
future calculations then is to see if this criterion
is met, "and if it is, to set up a nonperturbative
calculational scheme' with Ms'- ~ [i.e., not just
one for the high-energy behavior of the matrix
elements, as is accomplished, e.g., by the rela-
tion (19) for the case x-~, with M'(x')- ~ re-
placing Ms'- ~, but for finite k (k'/Ms'- 0)].

Before concluding, it is perhaps worth remark-
ing that Lagrangians like (7}, when suitably sup-
plemented by appropriate scalar and vector fields,
can admit of an exact or a spontaneously broken
Weyl invariance. " This, together with supersym-
metries, may provide welcome —perhaps even
necessary —restrictions for the realization of the
criterion stated above.

Note added. After this work was issued as a
report, we received an article by Julve and Tonin'
in which a similar approach was developed. En

this work the one-loop contributions to the .Callan-
Symanzik functions are evaluated. There are
altogether four independent running parameters,
g(x), g'(x), K(/c), and &(/c) corresponding to the
(unrenormalized) Lagrangian

Eo go 6 l2

lim /c —InM(/c) & 0.d
dK

(30)

This condition could be realized, should there be
an ultraviolet-stable fixed point

g(&)-g-, g'(&)-g-',

with g and g' nonvanishing. It is clear from (23)
[or (27)J that unless at least one of the parame-
ters g, g' is nonzero, there is no hope of satisfy-
ing the condition (30).

However, we differ from Julve and Tonin in our
suggestion (Ref. 17) that the dimension of M(a)
should be not just negative but in fact &-1 in

although we do not wish to prejudge the signs of
M' and M". These quantities could be negative,
in which case the bare propagator would exhibit
tachyon poles.

The general form of Eqs. (25)-(28) is not dif-
ficult to understand. The parameters g', g", K',
and ~ carry respective dimensions 0, 0, -2, and
4 in units of mass. Hence, if subtractions are
made according to the prescriptions of 't Hooft
(see Ref. 9), Egs. (25) and (26) must be indepen-
dent of IP and X, while (27) must be linear in E'
and independent of X and, lastly, (28) must be
linear in ~ and Z 4. Although we have treated g
and g' as independent coupl. ings and they appear in

EIIs. (25)-(28}as if they are on the same footing,
this is in fact not the case. One should write
g" =g'/u& and treat g as the unique dimensionless
expansion parameter. In this expansion (around
g=0) the coefficients have an exactly computable
&o dependence. The appearance in (27) of g'/g"
= &og' reflects this secondary role of g', and one
should expect powers of g/g' in the higher-loop
contributions.

Now, in agreement with the discussion of Sec. IV
of this paper, Julve and Tonin surmise that the
tensor ghost signularity of the free field approx-
imation may be driven to infinity (when the inter-
actions are properly taken into account) if the
effective dimension of M(x) =g(x)/K(K) is nega-
ti.ve. By this one means



order td have z/M(z)-0 when z-~. If g(z)-g
4 0 this is equivalent to s'K(z)- 0. [Such an out-
come is made plausible already by the calculations
of Fradkin and Vilkovisky'o —cf. Eqs. (17) and (18)
above —who give If (k') (k' ink') '.] A limiting be-
havior such as

Z'-(0') ', o.&1 (81)
would guarantee that the n-graviton amplitudes
decrease asymptotically like 0' "' [see Eq. (11)]
and the theory would respect Froissart's unitarity

-bounds.
It may prove sensible to have g =0 butg' &0.

In the one-loop Callan-Symanzik functions appear-
ing in (25)-(28) there are no negative powers of

g and we believe that this may be true also of
higher orders. Choosing g'& 0 then implies g =0
and one must choose g" &0 in order to have
g' W 0. From (27) one finds

dE' 1 g"
dk 16m 4

i.e., X' scales according to (21) with

g/2

64m

Of course the one-l. oop contribution cannot be
taken seriously here since, in order to have n& 1,
we need [g' [& 8m and power-series methods cannot
be used in finding such a fixed point.

To conclude, we have made it plausible that if
K'(/c)-(/P), o.&1, the Einstein part 8/E' of
the Lagrangian dominates over the ghost-pro-
ducing quadratic part. This is what has essential-
ly'guaranteed Froissart unitarity boundedness. "
The quadraticpart of the Lagrangian plays little
role, for ultraviolet behavior of the theory, ex-
cept to motivate and justify an orderly renormal-
ization-group approach, toward the relation
K'(&) (tP) ", n &1, throughg„and g' nonvanish-
ing.
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