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The stress tensor of a massive scalar Geld, as an integral over normal modes (which are not mere plane
waves), is regularized by covariant point separation. When the expectation value in a Parker-Fulling
adiabatic vacuum state is expanded in the limit of small curvature-to-mass ratios, the series coincides in each
order with the Schwinger-DeWitt-Christensen proper-time expansion. The renormahzation ansatz suggested
by these expansions (which applies to arbitrary curvature-to-mass ratios and arbitrary quantum state) can be
implemented at the integrand level for practical computations. The renormalized tensor (1) passes in the
massless limit, for appropriate choice of state, to the known vacuum stress of a massless field, (2) agrees
with the explicit results of Bernard and Duncan for a special model, (3) has a nonzero vacuum expectation
value in the two-dimensional "Milne universe" (flat space ia hyperbolic coordinates). Following Wald, we
prove that the renormalized tensor is conserved and point out that there is no arbitrariness in the
renormalization procedure. The general approach Of this paper is applicable to four-dimensional models.

I. INTRODUCTION

in a two-dimensional space-time, and possessing
the classical stress tensor

7'p = 0;,4'. 4',24— pg'p +', ~'O'Cp. .
We consider the Robertson-%alker metrics

(1.2)

ds' -=g~dx" dx'=C(q)(dq' —dy'), (1.3a)

where -~& y& ~. Equation (1.3a) is related to the
more familiar form

by

ds' =dP —a(f)'dy'

t
a(f) dt, C(q) = a(t)

(1.3b)

Our aim is to construct, as explicitly as pos-
sible, the physical (renormalized) stress-energy-
momentum tensor operator, T&„(x), for this quan-
tum field theory. The stress tensor must have
finite matrix elements with respect to a suitable
class of physical (nonpathological) states, and
therefore cannot literally have the form (1.2).
Nevertheless, the operator should in some way
be deducible from that expression. It seems gen-
erally agreed that these goals can be achieved in

Let P(x) -=P(t, y) be a Hermitian scalar field satis-
fying canonical commutation relations and the
wave equation

two steps. The first is regularization: The ex-
pression (1.2) is modified ("cut off"), in a gen-
erally covariant manner, so that it is finite and
unambiguous even when the P's are the quantum
operators. It is essential to the success of the
program that the regularized object can be divided
into two parts. The first part (a) has a finite,
unambiguous limit as the cutoff is removed. The
second part (b) is a c-number (state-independent
quantity) built entirely from a small, sharply de-
fined class of local, covariant functionals of the
external gravitational field. The second step is
renormalization: The divergent (more precisely,
discontinuous) term (b), which depends on the
regularization method, must be discarded to obtain
the physically meaningful stress tensor. This
step leaves undetermined the part of the tensor
proportional to functionals of the types which ap-
pear in (b) because the division into (a) and (b) is
notunique. However, only finitely many terms of
these types are physically aoceptable, and their
arbitrary coefficients can be identified as renor-
malizations of coupling constants in the equation
of motion of the gravitational field, to which g„„
will ultimately be coupled in some semiclassical
or fully quantum theory.

The regularized stress tensor will be finite and
admit the decomposition (a) +(b) only if one is
working within the class of physically acceptable
quantum states. In practice it is sometimes nec-
essary to tackle the problem of determining these
states simultaneously with the calculation of the
stress tensor.
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Various methods of regularization and renor-
malization (some of which deal with the Lagrangian
instead of T„,) differ in calculational simplicity,
in the apparent naturalness of the renormalization
ansatz, and in their ability to produce explicit,
concrete answers for wide classes of space-time
geometries. Regularization by separation of the
space.-time points in the operator products in Eq.
(1.2) has the third of these desirable properties
as its strong point. For massless fields in two-
dimensional space-time a complete solution of the
problem was obtained, starting from the expansion
of the field operator in normal modes. ' ' The reg-
ularization was carried out by the same methods
for a conformally invariant massless scalar field
in a spatially Euclidean four-dimensional Robert-
son-Walker universe. Explic it calculations in
these models were facilitated by "conformal trivi-
ality": The classical normal-mode solutions are
plane waves in a suitable coordinate system. Qn
the other hand, the divergent and direction-depen-
dent terms which must be removed in the renor-
malization of T were determined for a scalar
field in an arbitrary four-dimensional geometry
from the proper-time expansion of the two-point
function. ' At this stage the research reported here
was begun in order to demonstrate that regulariza-
tion by point separation can be used to calculate
the renormalized 7'„„in theories which are not
conformally trivial. We obtain a formula for the
renormalized (T„,) in any state of the theory (1.1)-
(1.3) as a convergent integral involving the mode
functions, suitable for numerical computation or
for further analytical work based on suitable ap-
proximations to the mode functions. From this
work it is clear how, in principle at least, such
calculations cari be done for any model in which the
field equation can be solved by separation of vari-
ables.

Because the time dependence of the modes in this
system is not of the plane-wave form, the problem
of choosing physically acceptable states arises at
the outset. Our (fulfilled) expectation was that
"good" states would have the ultraviolet behavior
prescribed in Ref. 6. Since the mass provides a
built-in infrared cutoff, it is possible to impose
the adiabatic condition of Ref. 6 on all modes, ob-
taining a narrower class of "strictly adiabatic
vacuum states. " For such a state we verify that

(T„,) coincides with the two-dimensional version
of the proper-time expansion of Ref. 5 up through
the first order (in ratios of geometrical quantities
to powers of the mass) in which divergences and
discontinuities do not occur; it is clear that the
quantities coincide to all finite orders. In particu-
lar, the strictly adiabatic vacuum stress is a
purely local geometrical quantity —a polynomial

in covariant derivatives of the curvature tensor-
to any finite order in the curvature. For more
general states, built from mode functions satis-
fying the adiabatic condition only in the ultraviolet
limit, the divergent and discontinuously direction-
dependent terms in (T„„)will still be those given
by the proper-time analysis, and the proper re-
riormalization is clear.

It is possible to pass to the massless limit in the
expectation values for suitably defined states (not
in the expansion for a strictly adiabatic vacuum,
which refers to the opposite limit). The theory
goes over continuously to the well-established
massless one (Refs. 1, 2, 7, 8, and 15). In fact,
extrapolating to the four-dimensional situation,
we believe (see remarks in Refs. 4, 9, 10, 11, and
12) that the clarity of the renormalization process
for a massive field in a strictly adiabatic vacuum
state casts considerable light on the renormaliza-
tion of a massless field, where the separation of
the leading divergences from the physical re-
mainder seems somewhat ambiguous at first
glance, In particular, the proper-time analysis
correctly gives the divergences and discontinuities
in (T„,) and similar quantities even when the mass
is zero. Together with the profound work of
%aid, "" these considerations point to a prescrip-
tion for constructing the physical g„„which, in
our opinion, suffers from no arbitrariness.

The plan of the paper is as follows. In Sec. II
and Appendix A the proper-time analysis of Ref.
5 is redone for a two-dimensional space-time.
Section III discusses the construction of the space
of "physical" state vectors, following Ref. 6. The
principal calculation, summarized from Ref. 17,
is presented in Sec. IV and Appendices 8 and C.
This is the determination of the regularized stress
tensor's expectation value in a state which is
"vacuum" in the sense of Sec. III. The final,
renormalized stress tensor is attained in Sec. V.
Section VI deals with the massless field in the
context of the present work. The relation between
massive and massless theories is explored further
.in Sec. VII, where the renormalized (T„,) is ex-
amined in two special cases, flat space with a
"vacuum" defined by naive quantization relative
to a curvilinear coordinate system, and the model
recently studied by Bernard and Duncan, '8 whose
results are found to be in agreement with ours.
In Sec. VIII we examine the renormalization ansatz
critically. The analysis of Wald'~ is adapted to
prove that our stress tensor is conserved and
causal, and we point out that various formulations
(those of Refs. 9, 11, 14, and the present paper)
of the renormalization procedure are equivalent.
In that section we also summarize the assumptions
which go into our renormalization procedure and
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discuss their implications for the problem of
uniqueness of the result.

Our notational conventions are those of Ref. 2,
except that

(1) D means C /C rather than 2C /C (the prime
indicates differentiation with respect to q),

(2) in Sec. II and Appendix A, for compatibility
with Ref. 5 and the other literature on proper-
time expansions, we use the metric with gpp& 0.
Equations which must be interpreted in this con-
vention" are marked with as asterisk. In the rest
of the paper the convention gpp&0 is followed. In
both cases the sign of the two-dimensional curva-
ture scalar is such that

in our Robertson-Walker metrics and R is positive
in the de Sitter and reduced Schwarzschild"4
models. A key to previous publications on stress
tensors in two dimensions may be helpful:

1 gpo&0 P&0: Refs. 2, 7, 11,17,20,

2 gpp& 0 R & 0: Refs. 9, 19,

3 goo~0~ ~&0: Refs. 1,3, 8,

goo 0 R& 0: Ref. 18.
In conventions 1 and 4 the trace anomaly of a
massless scalar field is

T„"=-(24') B

[clerical errors inEg. (4.5) of Ref. 20 and Etl. (16)
of Ref. .7 notwithstanding], while in conventions 2

and 3 this sign is positive.

H. PROPER-TIME EXPANSIONS

The central object in our calculations is the
symmetrized two-point function

where the (t)'s are quantized field operators and
the expectation value is with respect to a "physi-
cally acceptable" quantum state. The meaning of
"physically acceptable" wi11 be clarified later; in-
tuitively, the point is that'the physical situation
considered must be one in which the density of
matter is finite. Then (p'&(x, x ) and the "separa-
ted" stress tensor formed from it [Eq. (2.5)] will
be well defined when the geodesic separation of the
points is not null. Furthermore, any terms which
diverge as the points approach each other, or
which depend in that limit on the direction of sepa-
ration, will be e numbers depending only on the
local geometry. In fact, such terms in 2(P'& will
be identical to the terms of the same type in

(out, vac ~[P(x)P(x') + Q(x')Q(x)] ~in, vac&

(out, vac ~in, vac&

(2.2)

where ~in, vac& and ~out, vac) are the initial and
final vacuum states. If necessary, the geometry
of the model considered can be modified in the
distant past and future to make those states well
defined, without changing the local terms in ques-
tion. (See Ref. 21. An alternative characteriza-
tion of Q"~, [in, vac), etc. has been developed by
RumpfP' ")G u'in turn is a linear combination
of the retarded, advanced, and causal (Feynman)
Green's functions.

When m'&0, an asymptotic series for G " can
be found by methods due to Schwinger, Hadamard,
Synge, and DeWitt. The four-dimensional case is
treated in Ref. 5. The two-dimensional analog of
that work is relatively simple (see Appendix A)
and results in

—,G"'(x, x ) =(2v) 'f-L[I+-,'m3g+O(o')]+[+ m 'R+,'„m 4(R'+2 g)+O(m ')] —arm 'B. o"+O(m 4o"')

+a[-,m'-~R+~m '(R'-C1R)]+~m 'R.„8o'o8+O(m 4o)+O(o'")). (2.2 +)

I.=y+-,'1n~ —2m'o
~

(y =Euler's constant). Also, -o —= -g ~o. is

(2 4)

Here 0 is half the square of the geodesic distance
from g to x, and

tangent to the geodesic from x to x' and has mag-
nitude equal to the geodesic distance; thus 0 0
=2a, and o is of the order O(o'~'). The methods of
Ref. 5 also produce from Eq. (1.2) a two-dimen-
sional point-separated stress tensor,
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7'„„"(x,x )=(2v) ' (vsa~) '(g„„—2 ' '„+ m -', L('(„+o„(aI)+.-~'(g~-2 ' "„-+))pV . g 0.C( 2 pV O„rr" O a

(2.5+)

For its definition see Eqs. (2.8)-(2.10) and Refs.
2, 4, and 5. The superscript "(1)"is a, reminder
that this tensor is formed from —,'G ', not from
(p'), and thus is a normalized matrix element
between in and out vacuum states, not an expecta-
tion value in a single state.

We note some properties of the expansions (2.3)
and (2.5}. First, for dimensional reasons the fac-
tors in every term satisfy

0 in G~~~

&m f ~+~~ =
2 in T '

pp

(2.6)

I., =y+-,'inl'V'ol

L =-,'in(m'p, '),
(2 7)

where p, is an arbitrary number with dimensions

(in two dimensions), where d is the order of the
term in m, d, is the order in g', and dz is the
number of differentiations acting on the metric-
tensor [e.g. , d„(R) =2, d, ( R) =d, (R') =4]. Thus
the remainder terms of higher order in m ' or 0
are also of high order in the curvature.

Second, these remainder terms are smooth func-
tions of x and x (even in the coincidence limit).
The same statement is true of the explicitly ex-
hibited coefficients of negative powers of m, and
of the coefficient of the logarithm. The logarith-
mic coefficient itself does not contain negative
powers of m. It follows that the terms can be
divided (not quite uniquely) into two classes:
those which are well behaved in the limit m-0
and those which are well behaved in the limit of
null separation (o-0), which includes the coinci-
dence limit (x - x). This requires breaking up
the logarithmic factor as

L =L, +Lm,

of mass. All the terms which are badly behaved
in the coincidence limit have been displayed ex-
plicitly in Eqs. (2.3) and (2.5). [We regard a
term in (T(P) as badly behaved if it is not continu-
ous in the coincidence limit; this encompasses
both divergent terms, such as (o Bo~) 'g„„, and
terms which are direction dependent and do not
vanish in the limit, such as R&x„a„(v„o ) '. We
regard a term in G " as badly behaved if it yields
a badly behaved term in (T(',)) when the latter is
formed from Q~'~ by covariant differentiation.
(The relation between the two expansions is ex-
plained in Ref. 5 and in Appendix D of Ref. 4.)
Thus o ln ~22''o

~
is badly behaved in the context of

G ' because, although it vanishes as o -0, it does
not have continuous second derivatives. ]

Finally, the expansion could (if the metric is
sufficiently smooth) in principle be carried out to
an arbitrary finite order in m or o, and the co-
efficients in each order would always be loca).
geometrical objects formed polynomially from the
curvature scalar and its covariant derivatives.
The terms of order m ~ in T~'„~ and those of orders
m ' and m '0 in G " are typical of the higher-
order terms; we are carrying them along in the
two-dimensional discussion to demonstrate their
completely harmless nature. [The term of order
m 'o in ' '~ does enter into the renormalization
problem; it appears in the wave equation (1.1) and
stress tensor (1.2} multiplied by m'. The reader
may find it instructive to verify, using Eq. (A.5d),
that the expression (2.3) satisfies the wave equa-
tion in x up to the indicated orders in m and o.]

For comparison with the massless case later,
it is important to note that the part of Eq. (2.5)
which arises from the first two terms in Eq. (1.2)
(which together are traceless) is

I

0'~V

+~m '(R.„,—,'QRg„,) +O(m —')+O(o'") (2.8+)

[As in Ref. 5, the bar indicates that a tensor index
representing covariant differentiation at x has
been transported back to x.'

G(~) =g'& (x)
pp p; jlU

where g"„ is the bivector of parallel transport.

(2.9)
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Strictly speaking, the derivatives should be sym-
metrized with respect to p. and v, but this is not
necessary in dimension 2 unless one wants to ex-
amine terms in 7'„„which vanish in the coincidence
limit. ] The other contribution to the stress tensor
is, from Eq. (2.3) in the coincidence limit,

--,'m'g„„G'" =(2v)-'g„g-,'m'L, —~f1
—~m-'(ft'+ 2CZ)

+ 0(m ') + 0(g'")] .
(2.10+)

The sum of expressions (2.8) and (2.10) is (2.5).

III. PHYSICAL STATES

The Schwinger-DeWitt series does not provide
a complete answer to the problem of calculating
((t)')(x, x') [or the corresponding regularized stress
tensor, (T„„)(x,x') ]for two reasons. First to ob-
tain (P2) from 6'2» or (T„„)from T„"Jrequires aknow-
ledge of how the quantum state under investigation
is related to ~in, vac) and ~out, vac). For example,
even if the state in the expectation value is ~in, vac)
itself, to eliminate ~out, vac) one needs the coef-
ficients of the Bogolubov transformation which
relates the in and out states. [See Eqs. (175) and
(176) and preceding text in Ref. 21, and also Ref.
18.] The same remark applies to approaches
based on effective actions.

Second, the series expansion techniques tell us
nothing about the remainder in the expanded quan-.
tity after the series has been calculated to a given
order, except that it is a smooth function in the
coincidence limit and that it falls off rapidly (i.e. ,
to the appropriate 'order) as a functional of dimen-
sionless ratios of geometrical quantities to the
mass of the field. The remainder depends on
global boundary conditions and, in general, is not
a local functional of the curvature tensor. The
local terms in the series for (T~) cannot describe
the "real" matter present at a point, which is a
datum independent of the local geometry. (Recall
that we are studying the dynamics of a field against
a given background metric; gravitational field
equations are not yet relevant. ) Particles (or
energy, etc.}can be produced in the past and then
propagate to the space-time point concerned.
Hence, even when definite boundary conditioris
are imposed to fix the state of the matter field,
the stress tensor at x depends on the geometry in
other regions of space-time. Thus one of the most
interesting parts of the quantity being investigated
is being lost in the local expansion process.

Consequently, it is desirable to calculate (P2) or
(T„„)directly, with respect to a particular quantum
state. This cannot be done in full generality, but

it is feasible for particular classes of space-time
metrics, especially those where the classical field
equation can be solved by separation of variables.
These "mode sum" calculations generate, at least
in the intermediate stages, complicated expres-
sions which are not manifestly covariant in struc-
ture. It is therefore not easy to see which of the
divergences inevitably encountered are due to an
unphysical choice of state (containing, intuitively
speaking, an infinite density of matter) and which
constitute a ubiquitous "vacuum" effect which can
and must be removed by some kind of renormaliza-
tion. Furthermore, even if the state is known to
by physically acceptable, it is difficult to isolate
the divergent terms covariantly from the finite,
physical remainder. The knowledge of the gen-
erally covariant leading terms in G~'~ and 7"~'„ is
very helpful in bringing order into this chaos.
Thus the proper-time and mode-sum approaches
are complementarv.

In the case of Robertson-Walker and similar
metrics, a solution to the problem of choosing a
physically realizable state was proposed in Ref. 6.
This approach is based on a study of the behavior
of the solutions of the field equation in the limit of
high frequency, which is where the divergences a
appear.

For the two-dimensional Robertson-Walker
metric (1.3) the general operator-valued solution
of Eq. (1.1) is

4(n, n)=(nn) "'f nn[n, n, (n)n""

+~4(n)*e '"'], (3 1)

d
+(()2 g2 =0, (d2 = k +%1 C,

and p2 is normalized to yield the creation-annihila-
tion commutation relations, [a„a,] = 5(i), - l}, etc.
For each complete set of such P, 's one has a
"vacuum" state defined by (2„[0)=0. If C is inde-
pendent of the time coordinate q, then the usual
theory of a free field is obtained by taking

(~} (2+ ) 1/2e ((d27) .

but when C is not constant, there is no unique,
natural choice of ii)2. One might try to choose
creation and annihilation operators at each fixed
time go so as to diagonalize the instantaneous
Hamiltonian:

( ) =Hfndntn(n)n, (n)'n(n), , , , ,
+infinite c number,

and then define finite observables at time qo by
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normal-ordering the formal expression with re-
spect to these operators. However, the ansatz
leads to unphysical results. ' ' The trouble is
that the Bogolubov transformations relating the
operators at different times,

+»( ll) +k k(qO) Pk k(q-O)

contain pair-creation amplitudes pk which fall
off only as some low inverse power of k (more
precisely, of the ratios of k to derivatives of C)
as ~k~- ~. In the generic four-dimensional case
one has P, - k ', resulting in infinite densities of
particles and of energy created from vacuum. An
exception is the case where all derivatives of C
vanish at gp and again at q„ then P~ falls off faster
than any power of k ', and the particle interpre-
tation of the theory seems as sound and straight-
forward as in flat space. [Here we assume that
C(q) is differentiable to all orders in the interval
between qo and q, .l In particular, this is true of
the Bogolubov transformation relating the in and

out particle structures for a space-time asymp-
totically static in past and future. One can say
that the "real" particle creation is of transcendent-
al order in k, or in the global curvature (more
precisely, in the intermediate time dependence of
c).

The aim of Ref. 6 was to characterize "vacuum"
physical conditions at each time in such a way that
(1) the definition applies to an arbitrary Robertson- .

Walker geometry, whether or not asymptotically
static, and (2) when there axe initial and final
vacuum states, they are "vacuous" in the ultra-
violet modes, by the new definition, at all times,
including intermediate times when the universe
is expanding or contracting. The result is a notion
of vacuum which is only approximate (being irn-
posed to some finite order in the ratios of k to
derivatives of C), but is independent of time,
since any particle creation which occurs is not
of finite order in k. The key observation is that
when C had a nonzero derivative of any order,
thp natural frequency of oscillation of the solution

pk of Eq. (3.2) is not u&k, but something shifted
slightly away from v„. An analogy may make this
clearer. Consider the damped oscillator equation
with constant coefficients,

d'P dg+ 2'y —+ (d g = 0 .
dt

If y =0, the solution are linear combinations of
e" '. When 0&y& m, the basis solutions are

e e-y~ ~&(( ~-y2)"2~

In addition to the obvious damping, y has caused a
shift in frequency away from the "bare" value ~.
A naive attempt to calculate the solution as a

power series in y results in e" ' times a power
series in t; this result is very nonuniform in t
and is a classic example of how not to do perturba-
tion theory. " The situation is similar when y =0
but e is a function of time, as in Eq. (3.2). There
is a basis of solutions of the form

+remainder, (3.3)

in pk as a power series in k ' (obtaining a, result
highly nonuniform in q) and using the initial data
of the lowest-order term in that expression to de-
fine a solution which appears to have "positive
frequency" at qp. The example of the damped har-
monic oscillator helps show why that procedure
for defining a vacuum is physically wrong.

As adiabatic vacuum is not unique, since Eq.
(3.4) does not uniquely define Wk. However, the
construction yields a class of physically accept-
able vacuum states and corresponding particle
notions, which are related among themselves by
Bogolubov transformations with pk-k k""' for
some N. The class can be made narrower by
carrying the adiabatic expansion (3.4) to higher
order, thereby increasing N. Whenever they
exist, ~in, vac) and ~out, vac) are among the adia-
batic vacuum states. The main significance of the
construction is that it determines the space of
"physically acceptable" states, a dense domain
of vectors in a Hilbert space, with respect to
which the expectation values of observables, such
as T„,(x), are finite, or should become finite after
renormalization. (When m =0, so that &gk does not

where the effective frequency Wk(q) is chosen to
have an asymptotic series of the schematic form

W, (q) =,(q)II ~.(q),-"~,(q) .-""l. (3.4)

The 5,„(q) are functions of C(q) and its derivatives
(at the point q only) and of k and m. The remainder
in Eq. (3.3) vanishes to a high order in k when

W, satisfies Eq. (3.4) to a corresponding order.
Now let us use p'k for the pk in the field expan-

sion (3.1) for all large k. [More precisely, let
P» be an exact solution of Eq. (3.2) with initial
values gk(q, ) and g, (q, ) (at some arbitrary q, ) equal
to the respective values from the expression in
Eq. (3.3) with the upper sign. ] The corresponding
~0) represents a state of the universe which (at
all times) is empty of matter in the ultraviolet
modes to a given order in k: an adiabatic vacuum.

The old strategy of Hamiltonian diagonalization
corresponds to expanding out the factor
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have a positive lower bound, one must also restrict
the choice of ~„as k-0 to avoid infrared diver-
gences. ") These states are obtained from any
adiabatic vacuum of sufficiently high order by
acting on it with combinations of creation-operator
monomials

IV. CALCULATION OF THE REGULARIZED STRESS
TENSOR IN A STRICTLY ADIABATIC VACUUM STATE

An adiabatic vacuum is a natural choice of state
for which to investigate the point-separated quan-
tities (p')(x, x ) and (T„,)(x, x ). For details of the
study reported here, see Ref. 17.

We define the point separation (and choose the
metric sign convention) as in Refs. 1, 2, and 4;
the relation between this formalism and that of
Ref. 5 is discussed thoroughly in Ref. 4. In sum-
mary, (T„,)(x, x ) is regarded as the expectation
value of T„,(x„s, tt'), a function of the point x, mid-
way between x and x and of the tangent vector to
the geodesic through the three points. The distance
from xp to x or x is ~, and ]~ is normalized
(t t =-2=+1). Thus we have (within either sign
convention)

cr'= -2et~, g = 2Z&', (4.1)

and t~ is now thought of as rooted at Qp not x.
Furthermore, the coefficients in the geodesic
power series for (P') and (T„,) are to be expanded
about x„rather than x as in the Hadamard-DeWitt
approach. In two dimensions this' symmetrization
does not affect any terms which surrive when

0, but it eliminates the terms of order g' '.
The (e, t~) notation has the advantage of making
the behavior of a term in the coincidence limit
obvious at a glance, while the o notation has tech-
nical advantages in covariant calculations.

The Robertson-Walker calculation is most easily
done in the null coordinate system (v=q+y, u =rt
—y), where the components of the stress tensor
(1.2) are

(4.2)

Note that

7'„„-7'„„, T —7'„„, T„„-0. (4.3)

Because of the u-v symmetry, the only essentially
independent objects to be calculated are the point-
separated expectation values of y' and (s„y)'.

' ' ' ay
f =

a

with coefficients that fall off sufficiently rapidly in

4» and n.

in the limit T- ~, but sets T =1 in the results.
We determine the square of a suitable W, (q) to

order 7' 4 by the Chakraborty method32 in Appendix
B. This truncated W, (q)' is positive for all suf-
ficiently large T, and the exact solutions of Eq.
(3.2) have the form

y, (q) = (2W„) '" a, (q)exp~ —i W,dp']I
I

+p„(q)exp) i W~dq ~) (4 4)

with n„(q) and p„(q) constant to order T ~. The
state annihilated by the a~ in Eq. (3.1) is, by de-
finition, a fourth-order adiabatic vacuum if the
mode functions have n, = 1 and P, = 0 as ~k ~- ~.
The mode functions for small k (indeed, for any
finite k) are arbitrary; only the behavior of the
whole family (g,) as ~k ~- ~ is prescribed.

In the present calculation we ean exploit the dual
meaning of the adiabatic limit to specify g, further.
If C(q) varies sufficiently slowly on the time
scale determined by the mass of the field, then
W, (q)' will be strictly positive (and finite) for all
k, even k =0. Then it is meaningful to require Eq.
(4.4) with n~= 1 and P, = 0 to hold for all k, with

n, (q) and P, (g) becoming identically equal to 1 and
0 in the limit of large m or very slowly varying C.
We call such a state a fourth-order strictly adia-
batic vacuum. For example, one could determine
the state completely by setting a, (q, ) = 1 and p, (p, )
=0 at some initial time Qp other strictly adiabatic
vacuum states include those corresponding to dif-
ferent choices of 'Qp or to choices of R', differing
from the fourth-order Chakraborty form (B4) by
terms of higher order.

We shall find that the strictly adiabatic vacuum
states are those whose expectation values are
directly given by the proper-time expansions of
Sec. II. However, it is of the utmost importance
to understand that the introduction of a strictly
adiabatic vacuum is not essential to our program
of covariant isolation and removal of the ultra-
violet divergences of the stress tensor. The valid-
ity of the adiabatic characterization of the physi-
cally realizable states is by no means limited to

l

The field operator P has the expansion (3.1),
where the g, are solutions of Eq. (3.2). The
adiabatic approximation (3.3) is good when the co-
efficient function &u, in Eq. (3.2) is large or slowly
Varying, that is, when either k' or-m' is large
compared to the derivatives of C. The discussion
is simplified by introducing a single formal adia-
batic parameter, T: One studies the asymptotics
of

d'P/dr) +T'uP(q)g =0
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situations of large mass or of small curvature
(slow time variation of the metric). Since the div-
ergences arise entirely from the large-0 end of
the integration over normal modes, in order to
isolate those divergences from the contribution of
"real matter" it is necessary only to impose the
adiabatic vacuum condition for all k greater than
some K, which can be chosen so that the dimen-
sionless ratios of derivatives of C to powers of
w„are small in the vicinity of any given nonsingu-
lar point of space-time. After renormalization
the stress tensor will be finite in all adiabatic
vacuum states and in all of the states associated
with them which represent finite densities of the
number and energy of real particles.

In massless theories which are not conformally
trivial, such as a minimally coupled massless
scalar field in a four-dimensional Robertson-
Walker universe or a conformally coupled mass-
less field in an anisotropic universe, "there is no
strictly adiabatic vacuum because W„(q} becomes
infinite, zero, or negative at sufficiently small ~k~.

In other words, the adiabatic expansion of the mode
functions in the limit of slow variation of C(q) is
not uniform in 4 and hence does not lead to an
adiabatic expansion of the integrated stress ten-
sor. This is reflected in tbe inapplicability in the
massless case (also, of course, the case of small

positive mass) of the high-order terms of the
proper-time series (Sec. II), which involve inverse
powers of the mass. ' Nevertheless, the diver-
gences can be removed by comparison of the
proper-time series with the contribution of the
ultraviolet modes alone, and it is for this reason
that subtraction of the leading terms of the adia-
batic (or proper-time) expansion is the correct
way to renormalize, even for zero mass or for
strongly curved space-time (see Refs. 4, 9, 10,
11, 12, 13, 14, 16, and 37). It is always permis-
sible (though perhaps technically messy) to treat
high and low modes on separate footings; in the
general massless case this is mandatory if the
adiabatic approximation is to be used. (On the
other hand, a few models can be solved in closed
form"

I.et us return to the two-dimensional massive
Robertson-Walker problem and consider expecta-
tion values with respect to ~0), a strictly adiabatic
vacuum (of at least fourth order, one order higher
than needed to isolate all divergences). The two-
point function

&o I P'(x. ; ~, f') I0) = Re&o ly(x) y(x') P)
can be calculated from Eqs. (3.1) and (4.4) [in
effect, (3.3)] and the properties of annihilation and
creation operators:

(y')=(4v) 'Re dk[W, (q)W, (q')] '"exp(l& W,dq exp( -i
Il '

W,dq e"~' '~ + remainder . (4 6)

The remainder contains all effects of the deviation
of z~ from 1 and P~ from 0; by construction of the
strictly adiabatic vacuum, the integrand of this
term is of adiabatic order higher than T 4, and
hence falls off fast enough in k to make the integral
converge even when & =0. Since the adiabatic ex-
pansion is uniform, the integral is also of order
higher than T . This term is a nonvanishirig phys-
ical contribution to the expectation value of P'
(and hence 7'„„). However, it is not relevant to the
isolation of the terms which are discontinuous in
the coincidence limit (e-0), so we may neglect
it in the following discussion.

Even with the points separated, Eq, (4.5) is only
a conditionally convergent, oscillatory integral.
However, (Q(x)P(x )) has a rigorous meaning as a
distribution, and in Appendix C we show that in
regions of timelike or spacelike separation of the
points this distribution coincides with the function
we obtain in this section by formal manipulations

of the integral.
We seek an expansion of (P ) in e, the separation

of x and x from xp along the geodesic generated by
The coordinates of x and x can be expanded

as in Ref. 2; see our Eqs. (B8) and (B9). One then
finds

W„dq — W'~d'q = Wqdg

=2en, w~+3~'(n, w, +3q,n, w„'+n', w„") +0(~')

(4.6)

and a similar expression for k(y -y}. [On the
right-hand side of Eq. (4.6) W, and its derivatives
are evaluated at qo. ] We also have

[w, (q)w, (q')] '"

=w, -' ——,'~' w'f~', [ ,"w(w', )']+q,w',—)+o(e').
(4.'I}
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The expansions of W, and Wd,
' are Eqs. (B4} and

(B6). One sees that derivatives (with respect to

q,) of W, are of order k '. It follows that the terms
beyond the first in Eq. (4.7) and in the power-
series expansion (in e} of

rl

expi W„d(7+ik(y -y)
g t

yield convergent integrals of positive order in e.
Since these terms vanish in the coincidence limit,
they may be ignored. Thus the interesting part
of Eq. (4.5) becomes

(4'}=(4w} 'Ref deZp, 'esp[2(z(S)p -ye)[w '''.
(4.8)

~hen Eqs. (B4}and (B6) are put into Eq. (4.8),
one finds that

(4*) =(ew) ')(e f dew, -'esp[2(z(w, w, -p, e)]

+ continuous terms. (4.9)

This is, ali the integrals that arise except the
one from the leading term define finite, continuous
functions of ~. Consequently, one can take the
limit e-0 before performing the integrations, so
that the exponential factors no longer appear, and
the continuous terms in Eq. (4.9) become

—(4w) 'f [A'tw, '+)ptw, ' w(( w, ' w(2 —A')tw '+(24 -2A')p)tw "w(d -dd)tw ']de+0(T ) (4.10)

These integrals can be evaluated, since they are
all of the form

(k2 +m2C)

-nial/2)

dk
(4)2, exp[21'('g2(2)2, —y2k}]dk

be split up at z =m (that is, k =Cmy, ):
c~a~

I, = (4w) -'Re]

(z'+m')'" „—= Cq,z —Cy, (z'+m2)'~' (4.11)

Then (taking e, y„and (I, all positive without loss
of generality) one obtains

1, =(2w) 'f (z'wwz') '"oos2zzde
0

=-—,'Re Y,(2iem) =(2w) 'K, (2am ), (4.12a)

according to Ref. 33, Eqs. (3.387.7) and (8.550.1)
or Eq. (3.771.1) (see Appendix C for further dis-
cussion).

Now let t(' be timelike, so that q, & y, and C(I}2
-y,') =1. Setting z =71,&u, -y,k as before gives
k=Cy2z+Cq, (z'-mw)'". It is no longer possible
to choose the square-root sign consistently over
the whole range of integration. The interval must

The results are included in Eq. (4.14).
Let I, stand for the remaining integral in Eq.

(4.9), which contains all the divergences. Suppose
first that t~ is spacelike, so that yy+ 'gy and the
normalization condition implies C(q, —y, ') =-1.
Make the following change of integration variable:

z =q, &u, —y,k, k =-Cy, z+Cq, (z'+m')'",

+ 4 y exp 22K ~l+p ~l
Cpg m

In the first integral set k=Cy, z-C}1,(z'-m')'",
and in the second set k =Cy,z + Cq, (z' —m')"'.
One obtains two copies of the same z integral:

1, =2(4w) 'f (z'-wz) "'eos2zzdz

=(2w) 'ReK, (2iem) =-—,'Y, (2am) (4.12b)

I, = -(2w) -'(in~me ~+~) (4.13)

plus terms which vanish as e-0. Adding Eqs.
(4.10) and (4.13), we have

(0~(t}'(x„e,tP) [0) =-(2w) 'L, +(24wm'C) 'D'

+(120wmAC ) '[-D +2D D

+z(D) -DD]
+O(T ') +(Oe'1

~
n~e), (4.14)

where l. =In~me [+y is defined by Eq. (2.4). This
can be put into geometrical form through Eqs.
(1.4), (B11), and (B13):

according to Ref. 33, Eq. (3.387.6) or Eq. (3.771.9).
In both the timelike and the spacelike case we

find from the series representations of the Bessel
functions that
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(O~y'(x. ;~, t')IO&=(») '[-I +km '"
+~m ~(RR -2CLR)]

+0(m ')+0(e In(s)). (4.15)

This result is in complete agreement with the
proper-time series (2.3) when the differences in
conventions are taken into account. [Note that

the term -~m 'R.~"=pm 'R.„t c in Eq. (2.3}
merely compensates for the fact that there ~m 'R
is evaluated at the end point x instead of the mid-
point x().]

The calculation of (T„„)=((s„p)'}[with points
separated as in Eq. (2.4) of Ref. 2] is similar.
The matrix element is expressed in terms of the
derivatives of the mode function (3.3), and hence

(y„„)=UU,(16e) 'Ref deW '.[(W, +6) + —,'(W/Wa)']exp[iW, {eae,+ a 6)—', -'ie(eay, + —,ay)]+

(4.16)

where U„are the parallel-transport scale factors [Ref. 2, Eq. (2.20a)]. The dots in Eq. (4.16) represent
(1) the "remainder" terms, which have smooth coincidence limits and are of high adiabatic order, and (2)
terms which are being dropped because they vanish in the coincidence limit. As regards terms of the
second type, note that, as before, it is permissible to replace [WR(q)W„(q )] '" by W„(qU) ', but that this
time an extra term proportional to e must be retained from Eq. (4.6}, because it modifies the leading
quadratic divergence [see Eq. (4.19)] so as to produce a finite, nonzero contribution to (T„„).

When the adiabatic expansion of W, is put into Eq. (4.16), one finds the quadratic divergence to be con-
centrated in

I, =UU, ((ee) 'Ref dele '(te ae)'exp[i(ta 6-ell')], .

~ 00 (4.17)
5—:2C'g~+ 36 'g3) 5 =—2Epj +3E g3 ~

1 3

As before, we let the exponent g =~„5-k5 be the new variable of integration, treat spacelike and timelike
separations separately, and obtain oscillatory integrals which can be identified with Bessel functions, the
spacelike and timelike results being related by analytic continuation from real to imaginary argument:

I, =+U,U, Cm'(6+5 )(6 —5 ) 'Rel",([Cm*(6'- 5 ')]'"}
regardless of the sign of 6' —6'. (The spacelike case is discussed rigorously in Appendix C.) As e-0 it
suffices to keep the first two terms in the series for F,:

I, =-(16m)-'U, U, (6-6 ) [4+Cm'(6'- O'R)+ ~ ~ ]

=(2v) '(-[8e'(t")') '++(2D -D')+(x D' ,'Cm')t"/t" -+ -~ ~ ).

(4.18)

(4.19)

In the last step Eqs. (B9) and (B10) have been used.
To I, must be added the remaining, continuous terms of low adiabatic order in the expansion of Eq. (4.16).

These are integrals of the same type as in Eq. (4.10}. Adding them to Eq. (4.19}, we obtain as the leading
terms of (0~T„„(x„e,t~) ~0) a quadratic divergence of adiabatic order T'

-[16xe(t")'] ',
a finite term of order T ',

(16v) '[- ~~D +(s'D -Cm')t"/t"],

and a finite term of order T 4,

(4.20a)

(4.20b)

(480vCm ) '[D" -3D D- (D )'+2D D ] =(120mmR) 'R.„„. (4.20c)

By comparing Eqs. (4.20) with Eqs. (Bl1)-(B14)one can obtain a geometrical expression for (0
~
T„„(x,', &, t') ~0)

[defined above Eq. (2.8)]. Inthefirsttwoadiabaticorders all terms must be proportional to either
g,„or t,t„, the only available tensors. The g,„ term is left arbitrary by Eqs. (4.20), since g„„=O,
but it is determined by the condition T„„=O: Only the traceless combination g„„-2t~t„/Z can appear. Equa-
tion (2.8) is thus reproduced. Adding —,'m'((t)')g„, with ({t)'}given in Eq. (4.15), we obtain Eq. (2.5) as the
expansion of (0tT„,(x, ; e, t[') (0): We have the quadratic divergence
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(2w) '(4e'.Z) '(g„„-2t„t,/Z),

the logarithmic term

-(2p) '-,'m'g~L, ,

and the first three adiabatic orders of the finite term

(2v) '(—,'m~(g -2t„t„/Z) ++Rt„t„/2+v'ttm '(R.„,— Rg„„+—,'R~g„„)].

(4.21a)

(4.21b)

(4.21c)

Here we have reproduced all the discontinuous
terms in the proper-time series for the stress
tensor, and also the first of the higher-order con-
tinuous terms proportional to negative powers of
the mass. It is clear thai agreement to arbitrarily
high adiabatic order could be attained if one started
with a W„correctly specified to the corresponding
order —i.e. , with a "better vacuum. " This result
has a certain polemical significance. First, it
confirms that the Schwinger-DeWitt integral (A2)
is relevant to the expectation values of genuine
field operators in definite quantum states. (This
was questioned in, for instance, Refs. 34 and 35.)
Also, it demonstrates the necessity of the Aigh-
order adiabatic definition of "vacuum" at a time
when the universe is expanding. ' If, in the defini-
tion of creation and annihilation operators, 8", had
been replaced by ~~ (the lowest-order WEB ap-
proximation, corresponding to diagonalization of
the Hamiltonian), then the covariant finite terms
of orders m' and m ' in (T„,) would not have been
reproduced; they would have been submerged in
nongeometrical contributions ("remainder terms")
of the same order, representing excess mass
present in the high-frequency modes of the field.
The long-term significance of the work, however,
is that it points the way to practical calculation of
the actual value of the renormalized (T„,) for a
given state (which may or may not be an adiabatic
vacuum). How this is to be done is described at
the end of Sec. V.

V. RENORMALIZATION

In this section we determine (and discuss the
properties of) the expectation values of the "re-
normalized" one-point operators, (0 I $(x)' IO} and
(0 IT„,(x) IO}, starting from the short-distance ex-
pansions, determined above, of the corresponding
two-point quantities. The ansatz employed is that
developed in Refs. 1, 2, and especially 4; its
justification is discussed in Sec. VIII.

The "adiabatic order" d, was intro'. eed in connec-
tion with Eq. (2.6). Observe that all terms with d,
&2 in the expansion (2.5) or (4.21) of (OI T„„(x;e,t') I0),
and also the remainder of the series, have
smooth limits as q-O. The term involving

Rt„t„/Z, although finite, is not continuous at e =0
because the limit depends on the direction of ap-
proach. In (OIQ'(x; e, t~) I0) [Eq. (2.3) or (4.15)] the
only discontinuous term is -(2v) 'L, the term
with d~ =0.

Vfe take the renormalized quant'ities to consist
of the terms with unambiguous limits, plus arbi-
trary linear combinations of the local geometrical
c numbers of the orders d~ in which discontinuities
appear. In the case of the stress tensor, these
ambiguous local terms are restricted by the re-
quirement of conservation (T„".„=0}. Thus we ob-
tain in the two-dimensional massive scalar theory

(OI@(x)'I0) =(2m) '[o. +pm 'R+~m 4(R2-2Qg)]

+ remainder [O(m ')], (5.1)

+pm '(R „„- Rg„„+,'R'g„,)]-
+remainder [O(m 4)],

(5.2)

where o, and P are arbitrary dimensionless num-
bers. [From now on we shall be dealing only with
quantities for which d, =0 in Eq. (2.6); therefore
we can use the order in m as a handy way of indi-
cating the adiabatic order of a term. ] We obtain
renormalized operators P'(x) and T„„(x)by adding
their normal-ordered parts to the c-number parts
(5.1) a,nd (5.2).

The effect of the arbitrary constants is to re-
normalize coupling constants in all equations of
motion involving P' and T„„. In particular, such
coupling constants must be assumed to exist. For
example, suppose we enlarged the theory to include
another scalar field g satisfying on the formal
level the equation

Clg =$Rg+cP'P.

The presence of an arbitrary constant o, in p~

would require us to modify the postulated theory
to allow p to have a mass, which could be deter-
mined only by experiment:

/=V g+$Rg+cP P ~



so that

+O(m '), (5 4)

&0 IT„(x)10& =~'&0)y(x)'lo&

+(2w) '(P-n}m' —(24m) 'R +0(m ').
(5.5)

Again, the analysis of Sec. VIII shows that the
O{m ') term in Eq. (5.5) is exactly zero. For
simplicity we assume henceforth that P =n, so that
[cf. Ref. 36]

&o IT.(~) I0& =~'&0(y(~)'I0&- (24') 'R. (5.6)

The origin of the anomaly term, -(24n) 'R, is

[In fact, to get a definite value for p,
' requires

both an experiment and a definite choice of a,
since the cp'P term must be taken into account
in interpreting the experimental data. In the
present case it would be natural to choose n =0,
making &P'& vanish to lowest order in derivatives
of g„„but in some situations there is no distin-
guished choice of the constants (the "renormaliza-
tion-group ambiguity"}. ] On the other hand, the
(24m) 'm 3R in &P'& could be taken to renormalize
$, but since that term is finite and unambiguous,
there is really no need to introduce a gR coupling
into a theory which does not have one already.
Therefore, we take the (24m} 'm R to be definite
and physically meaningful, since it could poten-
tially appear in a context where there is no coupling
constant to absorb it, like

X =0 X+c4 X.

The same holds for local terms of all higher
orders in &P'& or &T„„&.

Next we must discuss the conservation and trace
properties of (0 ~T„,(x) ~0&. Since covariant differ-
entiation increases the d~ of a term by precisely
1, &T„,& can be conserved only if its series is con-
served order by order in & (equivalently, in m).
This i.s what forbids a term proportional to Rg„,
in Eq. (5.2). It is easy to check that the object
R.„,—CIRE++ —,R'g„, is conserved, and it would be
extremely surprising if the same were not true of
the higher-order terms and of the remainder at
any stage. In Sec. VI/I we prove this conservation
law by %aid's method. "

At the classical level the trace of the stress
tensor (1.2) is m'Q'. The trace of the tensor
(5.2) is

(0( 7 „(x) (0& =(2~) '[Pm'+pm-'(-CZ+-, 'R')]+O(m-'),

(5 3)

whereas

m'&0 ~/(x)' (0& = (2p) '[~m'+JR+ ~m '(R' —2C1R)]

clear: The term of order d&=2 in T„,was des-
troyed in the renormalization, while that in Q~

was retained.
More profound, however, is the observation that

this anomaly is inevitable as long as (1) &P'& is
given by Eq. (5.1), (2) &7'„,& is conserved, (3) the
series for &T~& is purely local. As remarked
above, conservation of &7„„& implies that the terms
in the series are conserved individually. But in
dimension 2 there is no conserved local tensor
with d„=2, since R„,——,'Rg„, vanishes. Hence
&7'") cannot contain any terms with d„=2, and the
term of that order in m'&p'& [see Eq. (5.4)] must
be canceled by an anomaly in the trace relation.

Equation (5.6) is actually an operator identity
for the renormalized observables (i.e. , the
"(0~ ~ ~ ~0&" is gratuitous). This is so because
the difference between two properly normalized
matrix elements of an operator (such as (0 ~$3 (0&
——,'G~'~) is well defined in the coincidence limit;
the divergent and direction-dependent terms are
always e numbers. Therefore, such a quantity
can be calculated from its formal classical expres-
sion, which is identically zero in the case of the
operator T„"—m'P'.

The anomaly can be removed {in the massive
case only) by redefining p' to delete the c number
term (24w} 'm 'R. This seems unjustified unless,
as remarked previously, one is prepared to insert
curvature-scalar coupling terms into all interac-
tions involving P'.

The goal of the entire foregoing discussion, of
course, is the actual calculation of the expecta-
tion values of the stress tensor in particular
states. The calculation in Sec. IV has not brought
us to that goal; the replacement of P, by its adia-
batic approximation (3.3), just like the proper-
time expansion process discussed at the beginning
of Sec. III, amounts to neglecting the nonlocal re-
ms, inder terms of "transcendental order, " which
are of great physical interest. Nevertheless, a
local expansion based on normal modes brings one
a step closer to an explicit answer than an expan-
sion based on the proper-time representation
(A2). By inspecting the details of the calculation,
one can determine precisely which terms of the
integrand of the "mode sum" give rise to the lead-
ing terms of the covariant expansion (2.5) or (4.21),
the terms which are discarded in the renorm3liza-
tion process yielding Eq. (5.2). These terms can
then be subtracted from the integrand before inte-
gration, and one thus obtains a finite integral
(with e =0) to evaluate for the physical expectation
value of p(x)' or 7'~(x). Evaluating the integral
may not be trivial —in particular, the adiabatic
approxim-ation must not be used for all modes,
lest the nonlocal contribution be lost again. How-
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qver, the calculation is a routine problem of clas-
sical applied mathematics; the questions of physi-
cal principle have been settled. In this sense we
may regard the problem of a massive scalar field
in a two-dimensional Robertson-Walker universe
as solved;

To obtain Eq. (5.2} (with P = 0) one must subtract
from the regularized stress tensor all the terms
which appear explicitly in Eqs. (4.21) except the
final, continuous, O(m ') term of Eq. (4.21c), and
then set e =0 in the remainder. Looking back
through the details of the calculation of Sec. IV,
one can see that these subtraction terms are Pre-
cisely the contributions (except those that vanish
as e-0) of the terms of order T' and T ' in the

adiabatic expansion of the integrands of the mode
sums [in (T„„),for exainple, the integral I, and
the first two terms of Eq. (4.10)]. Therefore, if
we set & =0 in the integrand at the outset and sub-
tract these two leading adiabatic orders before
integrating, then the resulting convergent integral
must be equal to the renormalized stress tensor
[the last term of Eq. (4.21c) plus the remainder of
order m '].

The terms to be subtracted can be written as

(16m) '[(u, 'm'C+Su), 'm'C C-+(u, 'm'(C )'C]

(5.7a)

for (T„„)and

(16m) '(((u, + k)'(o, '--', (u, 'm'C +~(o, '[4 m'k' C +7m'(C )'] -+(u„'m'k (C )'} (5.7b)

for (T„„)(upper sign) and (T„„)(lower sign). These
expressions are to be subtracted from the inte-
grands of the formal expressions for the-compo-
nents of the stress tensor in terms of mode func-
tions, obtained by substituting the field expansion
(3.1) into Eqs. (4.2). The expressions are given
for integrals over the interval -~& k& ~. Since
the mode functions are even in k, the integrations
would in practice be reduced to 0& k& ~; in this
case Eqs. (5.7) should be multiplied by 2, and the
cross term (+2k) in (~, ak)'&o„' omitted.

From a computational standpoint, this prescrip-
tion is the principal result of the present work. It
reduces the evaluation of the physical expectation
value of T~(x) with respect to a given quantum
state to a feasible integration, provided that the
mode functions g~(q) can be obtained. The latter,
of course, depend on the particular metric func-
tion C(q) considered, and in general one must
resort to a variety of analytic or numerical ap-
proximations to obtain representations of them
suitable for use in the various regions of the k in-
tegr ation.

In Refs. 17 and 37 it was shown that the subtrac-
tion (5.7) is also valid for renormalizing the T„„
of a massless scalar field, with the understanding
that the fictitious mass m is to be taken to 0 in the
end. In that limit the terms in Eqs. (5.7) of adia-
batic order T' precisely cancel the divergent un-
renormalized massless stress tensor, and the
terms of order 7' ' form m-independent integrals
which reproduce the anomalous physical massless
stress tensor (6.3).

VI. THE MASSLESS FIELD

%e briefly review Refs. 1 and 2. In any two-di-
mensional space-time there are many "conformal"
coordinate systems, in which the metric takes the
form C(t, x)(dt' —dx'). In such coordinates the
normal-mode solutions of the massless field equa-
tion p =0 are plane waves, as in flat space, and
have an obvious classification into positive- and
negative-frequency functions. Thus for each con-
formal coordinate system there is a natural vacu-
um state, Ivac). For the Robertson-Walker
metric in the form (1.3a}, we have Iin, vac)
= lo«, vac) = Ivac), and the field operator is given
by Eq. (3.1) with P„=e '~ "~"

The representation of —,'G~'i =(vacl@'Ivac)(x, x )
as an integral over k diverges at the infrared end.
In fact, the two-point function of a massless scalar
field in two dimensions does not exist as a distri-
bution unless one modifies the mathematical for-
malism of quantum field theory considerably. ""
However, there is no obstacle to computing

(vaclT~lvac)(x, x ) =T~~'„i(x, x ) =T~~i(x, x )

directly. One obtains

(vac IT„,(x; e, t') Ivac) = (2v) '[(4Ze') '(g„„2t„t„/E)-

(6.1)

where the tensor 8„, is expressed in terms of sec-
ond derivatives of the metric at x in the eonformal
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coordinate system defining ~vac), but is not deter-
mined by the local geometry at x. In the Robert-
son-Walker case it is given by

8„„=8„=(48m) '(D —'D')—, 8„,=0. (6.2)

Renormalization is more subtle here than in the
massive case because d„(8„,) =2. That is, the
nonlocal, state-dependent part of the stress tensor,
which must be kept, is of the same order as the
ambiguous local terms. Nevertheless, the non-
local part itself has the smooth coincidence limit
0„, to which one must add arbitrary amounts of
the local objects of the two lowest orders. The
conservation law for the complete tensor, includ-
ing O„„uniquely determines the local term of
order d„=2, and one finally obtains

(vac~T„(x) ~vac) =(4v) 'Bg„,+8 -(46m) 'Rg„„.

(6 3)

B is an arbitrary quantity with dimension [mass]';
presumably it can be set equal to zero in this
scale-invariant model, even without the assump-
tion of a "cosmological constant" for it to renor-
malize. The uniqueness and physical correctness
of Eq. (6.3) are now well established. ' ""

The discontinuous low-order geometrical terms
which are subtracted from Eq. (6.1) to get Eq.
(6.3) are identical to the massless limit of the
terms subtracted from Eqs. (4.21) to yield Eq.
(5.2). [In four dimensions the latter terms will
have a finite massless limit only if the logarithmic
part of (T )(x, x ) is decomposed by means of Eq.
(2.7) and only the L, part is subtracted. The L
terms remaining in the renormalized stress ten-
sor are just absorbed in the renormalization of the
arbitrary coupling constants. ] In this sense the
renormalization subtraction is the same for both
cases (massive and massless), and it can be des-
cribed as subtraction of the leading terms (i.e. ,
the first two adiabatic orders in dimension 2, the
first three orders in dimension 4) of the Schwinger-
DeWitt proper-time series (2.5). We emphasize
that this statement of the prescription is not an
ad hoc assumption, but a demonstrated consequence
of the fundamental principles of the method: the
isolation of the divergences into geometrical terms
of low adiabatic order, the removal of those terms
(more precisely, their replacement by renormal-
ization terms with arbitrary coefficients), and the
requirement of conservation.

The stress tensor (6.3) is conserved, by con-
struction. If B =0, its trace is -(24v) 'R [Eq.
(1.5}]. Like Eq. (5.6), this equation holds on the
operator level a,s well. Formally it is the mass-
less limit of Eq. (5.6). However, the significance

of this anomalous trace relation in the case of
zero (or very small) mass is quite different from
that in the case of very large mass. As m-~,
as we have seen, there is a natural definition of
vacuum state, and the expectation values of T„,
and T„in that state vanish in the limit (except
for the arbitrary term proportional to the metric
tensor, which we can ignore). From a calculation-
al point of view, this vanishing occurs because the
extra term 2m'(0~$' ~0)g „ in the strictly adiabatic
vacuum expectation value of T„,contains a. contri-
bution of order m' [cf. Eq. (5.4)], which cancels
the anomalous trace of (T„,). The trace anomaly
in the massless case yequixes the existence of the
nonlocal term 9~, since there is no conserved,
purely geometrical tensor with the trace (1.5). In

contrast, we have seen that the massive anomaly
[i.e. , validity of Eq. (5.6)] is required by the ab-
sence of nonlocal terms. In a sense, the massless
trace anomaly arises because of the absence of
the term 2m'p'g„„ from the formula for the mass-
less stress tensor; this point of view was empha, -
sized in Ref. 9 and is also strongly suggested by a
Pauli-Villars approach to the renormalization
(Vilenkin, private communication and Ref. 44}.

It would be wrong, however, to conclude that
there is any physical discontinuity in the theory
at m =0. Although the adiabatic definition of vac-
uum and the associated asymptotic expansion of
the integrand of (T„,) are always applicable to the
high-frequency modes (where they suffice to de-
termine the physically realizable states and to

put the ultraviolet divergences into a form amen-
able to renormalization), the definition of a, strict-
ly adiabatic vacuum and the asymptotic expansions
such as Eq. (5.2) are applicable only when the
derivatives of C are small compared with m(i. e. ,
the limit of large m for a fixed geometry, or the
limit of a nearly static metric for a fixed m). To
take the limit of small m with the geometry fixed
in Eq. (5.2) yields no information about the expec-
tation value of the stress tensor in any particula, r
state. (Consequently, the inverse powers of m

are no cause for alarm. ) When the time variation
of the metric is rapid compared with m ', the
low-frequency modes generally must be given
special treatment, both in the definition of the
state and in the actual calculation of their contri-
bution to (T„,). For such modes the particle con-
cept is inappropriate, and hence there is no way
to define vacuum for them, even approximately.
In some situations, however, it is possible to dis-
tinguish a state (e.g. , an ~in, vac)) which smoothly
reduces to ~vac) in the limit m-0. The expecta-
tion value of T„, in such a state passes smoothly
to (vac ~T„,~vac) in that limit, as the examples in
Sec. VII show.
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VII. EXAMPLES

The foregoing remarks should become clearer
after consideration of the following special cases,
in which explicit expressions for the renormalized
stress tensor have been obtained.

In this section we write "~in&" for "~in, vac)" and
"iout&" for "iout, vac&".

A. The two-dimensional "Milne universe"

If in Eqs. (1.3a} and (1.3b) we have

C(q) =e'" f =e", (7 1)

then the manifold is a region of two-dimensional
flat space-time, as shown by the change of vari-
ables

$0 = e" coshy, $1 = e" sinhy,

dS2 —(d)0)2 (d)1)2 (7.2)

In Ref. 2 it was observed that the renormalized
massless stress tensor (6.3) becomes in this
model

(v a~To«~v a&c=-(241)f') ', etc. (7.3)

f2 e.k +f ~'k +(I2+m2f2)y 0
d ~h dl)
dt2 (7.4)

whose solutions are Bessel or Hankel functions.
It is well known ' that the solutions

yttttt —1~e tk/2' (2)(~f) (7 5)

That this is not zero is at first sight surprising,
since one would expect the vacuum expectation
value to vanish in Minkowski space-time. How-
ever, as pointed out in Ref. 2, the vacuum state
with respect to which Eq. (7.3) is calculated is not
the same as the conventional Minkowski-space
vacuum. It is the massless limit of a vacuum for
massive particles which is different from the usual
one. This will now be illustrated by considering
the massive field explicitly.

In this model the time-dependent part of the
wave equation, Eq. (3.2} is equivalent to

have positive frequency with respect to Minkowski
time, g0; if they are used in the field expansion
(3.1}, the corresponding vacuum state is the usual
one for a free field in flat space. On the other
hand, for small mt the solutions

q„=-[-'21j/sinh(t/~k()]t/2 J;~k~(mt) (7 6)

display positive-frequency behavior with respect
to the time coordinate g, and so the vacuum state
based on these solutions will correspond, in the
limit ttt - 0, to the state appearing in Eq. (6.3).
The mode functions (7.5) and (7.6) have been given
the canonical normalization (pka„gk* —gk*a„gk = 2).
The coefficients of the Bogolubov transformation

yttl ~ (Oltt + P )Otttet

relating them are

e ttk 1/2 ( e —)ik 1/2

2 sinhmk ' '
& 2 sinhmk

(7.'I)

(7.8)

[The "in-out" notation reflects the fact that (1)k'" has
positive frequency at early times (near the coor-
dinate singularity) and gk'"t has positive frequency
at late times, even though the metric is not asymp-
totically static. An alternative interpretation is
expressed in Eqs. (7.14).]

We know that (out~T ~out& =0 in Minkowski space
after renormalization. Within any regularization
scheme, with a parameter e, the unrenormalized
(out~T„„(e)~out& must be merely the divergent (as
e-0) term which must be subtracted in renormal-
izing any expectation value of Tk, (see Sec. V).
This is easily verified for point separation. " Con-
sequently, to find the renormalized (in~T„„~in& it is
not necessary to separate points in the unrenor-
malized expression; we need only to subtract,
mode by mode, the unrenormalized (out~T pout&
(equivalent to normal ordering with respect to
Minkowski annihilation and creation operators).
It makes no difference whether the integrands are
regularized, since the integral of their difference
is a finite, continuous function of & as e - O. From
Eq. (7.7) one finds"

&in (y' (in& = &in
~

y' ~in)„„„„-(out(y' )out&„,„

=2' Re Gg Pp p Mt — Py y elk
0

sinhnk ' Re J,„mt' -e '" J,~ mt ' dk, (7.9)

oo -2
d 2

(in~(st/)2~in&= —, (sinhtti'2) 2~ Re —Jtk(mt) —e 'k —J,k(mt) dk,
0

(inl(e„t)'lin)= —,f (einnek) (tte(Jg (mi)'I —e '
Isg {mt)))t dk,

0

(7.10a)

(7.10b}
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/

from which (in~T~Iin) may be formed according to
Eq. (1.2).

The limit of (in~T«~in) as t-0 or m-0 may be
obtained from the power series of the Bessel func-
tion

—(wt') 'f klan, I'd&,
0

(7.13)

representing the negative of the energy density
of radiation at temperature (2wt} ', and also as

1
+ 0(m')

24w
(7.11)

in precise agreement with Eq. (7.3) for m =0. The
Planckian integral in Eq. (7.11) may be written in
the form

suggesting that the Minkowski vacuum consist of
a density of Milne particles of energy q =t//t.

Since the critical parameter in this problem is
mt, for fixed t the state ~in) corresponds to the
massless limit and the state ~out) corresponds to
the opposite, adiabatic limit: In the notation of the
previous sections, we make the identifications

/de
7rqt (7.12)

~in)
-=~vac), [out) =- (0) . (7.14)

B. The model of Bernard and Duncan

An even clearer demonstration of the relation of the (T~) for a finite mass to the massless and adiabatic
limits is achieved by examining the work of Bernard and Duncan. " They treat the sigmoid cosmological
model

C(il) = 1+ 2b(1 + tanhpil) (7.15)

(L/ and p constants), especially in the initial region of slow expansion, ei'"«1. The adiabatic parameter p
may be identified with the reciprocal of the T in Sec. IV; in an expansion in positive powers of p, our d&
will be a term's order in p. As q-+~ the metric is essentially static, so ~in) and ~out) states are defined.
When il is finite but q«G, they find [see their Eqs. (4.4a), (4.11), (4.9c), (4.25b), and (4.23)]

(ill~T""~in) = g~q,"(41/-) 'be""~ m'- —', p' ——), , „i/g in~, 2 „,/,2 (porn +p j I jm +p ~
—p

(7.16)

to first order in be't'" (but to aLL orders d„ in der
ivatives of the metric). Here iL„, is the underlying
Minkowski metric of Eq. (1.3a). (Thus to lowest
order in b the vacuum stress is purely "pressure, "
as predicted in Ref. 42.)

The regularization-renormalization procedure
which led to Eq. (7.16) was of the Pauli-Villars
variety, but there is no reason to doubt that point
separation would yield the same answer. The ef-
fect of a Pauli-Villus calculation is that all terms
in the stress tensor of non-negafive order in the
mass are canceled, or at least replaced by re-
normalization terms with arbitrary coefficients.
These are precisely the discontinuous terms which
are removed by our procedure. Related observa-
tions have been made by Vilenkin. '

In the adiabatic limit, m»p, one finds from Eq.
(7.16) = (24w) 'Rq4q,". (7.19)

(in~T"'~in) =qp;(47/) 'bp'e' "

x (+p'/m' —~67 p'/m' + ~ ~ ~ ) (7.17)

and hence

(in~T" ~in) =-2(15ii) 'bp e' " i/pm'+ ~ ~ . (7.18)

From Eqs. (Bll)-(B13)one can show that Eqs.
(7.17) and (7.18) are precisely the lowest-order
(in R or Li) terms of the strictly adiabatic vacuum
stress and its trace, Eqs. (5.2) and (5.3) (with
P=0}. This is a very welcome demonstration of
consistency between Ref. 18 and the present work.

On the other hand, in the limit m«p, Eq. (7.16}
becomes (with neglect of terms of order m~lnm and
higher)

(in ~T"'~in) =i7,"ii',(6ii) 'bp'e'i'"
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This is in complete agreement (to first order in b)
with the results of the general massless theory,
Eqs. (6.2), (6.3), (1.4) and (1.5). It follows
from remarks in Secs. V and VI that the nonvanish-
ing trace proportional to R is associated with a
nonlooal term of order p' in (T„,), which, of
course, is present for small positive m as well as
for m =0. We would say that the expansion of the
universe has created enough "matter" in the low-k
modes to build up this nongeometrical contribution
to the stress tensor. (This is a strange, "virtual"
type of matter, which goes away again when the
expansion stops. Recall that the "real" particle
creation vanishes entirely when m =0.) Thus the

(T~) of the massive theory goes smoothly over to
that of the massless theory as m-0, provided that
one looks at the right states.

Since the massive trace relation (5.6) is supposed

to hold for all states, the second-order (in p) non-
local term in (7'~) must be accompanied by a new
second-order term in (p') to preserve the anomaly
[and, coincidentally, to remove the divergence in
(P'), Eq. (5.1), as m - 0]. From the adiabatic point
of view this also is a contribution of "matter, "
even though it is proportional to B. For any m c 0
we think of Eq. (5.1) as the basic vacuum c num-
ber and the rest of. (P') as peculiar to the state
considered. It is not possible to check Eq. (5.6)
in the context of Ref. 18, since a renormalized P'
is not present there. We presume that a systemat-
ic Pauli-Villars renormalization of p would yield
a p operator equivalent to ours and consjstent
with Eq. (5.6) for all states.

Finally, Ref. 18 [Eq. (4.3), (4.17), (4.15c),
(4.25a), and (4.24)] provides the expression

T~ "~' (in~T-~~in) =rl~4q, '(16p) 'bm'

x e" " ' "~k'+m' ' sinh m +m' '"p ' 'd0 (7.20)

which is an indication of the amount of particle
creation in the model. It is of order m' for m«p
and of order e ' 'I' for m»p. Thus there is no
creation of massless particles, and the particle
creation shuts off exponentially in the adiabatic
limit, as expected from the discussion in Sec. III.

VIII. CONSERVATION AND UNIQUENESS OF THE
RENORMALIZED STRESS TENSOR

Although the procedures leading to the renor-
malized vacuum expectation values (5.2) and (6.3)
are very "natural" (at least in the eyes of their
developers), questions have been raised concerning
their uniqueness, both internally (i.e. , whether a
modified formulation of point separation might
yield a different answer) and externally (i.e.,
whether completely different regular ization meth-
ods, such as dimensional regularization, must
necessarily give equivalent results). Also, in the
case of a massive field we have not yet shown
(except to lowest adiabatic order) that the renor-
malized stress tensor satisfies the conservation
law, 7"„„=0. Fortunately, recent work of Wald" "
establishes conservation (also causality with re-
spect to variations in the metric) for stress ten-
sors obtained by a point-separation procedure
equivalent to ours, shows that the trace anomaly
follows inevitably from the requirement of conser-

F(x) x ) =po +p g ~ + 2 pm ~ SV o'

+ 1 p gegsgy +. . . (8.1)

Here the bars distinguish midpoint tensor indices
from end-point ones. We may require the p„'s to
be symmetric in all their Greek indices. They
are functions of x,. Note that F(x, x ) =F(x, x) if
and only if $„=0 for all odd n. As in Ref. 4,
Appendix D, the midpoint expansion can be con-
verted to an end-. point expansion by expanding P„
about z according to

vation and the restriction of the renormalization
subtractions in that procedure to polynomial func-
tionals of the local geometry, and comes very
close to settling the uniqueness question as well.

The analysis in Ref. 14 (which extends and cor-
rects Refs. 35 and 13; see also Ref. 44) is pre-
sented for a conformally coupled massless scalar
field in dimension 4, but it is actually quite gen-
eral. Here we take advantage of the simplicity of
two dimensions to present a very explicit version
of the. argument for a massive two-dimensional
scalar field with $ =0. The notational framework
is that of Sec. II and Appendix A.

A smooth function of two nearby space-time
points -possesses a covariant power-series expan-'

sion abogt the midpoint, g„of the geodesic joining
them:
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Po(xo) PQ 2PolcP +8 Po neo

gag8gy + ~ ~ . (8.2+}

etc. , the coefficients now being functions of x.
(Recall that o" is twice as long as the distance e
from x to x, and points in the opposite direction. )
Thus we obtain

F=P.+(P,.—.P. —}~ +-.(P..s P,—. 8+-'P. ,.. i)io~'+s(P..8, —'.P.. .„-+~p... ,—.P.,„-„)a"o' o' +O(o').

I.et us require that I' satisfies the field equation
GF = m'F (*) to all orders in o (Cl acting on the
variable x). Substituting the expression (8.3) into
the equation, we get a sequence of recursion rela-
tions beginning with

Ppp ™Pp 4 Pp Pgp p

P&n 8+Pa n+m Pxn+kftpx
—4 (P,.) —P, „'"

(8.4a*)

(8.4b*)

I n;vp= ya;pu+2&(I'v8'ap —I iiEnv)

for a vector V, which leads to

s.,"=s.„. =( s).„+-,'zs. ,

(8.5a+)

(8.5b*)

for a scalar S. Also, we used the first recursion
relation to simplify the second. ]

If we take f, =1 and set p, and the traceless
parts of p3 and p3 equal to 0, our solution becomes

F,„(x,x') =1+-,'m'o+O(o'). (8.6*)

Let us call this the minimal solution with p0=1.
%'e note that the series multiplying the logarithm
in the proper-time expansion of —,'G ', Eq. (2.3),
is -(2w) 'F . Thus —,'Gi'i is of the form

e=-(2ii) 'L,F +F, (8.7)

where F is another series of the form (8.3). By a
calculation like the previous one, we find that such
an H is a solution of H =m'H if the coefficients of
I' satisfy

p u —Eq (8 4a) +(2&)- (m &g) (8.8a~)

p, „„"=Eq. (8.4b)- (48m) 'ft, „. (8.8b*)

For P =-,'GI'i as given by Eq. (2.3), we have [cf.
Eq. (4.15)]

These determine the traces of the successive co-
efficients, but p„P„and the traceless parts of
P, and Ps can be chosen freely. [In this calculation
one uses the two-dimensional derivative-commuta-
tion rule .

P, =(24m}-'[m-'ft+~m-'(R'+2am)+O(m ')],
(8.ea*)

+O(m ~)],

(8.8b*)

(8.10)

The odd coefficients vanish because G ' is by
definition symmetric in x and x,' the terms of
fractional order in o in Eq. (2.3) arise entirely
from the asymmetric choice of expansion point.
These equations also apply to P = (p')(x, x ), since
it is the same as —,'G ' to finite order.

I et us also consider the minimal solution with
such a logarithmic singularity, H;„, which is
defined by requiring

pmin pmin 00 (8.11)

and P, 8 to be a pure trace, and then deriving
from Eqs. (8.8) that

p, „'~ =(4v) '(m'g„a —v'Rg 8), (8.12+)

Pminu, (48&)-lft (8.13*)

Since p, '"iize0, H (x, x } is not symmetric, and
hence not a solution of CI H =m'H, since that equa-
tion would, by the analogous argument, force
P3 p

~ to have the oppo s ite s ign.
In the terminology of Ref. 35, H;„ is the local-

partof the two-point function (iP')(x, x ), and

F,.„=-Q') —Jf.;„ (8.14)

is the boundary -condition-dePendent Part. The
latter is a smooth (singularity-free) solution of the
field equation in x, but not a solution in x .

From any smooth function F(x, x ) one can form
a "stress tensor"
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P & 2-=Z'„,- -,'m Pg„, . (8.15*)

(This defintion can be made covariant by inserting-
at least implicitly —matrices of parallel transport. '
Such details do not affect the limit when it is non-
singular. ) From Eq. (8.15) one finds

T" '"= lim —,'g( -m')F].„,+[(Cl -m')F].„}.

(8.16*)
Thus the covariant divergence of 7'~~ vanishes if
I is a solution of the field equation in both vari-
ables. The prototype situation is where F(x, x )
= {t(x)p(x ) for a classical field p, and T~„ is the
corresponding classical stress tensor.

If F is given by Eq. (8.3), one finds directly from
that series that

P 1
Tp, =rpo, p, -a pog'p. -ppp,

+ppapg»„-3m ppg„„
It follows that

(8.17+)

(8.18~)T p =-ts pp= 3}3 l-i mF~-x
(the classical, nonanomalous trace identity), and
that

T'„,'"=-(&Po); + RP3,
;p j. p 1 2-p3.„'"+3 ppp';. —3 3}3 po;v ~ (8.19*)

TP~ 'P =-(48v) 'R (8.21+)

It is easy to cheek that no nonsingular modification
of the (polynomial, geometrical) coefficients of
H;„(e.g. , taking p, „xo) would yield a conserved
Tp~. However,

T{ren }—7 p + (48 ') -kg (8.22+)

is a conserved tensor; it has the expected anoma-
lous trace

. T{~}P=-mplimF„„+(24m) 'R
x'~g

The causality of T'„'„'"' (in the sense of Ref. 13) is
obvious from the construction. This completes

(8.23+)

Ironically, Eq. (8.19) depends only on the e3}eN co-
efficients. However, if we now use (for the first
time in the present context) the equation F =m3F
in the form (8.4), we get

p» ~ Plu %RPlu+ 4+(Plu) 2Plp v+P3vp

(8.20a+)

(8.20b*. )

Equations (8.20) relate the divergence of Tr to the
asymmetry in I'.

Thus for F=F„„onehas [see Eqs. (8.10) and

(8.13)]

the proof that T~" has the properties one would

expect of the renormalized (0lT~lo).
In Ref. 14 it is proposed that the vacuum expec-

tation value of the physical, renormalized stress
tensor be obtained from a renormalized two-point
function F,.„according to (four-dimensional ana-
logs of) Eqs. (8.14) and (8.22), with the possible
addition of conserved, local, geometrical terms
such as Pg„„. The last-minute addition of the
"anomaly term" (48m) 'Rgp, is slightly ad hoc, but
this approach has the h emendous advantage of
providing a proof of the conservation (and trace
anomaly) of the entire renormalized stress tensor,
rather than just an order-by-order verification
for its adiabatic series. In the present work, on
the other hand, we have obtained a point-separa, -
ted stress tensor from the unrenormalized two-
point function and then subtracted off the, singular
terms, along with all other local terms of the
same adiabatic orders. (This qualitative descrip-
tion of the renormalization process is accurate
regardless of whether end-point or midpoint ex-
pansions are used —see Ref. 4, Sec. VIL) Let us
establish the equivalence of the two prescriptions,
t at is, t at

T{,-"}(x)=(olT„,(x) lo& (8.24)

up to possible local terms of adiabatic orders 0
and 2.

Since the formation of a stress tensor from a
two-point function (singular or not) is a linear
operation,

T'„,-=T„„[(y*)-H..]=T„,[(y')]-T [H ],
(8.25)

it suffices to show that the terms which are sub-
tracted from (0 l T„„(x;e, t P) l0) (=- Tp„[($3)(x,x )]) to
produce (olT~(x) lo} (see Sec. V) are equal, modulo

terms which vanish in the coincidence limit, to
the point-separated stress tensor formed from
H &„, minus the last term in Eq. (8.22). Now

T„J($3)] and T„,[H;„]can be calculated from the
series for ($3)(x, x ) and H }„by covariant differ
entiation and use of Eqs. (A5d) and (A5e), along
the lines of Ref. 4, Appendix D. (In fact, this
process provides the definition of TjH „].) The
logarithmic terms of the two series are identical,
and their contributions to the respective stress
tensors aB either vanish in the coincidence limit,
or have adiabatic order 0 and hence are completely
removed in the renormalization subtraction, as
we desired to prove. So we can concentrate on the
nonsingular terms of the series of order 0" or
lower, which are given by Eqs. (8.9)-(8.12) with

Eq. (8.3). Such a term makes two kinds of contri-
butions to the stress tensor: the 7 type, in which
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the original term has suffered two covariant differ-
entiations, and the m'Pm type, in which it appears
undifferentiated.

Consider first the T terms of T~[H ~ ]. Those
which survive the coincidence limit come entirely
from the term —,'gl"„"so cr~, with, moreover, both
derivatives acting on o's. Their adiabatic orders
d„are 0 and 2 [see Eq. (8.12)], so that if identical
terms appeared in T„,[(P~)] they mould be subtrac-
ted during renormalization. But 7 terms in

T„,[(&fP)] can arise [look at Eq. (8.3)] from the
second derivative of the Po, from the --,'Po, 0

with one derivative acting on o arid the other on

Po. , or from the —', (P2„8+—,'Po. 8)cr"gs with both
derivatives acting on 0's. Qf these, only the P,
terms contain the adiabatic orders affected by
renormalization. Comparing Eq. (8.9b) with Eq.
(8.12), we see that, a priori, the relevant terms of
T„„[(p')]will differ from the smooth part of
T„,[H;„]by a term formed from (48m) 'Ag„, . How-

ever, since the latter is a pure trace, it will in
fact be annihilated when the trhceless combination

T„, is formed. Therefore, the two prescriptions
are still consistent, so far. The critical facts
used in this part of the argument are that P, 8 is
a pure trace (by construction of H;„) and that

pp, g contains no ter ms of adiabatic or der 2, sine e
the zeroth-order part of P, is covariantly constant,
These features will persist in four dimensions, as
long as 8;„can be constructed as a Hadamard
elementary solution (see Ref. 13}whose arbitrary
first term (the quantity called too in Refs. 35, 13,
and 14) is a geometrical object.

Finally, we examine the contributions to the
stress tensors from the term --,' m'Fg„, (F =

smooth part of ($') or H ). Clearly, only Po can
contribute in the coincidence limit. From P;„we
get nothing, since Po'" =0. From (Q'), according
to Eq. (8.9a), we have -(48m) 'Rg~, and this is
precisely the term which is subtracted by hand in

Eq. (8.22). This completes the surprisingly cum-
bersome bookkeeping exercise needed to verify
explicitly that the terms subtracted in our renor-
malization are the same as those subtracted in
Wald's. (A simpler but less constructive argument
is to note that only terms with d„=o or 2 are in-
volved in either subtraction, and that the terms of
those orders in the two answers are manifestly
identical. ) The close relation of the m'F term to
the trace anomaly was noted in Ref. 9, Sec. IV,
where the derivation of Eq. (5.2} and its relevance
to the massless case were first qualitatively des-
cribed. (See also Ref. 44.)

A third renormalization prescription was advoca-
ted in Refs. 11 and 12. This, in its two-dimen-
sional version, is to subtract from (p')(x, x ) all
the terms in its series of adiabatic orders 0 and

2 (which removes all divergences) and then to
form the stress tensor by Eq. (8.15); one keeps
track of all terms in the answer which have d~=4
and originated from the subtracted function, and
in the end one discards these terms —i.e. , nullifies
that part of -the subtraction. This is easily shown
to be equivalent to Kaid's method. Comparing
Eqs. (8.9)-(8.12), we see that the function sub-
tracted from (P') by Bunch and Davies differs
from H by an expression of form (8.3) with

po=(24m) 'm 'H, p, =0, p, 8=+(48m} 'Ag„s,

(8.26*)

plus terms of irrelevantly high order in o. Qne
contribution of this object to the stress tensor,
the --,'m'P~„„ term, provides the anomaly term
in Eq. (8.22). The only other nonvanishing contri-
bution (from po. ~) has d& =4 and hence is not to be
subtracted after all, according to the rules of Ref.
11. (The contribution of p, ~ to T vanishes be-
cause, again, p, ~ is a pure trace. }

The "rules of the game" for calculating stress
tensor s by covariant separ ation of points are un-
ambiguous. Indeed, we have just seen that various
orderings of the algebra. ic operations involved are
equivalent, provided that each method is patched
up in the end, if necessary, to satisfy the conser-
vation law. Some other possible sources of am-
biguity were disposed of in Ref. 4. (The question
of a possible arbitrariness in the Procedure should
be distinguished from the arbitrariness in the
result, associated with renormalization constants.
In two dimensions the latter reduces to a "cosmo-
logical" term in the stress tensor and a constant
term in the renormalized $2; these can be fixed
by requiring the vacuum expectation values to
vanish in Minkowski space —i.e. , setting n, P, and
B in Secs. V and VI equal to zero, as we have
more or less tacitly done at various points in our
discussion. ) The only assumptions which have
gone into the determination of this unique renor-
malization prescription are as follows: (1) The
renormalized stress tensor must be conserved.
(2) The terms subtracted from the point-separated
tensor must be local polynomial c-number func-
tionals of the metric and curvature tensors, of
adiabatic orders no higher than those in which the
divergences and discontinuities of the point-sepa-
rated tensor reside. The second of these is per-
haps suspect, since it refers to a particular method
of regularization. Wald's uniqueness and existence
theorems show that any other proposed renormal-
ized stress-tensor operator satisfying mild physi-
cal criteria (conservation, causality, and agree-
ment with the formal expression when it makes
sense) must agree with the result of the point-
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separation method modulo c-number terms which

depend on the geometry only at the space-time
point concerned. (The existence theorem is need-
ed to guarantee that point separation itself yields
a physically acceptable answer. It has been estab-
lished for a large class of space-time in Ref. 16.)
Unfortunately, this leaves open the question of
whether different regularization schemes, each
equipped with a "minimal" or "most natural" re-
normalization ansatz, might yield stress tensors
which differ by conserved, local polynomial, c-
number tensors of higher adiabatic order (con-
taining terms such as R'g„, or RR.„,), or even by
local but nonpolynomial functionals of the geom-
etry. 4' All we can say now is that one would not
expect that to happen, since all plausible methods
of calculating (T„„)in a given state seem to be
based on the same symmetric two-point function,
or on a Green's function, effective Lagrangian,
or similar object directly related to it. To our
knowledge the only non-naive calculation which
conflicts with the results of our approach is that
of Brown and Dutton, "which yields no tract
anomaly. Their method, applied to our two-di-
mensional metric (1.3), yields a (OlT„„l0) which
is nonvanishing and nonlocal in the limit m- ~,
in contrast to Eq. (5.2). [It is, in fact, the negative
of our massless tensor (6.3).] That result appears
to us to violate general covariance, since it is
nonzero for the state built on the mode functions
(7.5) for the Milne universe.
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with

ds(4vis) ""S'"(x,x )

x e ' +' '"' Q(x, x, s) (A2&)

i +—Q'~a =-6 '~' (6'"Q) + Q,. 80 i
es s

Q(x, x, o) =1. (A3*)

Here n is the dimension of space-time, 6 =g "'(x)
xg '"(x )det(-o. „,,), and $ is the conformal eoup-
pling constant in the field equation (- +m'+t'R)Q
=0(*), taken to be 0 elsewhere in this paper.

All terms in G and its second derivatives which
are discontinuous as x -x come from the first
few terms in an asymptotic expansion based on the
series

Q(x, x', s) = Q a, (x) x )(is)".
0=0

(A4)

The power series for 6'", q„etc. given in Ref. 5
are validfor alln, if $ is treated as an independent
variable. When pg =2 the most important ones
simplify to

—1+~Ao —~A 0 0+ ~ ~ ~ (A5a*)

a, =(g —]}R——,'(v'- g)R.„o"+~(R'+3 R)o

+ (+ —v ])R~„, " a+a~ ~. ~, (A5b4)

~ =-.'[~ (&- &)']R"&(&- &)~' ~ ~

=+(R'+Kg) + O(~}+ ~ ~ ~,

a u~=gm- v'R(2agu o'cap)

+ srR .~0' (2ag~ —
op o„)+

(A5c*)

(A5d*)

APPENDIX A: DERIVATION OF THE TWO-DIMENSIONAL

PROPER-TIME SERIES

We briefly indicate the origin of expressions
(2.3) and (2.5). Only a few changes are needed in
the four-dimensional derivation in Ref. 5.

G ')(x, x ) [Eq. (2.2)] is equal, except for a re-
mainder term of transcendental order, to twice
the imaginary part of Feynman's time-ordered
Green's function,

i(out, vaclK/Q(x), p(x )}lin, vac)
(out, vac lin, vae)

The latter, according to a well-known formal argu-
ment, has the form
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v, 0v~
= -g(8, —+It(2vg2v —vpv )v

I

+~1R „o."(2vg„„-v „o„)+ ~ ~ ~ . (A5e*)

Substitution of Eq. (A4) into Eq. (A2} with n =2
leads to

Z2 =--', m'C", a" =-+m4(C')2, Z'-=+m2C(4),

' m [28C C ' +19(C ) ]
M4 -="'m'(C')'C

A(4 — 1108m8(C }4

x H ' [(-2m'v)"'] . (A6)

The exponents 2 and 4 on these coefficients indicate
their adiabatic order and do not imply positivity.
We also need the reciprocal of the series

Inserting the power series of the Hankel function
and taking the imaginary part of G, one obtains

wG'"(x, x )=t) '"( L[1+--2'm'v ——,'a,v+0(v')]

+pm 'a, +m 'a, +O(m '}]
+4v[2m2 —a, —m 'a +O(m ')]

(A. 'I*)+ O(v2)),

APPENDIX B: FORMULAS USED IN THE CALCULATION

OF SEC. IV

where L =y+ —2'In~ —,'m'v
~

and the other quantities are
given in Eqs. (A5). This yields Eq. (2.3) when

$ =0.
Differentiating G(') and using Eq. (A5e), one

forms T(~,')(x, x } and hence T(„'„)(x,x ) as given in
Sec. II.

From this point on it is convenient to use the
logarithmic derivative of C as the basic quantity:

C /C: D, C /—C =D +D, C( )/C =D +3D D+D3,

C /C =D( ) +4D D +3(D ) +6D D +D4.

The coordinates of the displaced points are ex-
panded in power series as in Sec. 2(c}of Ref. 2:

7/
= Yj(e) = ))0 + e gl + 2'8 ))2 + S' e 7)3 + ' ' ' (B8)

and similarly for )) =—q(-e) and for y and y . Thus

)), =-t"=-,'(t" +t") and y, =—t' =-', (t"- t"). The higher
coefficients are given by [cf. Ref. 2, Eq. (2.21)j

)), = ——,'D[(t")'+ (t")'j,

W2 =&2 & &2 +&2 If &2 +(&

+ (2A2EP —M4) pl„"+ (8' —N )0), 13 + O(T ') .

(B6)

A function W, which makes the expression (3.3)
satisfy Eq. (3.2) to a certain order in an adiabatic
parameter may be found by substituting a formal
power series for W, (or W,' or W, '") as in Eq.
(3.4) and solving for the coefficients recursively.
Alternately, Chakraborty's iterative procedure" '
yields

y, =- —.D[(t")' —(t")'1,

)), = l j(2D' —D')[(t")'+ (t")']

—D [(t")'t" + (t")'t"9 ,

y, = l [(2D' - D )[(t")'- (t')']

-D'[(t")'t"- (t")'t"jj .

(B9)

W2 =(d2'(I+e2)(1+4:4) ~ ~ ~, (Bl) Similarly [see Ref. 2, Sec. 2(c)j one obtains
where

3/26 (~ 1() ~ 1/2)

(B2)..=-(1".)-'" .-'s„[ .-'(1".)-"' s,(I".)"'] .

P,IJ, =1+-,' &2[(D' —D )(t")' —D t"t"] +O(e ) .
(Blo)

Finally, from the curvature scalar (1.4) we have

In our case (&u,
2 =k2+m2C) we obtain

Z'=C '(D )' (Bll)

e2 =--,'m20)„4C ++m4(0, '(C')', ,

and the part of e4 which is of order 7' 4 is

(B3a)
=(4C} '[D(') —3D D —(D )'+2D D], (B12)

1 [m2~ -8C(4) m4~ -8[7C C(3) + 8 (C )2]

+27m'0) ' (C')'C" — "m'(d (C )').
(B3b)

To adiabatic order 7.
' 4, therefore, we have

=(4C) '[D(' -2D D -(D )'+D D],
8 =C '[D"'-2D D —(D )'+D D].

We also use

(B13)

~.=~.+~'~. '+&~~ '+~~. '

+L4&0„'+M4(0, 8+N'(d, ", (B4)

tv (Cttl) -lg (tv)
-2 4t 2/E2

g„„=2C =2t„t„/Z. (B14)
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APPENDIX C: POINT SEPARATION AS DISTRIBUTION
THEORY

In Sec. IV the oscillatory integrals I, and I, were
evaluated in terms of Bessel functions. This re-
quired either analytically continuing formulas
[Ref. 33, Eqs. (3.387.6, 7)] from real to imaginary
exponentials, or applying related formulas [Ref.
33, Eqs. (3.771.2, 9)] at values of the Bessel-func-
tion index for which they are not obviously valid.
The real point which this uncertainty reflects is
that the integrals, not being absolutely convergent,
are slightly ambiguous in the first place. To
guarantee that the meaning we are giving to them
is the covariant, physically correct one, it is
necessary to return to the very definition of the
point-separated expectation values (p')(x, x } and

(T„„)(x,x ) and examine why they are expected to
be finite functions of x and x .

A. priori, one expects a quantum field to be an
operator-valued distribution over test functions
defined on space-time (or on space at a fixed time,
depending on formulation). Consequently, ((t)') and

(T„„)should be distributions in two variables.
[It seems unnecessary to review the well-known
details of Fock quantization in order to establish
that these expectations are fulfilled in the rigorous
field theory based on the formal expansion (3.1).
The special problems of the massless two-dimen-
sional scalar field do not concern us here. ] Point
separation "works" whenever these two-point
distributions actually turn out to be functions for
x and x with timelike or spacelike separation (cf.
Refs. 13 and 14). We believe that this is always
true when the expectation'value is with respect to
a "physically acceptable" state. In the present
model it is easy to see from the naive calculations
that (p )(x, x ) and (T„,)(x, x ) make sense as dis-

tributions in one coordinate (such as e) of (x, x )
space; the other three coordinates may be given
definite values with impunity. To make reliably
the final step to,a function of four coordinates,
however, one must take explicit account of the
distributional definition of the object being
studied. We show how this can be done for
(T„„)(x,x ) in the spacelike region.

I emma 1.

G„(a}-=cos(wp) vr '"I'(p+-,').2 "(a( )'~„((a()

satisfies, at a40,

-d'G„/d cP + G„=G„„. (C2)

r (x'+1)" '" cosaxdx=G„(a) if ae0.
0

(C3)

That is, the integr al defines a distribution on test
functions (in C,", say) whose support does not in-
clude a=0, and this distribution is the same as the
one defined by the function G„(a) on such test func-
tions:

r (x'+1)" "' r (((a)oosaxnaInx
0

. ga|"„ada C4

for every allowed test function, g(a).
Proof. Integration by parts converts the left

side of Eq. (C4) to

. Proof. Direct computation, using the differential
equation and recursion relation satisfied by modi-
fied Bessel functions [Ref. 33, Eqs. (8.494.1) and
and (8.486.12)].

I.emma Z. In the distribution sense,

~ ((d),'n(xs+()" "'
(—1)"(x +1) "

~

- —1 g(a) oosaxdaICx
I dcP

for any positive integer n. If n is sufficiently large, the new integrand falls off rapidly in all directions in
the (x, a) plane and so the order of integrations can be interchanged:

) n so

(-I)" „—1~ g(a) ', (x'+1)' " '~cosaxdx da. d J - 0

f d2 )n(-1)" g(a)
~ d

—1 ( G„„(a)da, (C6)

Moreover, the inner integral now converges in the
ordinary sense and is equal (as a function) to
G, „(a) [Ref. 33, Eq. (3.771.2)]. Integrating by
parts again yields

which equals the right side of Eq. (C4) by virtue of
Eq. (C2).

The role of the requirement that g(a) and its
derivatives vanish at a=0 is to make the integral
(C5) meaningful despite the singularity of the Bes-
sel function G„(a) at a =0 when p is not negative.
With extra work one could determine how the dis-
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tribution f (x +1)" '~'cosaxdx differs from the
principal-value integral over G,(a} for test func-
tions whose support does not include D [e.g. , there
might be additional terms involving 5(a) and its
derivatives], but this information is not necessary
for our purpose.

I.emma 3. The integral

Re ro e+0 e~ ~ dk' (C6)

p -=m'C(5" —5') . (C8)

Proof. Equation (C6) is converted to Eq. (C7) by
the formal change of variable z =y '(u&5 —k5 ). Ac-
cording to lemma 2, the integral in Eq. (C'7) equals
as a distribution 2G, (y) —Go(y), which is --,y G, (y)
by a Bessel recursion relation [Ref. 33, Eq.
(8.486. 1D)]. This result is equivalent to Eq. (4.18},
spacelike case.

However, it is not immediately obvious that such
a change of variable is valid. To make the argu-
ment rigorous we must first write down a repre-
sentation of the action of the distribution (C6) on a
test function in terms of convergent integrals, in
analogy to the proof of lemma 2. Then we make

I
defines a distribution in the variables 5 and 5,
which, acting on test functions with support in the
"spacelike" region 5 & ~5), coincides with thePcnc-
tion defined by the integral

2m'C' —, , „,cosyz dz, (CV)2Q +5 2z +1
z'+1 '"

the change of variable in this well-defined integral
and hope to arrive at an expression equivalent to
Eq. (CV) smeared with a test function of y. (This
will give a distribution in one of the 6's with the
other fixed, and a fortiori a distribution in both. )

The neatest way to do this is to arrange things
so that the "well-defined integral" turns out to
have the structure of Eq. (C5}with a=y, so that
Eq. (CV) is obtained immediately by integration by
parts. In other words, we want to make the change
of variable in an integral whose integrand differs
from that of Eq. (C6) [hence (CV)] only by a conver-
gence factor, (z'+1) ". This will be accomplished
if we treat Eq. (C6) along the lines of the proof
of lemma 2, but use in the role of d/da a differ-
ential operator in 5 and 5 which is equivalent to
s/sy with g-=(5 +5)/(5 -5) held fixed. Calculating
the Jacobian matrix 8(5, 5 )/B(y, f), we find that

(Co)

and from this verify that s'/ey' —1 acts on
exp(i~„5-ik5 ) to produce a factor -(z'+1), as
expected and required.

It is clear that the change of variables could be
conducted similarly in the timelike region (5& ~5 ~).
This completes the justification of Eq. (4.18),
since a distribution in 5 and 5 obviously induces
one in c. Equations (4.12}can be treated in the
same way.
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