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An a6ine theory of unified interactions is reviewed. Einstein's free gravitational equation emerges as a.
special case of the proposed equations of motion on superspice. For this example the vacuum is

spontaneously broken to be globally Lorentz invariant. Plat superspace is defined and the corresponding
algebraic properties studied. Next the graded de Sitter group is introduced and various contractions
performed. From these we obtain and discuss supersymmetry as well as some spin-3/2 algebras. Finally,
form invariance under Fermi displacements is employed to develop a powerful calculational technique, an

example of which is presented in the Appendix.

I. INTRODUCTION II. NOTATIONS AND REVIEW

In the past few years there has been a good deal
of activity in developing affine theories in super-
space'~ (i.e. , a space containing commuting as
well as anticommuting coordinates). Local in-
variance on superspace demands the inclusion
of both Bose and Fermi fields as gauge fields,
thus providing a natural framework for unifying
various or all interactions. In Refs. 4 and 5 we.
also analyzed the modes of symmetry breakdown
at the vacuum level. Depending upon the condi-
tions, we obtained the Lorentz or various super-
symmetric metrics. Most of these metrics were
noninvertible and/or theories with torsion.

In this paper we further pursue the formalism
developed in Ref. 4. In Sec. II. we review some
of this material. In Sec. III we show how the spon-
taneously broken Lorentz line elements lead us to
an exact solution to our proposed equation of mo-
tion. While we do introduce a cosmological con-
stant into the superspace equations, it disappears
and we retrieve Einstein's free gravitational
equation (with no reference to the internal-sym-
metry group). We then proceed in Sec. IV to ex-
amine the "flat" limit of superspace. The purpose
is to obtain the analog of the Poincard' group on
flat superspace (FS). In Sec. V we consider var-
ious contractions of the graded de Sitter group,
so as to obtain and discuss supersymmetry and
generic spin-& algebras. Sections IV and V allow
us to briefly discuss the mass and spin of PS mul-
tiplets in Sec. VI. Section VII discusses the con-
sequences of form invariance under Fermi dis-
placements. In particular, it leads to a calcula-
tional device which considerably reduces the effort
needed in obtaining the desired field equations.
An example of, this procedure is presented in the
Appendix for a space consisting of one Bose and
two Fermi coordinates.

zAzz -(-I)"zzzA = 0 (2.1)

where the Grassmann parity a = 0 or 1 according
to whether A is Bose or Fermi, respectively.

Let us define the set of (coordinate-independent)
operators a„", O'D (r, s = 1,2, . . . , ~) with the fol-
lowing generalized commutation relations:

a Aas, —( 1)aba», a "=0

~a„a' - (-1)"a' ~a„=0,

a Aub ( I)cbees a A g bfA

(2.2a)

(2.2b)

(2.2c)

In terms of these creation and annihilation oper-
ators, the generators GA~ of the graded pseudo-
Lie group GGL (ND, NI„R) of real, general linear
transformations, can be written as

G D = p ltA "a„z .
t'= 3

Then, the required algebra is

G DG D ( I)«+b&«+&&G DG DA, C C A

(2.3)

gB g D ( I)«+b&(++ &&f&D QtD (2 4)

We shall try as far as possible to keep this
paper self-contained. Thus a brief summary of
the formalism developed in Ref. 4 for curved
superspace is presented below. "'

We use z", to denote collectively Bose (x") as
well as Fermi (8') coordinates. The index p, runs
over the Bose dimensions (which need not be the
traditional 4 of space-time) and the index n runs
over Fermi dimensions (including internal-sym-
metry indices). Internal-symmetry indices will
be expliciQy exhibited, when needed.

Since

[z",z"]=0, [g",8 ]=0, and (8, 8]=0,
we can write
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On superspaee with coordinates z", local gauge
transformations U(z) are defined as

zIA zA+ gA(

U(z }= exp[o~'~. "(z)1, (2.5)

where &uz" (z}are the "gauge parameters. " It was
shown in Ref. 4 that the gauge transformations
generated by U(z) are in 1:1correspondence with
general coordinate transformations z'" =z'"(z).
'Thus, for a contravariant vector VA, one consid-
ers

p'8 —g8 pA
A

and its transformation law is then given by

8Z
(2.6)

&r„,},]= 2q„, , (2.7)

y,'=-1 and the metric in Dirac space, q &, is
chosen to be })„,= -(C ') z, where C is the charge
conjugation matrix. We define a""= z[y", y"].

The Lorentz metric is chosen as })„„=(-,+,+,+ ).
We work in the Majorana representation with all
y's real and

On the other hand, there are two types of covariant
vectors S'A and WA", which transform, respectiv-
ely, as ()s((I/(}z" and ()~((I/(}z", where ((I(z) is a
scalar, i.e. , y'(z') —((I(z} and R and L mean right
and left derivatives. (Thus, V"W„" is a scalar
and so is W„V".) For Wz and W„, one forms

W =W~a", I

Wg=a" Wg,

which transform according to

W'=UW U-'
8 8

W'-= U 5'4'" .8 8

Now let us consider more complicated tensors,
for example, G"B~~. We require that it trans-
forms as if it were in the factorized form

G"(}„=(G,"(z)XG„.(z)Xo,c(z)Xo~(z)) .

We now define

G";,„(z)=(&"„G,"(z}Xa',G -(z)XG„(z)a',Xo (z)aD„)

= a „a,[(-1}''G"Bc~(z)]a„ac, .
Under the group el.ement U,

UG";,„(z)v~=(a „GI",(z')Xa,o~(z')}
x (G ', (z ')a'& Xo.'&(z ')a'. )

&~a &[( 1) ~G f)cg(z )]a +a

G II'„(zI)

This again i11ustrates the one-to-one corres-
pondence between gauge transformations and co-
ordinate trans formations.

It is worth remarking that all functions of the
type'6";, „, in which a11 Bose and Fermi indices,
(A, B, . . . ) have been contracted, have zero Grass-
mann parity. We sha11 call such quantities "re-
duced tensors. "

TO firSt Order, the gauge parameter &I}z"(Z}iS
related to the coordinate transformation,

III. SUPERSPACE EQUATIONS OF MOTION AND
EINSTEIN'S FREE GRAVITATIONAL EQUATION

(tl(u} U (t)(u}
i(s) „(8)„

where(s] =s,s ...s„, ete. , then as shown in Ref.
4 we inay define a right covariant derivative

(3.1)

(i}(u) A (t)(s)+ r &

.{8)„Cs)„A (3.2}

which will also transform according to E(I. (3.1)
provided

(!)(II) (}zsT (t}(II}+[ AI T (t)(II}1

and I'„(z}transforms according to

8 ZB
I„'(z')= vt", (z)v-'+v, s v-',",„.Z J Z

(3.4)

Thus, T'„(z) plays the role of a connection as in
the standard Yang-Mills theories. One writes

A(z) B C A'

In theories with no torsion

P „B ( ) (&+1 ) tI2+g)+aCP „B

(3.5)

(3 6)

In terms of &„two field strengths [transform-
ing according to E(I. (3.1)] may now be construe-

In this section we shall review a previously pro-
posed equation of motion on superspace, ' and show
how it contains Einstein's free gravitational equa-
tion. The first step is to discuss the covariant
derivative and the resulting Yang-Mills connec-
tion. From the latter, we may then construct the
field strengths on superspace, which finally leads
us to a very simple equation of motion.

The connections that are defined on the super-
space are to be expanded in a power series in the
Fermi coordinates. This power series terminates,
and the coefficients are to be taken as the dynam-
ical fields of the theory.

Consider a reduced tensor T(8'c~~(„~ which trans-
forms under U as
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ted of which a particular linear combination is
B„„where

X = 4 tr(M, '+M, ') .
Then from Eq. (3.9) we have

(3.13)

R„,= a"P„-,s', (3.V)

Rgs=-(-1)'I xc,s+(-1)' '
Fga, c

+( I)"~1'~s,r c, ( 1)-r„-s,r c, .
(3.8)

(3.10a)

em)&y~ &- &y&&ro~&

= (nr") (M.)„„+(nr. r").,(M.).„,

In a space of only Bose coordinates, R„-3 would

be the contracted curvature tensor.
The simplest equation of motion one can choose

which has nontrivial solutions is

(3.9}

Since, to this point we are dealing with a purely
affine theory, one might wish to consider instead
of Eq. (3.9}Schrodinger's variational principle'
extended to superspace. Another attractive pos-
sibility is an extension of the Einstein-Strauss
theory. ' However, we should remark that the
failure of Eq. (3.9) on a purely Bose space does
not apply to superspace, and one can acommodate
Fermi as well as Bose fields. Here, we shall
show how one recovers Einstein's equation for
the free gravitational field.

We first exhibit the Lorentz metric as a spon-
taneously broken solution of Eq. (3.9). In par-
ticular we look for a solution in which I"s"chas
the symmetry of Eq. (3.6) and is independent of
all the coordinates. The nonvanishing components
of the connection are

Thus while we can define a metric g~~, its in-
verse g s does not exist (in the whole super-
space). Hence a Riemannian geometry cannot be
developed on the superspace under these circum-
stances and we must continue to work with a
purely affine theory. %e note that the intepna1-
symmetry group has been left totally arbitrary up
to this point.

Ne now wish to start considering the equations
of motion obtained from Eq. (3.9) for the dynam-
ical fields. Vfe here restrict our attention to the
simplest case, which is the free gravitational
field. Thus we introduce the usual vierbein field
e'„(x), where a is the local Lorentz index and

p, is the world index. It is related to g„„(x}by

e'„(x)e'„(x)q,„=g„„(x). (3.16)

From our previous considerations we also have

g„„(x)= q„„+h„„(x), (3.17)

where h, „(x) is the dynamical gravitational field.
We now modify Eq. (3.10a) so as to include the
gravitational field via e'„(x). Thus the only non-
vanishing components of the connection are (for
this free gravitational case)
~(lff & I" (Pn)

(effi &O ~ {em)

=(r.)'.".(.)(M,)". (r.r.)'."„(.) (6f)"„,

(3.18a)

(3.14)

and hence the covariant derivative of g„, vari-
ishes. If we denote by g „-s the "vacuum metric, "
thenall components of g g vanish except for

(3.15)

(3.10b} I'„„(x)= r„»(x), (3.18b)

R„„=4)l„„tr(M,2+M2 ), (3.11)

where g„„is the I orentz metric. This strongly
suggests that we dejine a metric tensor by

where M, are matrices in the internal-symmetry
space with M, =-M,* and M, =M4. Inserting Eq.
(3.10) into (3.8) and that into Eq. (3.9) we find
that Eq. (3~ 9) is satisfied provided M, =M4=0.
Hence from Eq. (3.8) we obtain only one nonvan-

ishing component of BAB:

with I'„"„(x)to be determined. In fact, from Eq.
(3.14) and Eqs. (3.18), we obtain

(3.19)

(3.20)

V &I
g) vF) 6

= ~ (g) )),a+ g) e, ))
-Ae, ) ) .

This equation only involves Bose indices [g„&,
= (&/ex')g„„(x)]. From Eq. (3.IV) it is clear that
the inverse of g„„(x)exists in the Bose subspace.
That is, we may define g"'(x}by

A B =1
&rs = 0 8Aaa g

= g+ &ra& (3.12)
Hence Eq. (3.19) becomes

(g )pa+ g~s, )
-g'), ~) ~ (3.21)

where A &„,&
is the symmetric part of B„„and with which gives. l"„",as the usual Christoffel symbol
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RAB gAB & (3.22)

of the second kind in terms of the metric g„„(x)
in the Bose subspace only.

We now insert Eq. (3.18a) and Eq. (3.21) into
Eq. (3.12) which may be written as

This is our generalization of the (homogeneous)
Lorentz group to superspace. Before we discuss
physical implications, a few words about g„-B are
in order. If we do not wish to entertain extran-
eous parameters, we are limited to choosing

where g„=0. (4.4)

(3.23)

R„-s is given by Eq. (3.8}, and X by Eq. (3.13).
Letting A = g, B=v, and using Eq. (3.16) we find

that the XgAB term on the right-hand side of Eq.
(3.22) is exactly canceled and we obtain

Even though g„has been chosen to be zero, the
Bose-Fermi operators h„are nct zero. (Thus,
the Bose and Fermi spaces are not disjoint. ) Us-
ing Eq. (4.4), we can write Eq. (4.3} in terms of
its tensor components explicitly as

Rs„„(g„)=0, (3.24) [h„„,))„]= h,~„~- h„„g„,

where Rs„„(g„)is the contracted curvature ten-
sor, formed with respect to only the Bose com-
ponents of the metric. We have thus recovered
Einstein's equatiori of motion for the free grav-
itational field in spite of the fact that we do not
have a Riemannian geometry on the full super-
space.

Similar results were obtained in Ref. 10. How-
ever, there the internal-symmetry group had to
be U(l) in contrast to the present situation,
where the internal-symmetry group is left totally
arbitrary.

IV. FLAT SUPERSPACE

The procedure for obtaining the Lorentz group
from the general linear group GL(4, R) is well
known. A constant symmetric "metric" g„„is
used to lower the indices of the group generators
G, . The generators h„„of the Lorentz group are
then given by the antisymmetric combiiiation

We can carry over this procedure with only
minor modifications to obtain the analog of the
Lorentz group in superspace.

A constant metric g„-B needs to be found in
superspace which plays the role of g,„used above.
The symmetry requirement is

~vfygxP ~Alive &

[&..&in]=&a.gX. —&..gX.

[a.„,a.,]= 0,
jh„,h„()] =-h ()g„„+ha~ (),

[k a~a&()y ] = -ll ayga ()
—8 a()gn y

[h (), 0„]= h dg „()—li„()g
+ "avgas —"ye gas

(4.5a)

(4.5b)

(4.5c)

(4.5d)

(4.5e}

(4.5f)

An interpretation of the set of operators h»
can be attempted along the same lines as the Bose
operator h, „, which generates Lorentz transfor-
mations. Just as an arbitrary Lorentz transfor-
mation can be written as

U' e» e) 2)huv~
L

where co""=-~""are the six parameters neces-
sary to characterize the infinitesimal Lorentz
transformation

x —(5 „+(d g),„)x

we can say that the transformation
- (I/2 )hABfdiBA=e

with (constant) parameters. (cs"= -(-1)"(d"s, is
related to the infinitesimal transformation of the
coordinates

gAB ( } gBA'

Then, the combination

hwa=—Gx gee (-1}'Ga gee

satisfies the algebra

h„shcD —(-1) ' " 'hcch„))

( 1) (b+c)(cad)g(
—(-1)""'""'~canc

( 1)ah+(a+c ) (c+d )I
BDgCA

+ ( 1) a+(a c)a(a+b)pa
CAgBD '

(4.1)

(4.2)

(4.3)

g zA (6A + ~Acg )gB (4.6)

Thus, scalar products of the type V W= V"gABW,
where V" and WB are vectors, are invariants
under U.

Killing vectors for flat superspace have been
obtained and discussed by Karinenberg. "

To form the analog of the Poincare'(or inho-
mogeneous Lorentz) group for superspace, we
need the "translation operators" P"= (Pa, P ).
In the next section, we discuss in some detail the
appropriate contraction scheme of a de Sitter
superspace with one extra Bose dimension to ob-
tain these momentum operators I'A. For now,
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we borrow some results obtained there, which
show that

[I"" P"]=o,
[i",P]=0,
[I ",k„„)=(5"~,-5",P„),
[P",k„.]=5"P. ,

[P",J48]=0,
[i",k„,]=o,

~e.]=5 zP.

[i,k,„)=5 g„+5 g, .

(4.7a)

(4.7b)

(4.7c)

(4.7d)

(4.Ve)

(4.7f)

(4.7g)

(4.7h)

Equations (4.5) and (4.7) constitute the totality
of generalized commutation relations for the gen-
erators of inhomogeneous tranformations in $8.
These transform the coordinates according to

&
iA AA &B+CA

B (4.8)

where A"~ and C" are constant parameters.
The Fermi (Majorana) coordinates 8""carry the

interna1-symmetry index m along with the Dirac
index 0.. We can define the "generalized charges"
on the curved superspace as

tity element of the Dirac (Clifford) algebra and
some internal-symmetry matrices T„ then the
condition (4.11) tells us that T('s must be anti-
symmetric.

V. SUPERSYMMETRY AND OTHER ALGEBRAS AS
CONTRACTIONS OF. GRADED DE SITTER GROUPS

Let us consider a flat superspace (FS) with one
extra Bose dimension, i.e. , Bose coordinates $',

. a=0, 1,2, 3, 5 and Fermi coordinates p" with
the same Fermi indices (nm) as before. " This
possesses a four-dimensional Majorana repre-
sentation of the y matrices of the form given by
Eq. (2.7),

fy„y,]= 2q„, (5.1)

with all y's real, y, '= -1 and g»=-1. Thus,
homogeneous tranformations in the Bose sector
form the group O(3, 2) since q„=(-1,1,1,1, -1).
If we let p, run over the index 5 as well, Eqs.
(4.5) remain valid. Let us choose for the extended
space, g, =O, g ~=ikq ~ with k fixed independent
of the coordinates, and g„=g„.

Consider the hypersurface defined by

j. -1 (m)(Off)
2k(Nm)(Bn)(~kg (4.10)

Qa= Qa (K(.) ((„a, ", (4.9)
r

where the matrices %~ are the (direct) product
matrices formed out of the 16 Dirac matrices
with the internal-symmetry matrices T, of the in-
ternal-symmetry group GL(Ã), where m, n

=1,2, .. . ,N.
For FS, however, we have a smaller allowed

set of charges:

$'=R((,(z),
h" =x"V.(z),

t =we p,(z),
where

1+ (1/4R')(x'+ iA, 'k 88)
1 —(1/4R')(x'+ iX'k 88) '

1
1 —(1/4R')(x'+ iX'k88) '

(5.2)

(5.3)

where the symmetry h& )&~„)
-—h, ~„)& ) tells us

that only those matrices II are allowed for which
and A and A. are fixed, independent of coordinates.
Clearly, then

II(, =—g K(, g= -Sgg, . (4.11) $"gg, P = -R'y, '+ (x'+iX'k88)y, '

(4.12a)

Thus, for the Majorana case, i.e. , no internal
symmetry, only two sets of operators survive:

q „=2r, = ='k (y g ')"

= -82 (5.4a)

by virtue of Eq. (5.3), defines a hypersphere of
radius B. This induces the following line element:

and

Q „„=—+ 2Z„„=-z k (((&~„g ') z . (4.12b)

ds'= d$"ggsd$s

= y, '(z)(dx" q„„dx"+ikX d8" q ((d8 ) . (5.4b)

It can easily be shown, using Eq. (4.5f), that

(4.13)

Z„„is clearly the spin part of the total angular
momentum operator Al„„,

M„„=h„„+Z„„. (4.14)

On the other hand, if we consider purely in-
ternal-symmetry charges, formed out of the iden-

Equation (4.6) tells us that

~Ac „)~s (5.5)

Let us first consider the transformations with

In Eqs. (5.4a) and (5.4b), the Bose values of A are
now those of a.

Next consider the tranformations U($) given by

p(g) e-((/2&hgse
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(d'" = c'/R,
/R, (5.6)

(1""e),
Xk

where as in Ref. 5, I'"=y"M+y"y, N, with M and
N internal-symmetry matrices possessing the
symmetries, M=M and N= -N, such that
(qI'") = (qI'"). & is a constant Majorana spinor.
Then, Eqs. (5.2)-(5.6) can be used to show that
for large R,

=1
glx kP PR

n =——h,

(5.12)

have the following asymptotic (anti) commutation
relations:

This procedure has the added advantage of indi-
cating how to obtain algebras other than those of
supersymmetries. The crucial point is to notice
that the fermion operators

x'" =x" + c' -i(EI""8)+ O(1/R),
)

(5.7a)

8' = 8 + c' —,x"7l„„(I"&)+O(1/R) . (5.7b)

(t... I„,)= o,
(n. , n,] ='O,

(5.13a)

(5.13b)

and

8' =8+&
(5.8)

retrieved.
More can be learned from the generators. Con-

sider the spinor operator

(5 9)

Thus, for large R, the operator P, = [(1/R)h, „]
generates translations in x"—a well-known re-
sult. However, the same extra Bose dimension
also provides a Fermi generator, [(I/R)h, ], which
for large R generates translations in O'. Thus, as
alluded to in Sec. II, we have indeed obtained the
momentum operators P as large-R limits of a
graded O(3, 2). If we extend Eqs. (4.5) so as to
include the index jL(. = 5, one easily derives Eqs.
(4.7) in the limit R -~.

But where is supersymmetry? Equation (5.7a)
is acceptable as is, Eq. (5.7b) is not. We need
the further contraction kX'- ~. Only then, are
the supersymmetry transformations

(I„,nj=' iP„q q—, (5.13c)

where =' denotes that the particular contractions
of Eq. (5.11) have been performed. This immed-
iately suggests that spinor-vector operators W„
can be constructed using l„, n~, and y matrices,
such that they anticommute asymptotically to the
momentum operator P„multiplied by some y ma-
trices. We show two examples of such spinor-
vector algebras.

A. Consider

W~
=—I„,+nq(y )~ (5.14)

This example can be straightforwardly general-
ized to include internal-symmetry matrices.

B. As another example consider

It is easily seen using Eqs. (5.13) that

(W„, , W, ] ='(-i)[P„(qy„) +P„(qy, ) ]. (5.15)

It is also obvious that under the Lorentz group
generators h„„, W„behaves as a four-vector and
under h, ~, it behaves as a four-spinor. Also,

(w„., p„]= o.

Using Eqs. '4.5), one finds that

(V„V~)=2(( '") (2)' ), s

= 2iP„(qF'), ,

only when the following limits are taken:

(5.10)

S„=l„~((x"„)~+n~(y„)8

For this case, we find

(S„., S„,] =' (-i)P'[q„,(qy, ).,
+ n.~(nr. ).( 2n..(7ir~). )—

4&,...(nr'y-, ).))]

(5.16)

(5.17)

but

Xk

~'k
, -0.

(5.11)

This is the set of contractions which have to be
made to obtain supersymmetry.

An algebra similar to the above has been pre-
sented in Ref. 12. It contains only the last term
on the right-hand side of Eq. (5.17) but misses
the first three. With an appropriate subtraction
[see Eq. (5.15)], the first two terms on the right-
hand side of Eq. (5.17) may be eliminated, but not
the third term. 'Thus, that algebra does not fol-
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low, at least from our proposed contraction
scheme.

From our point of view, the basic algebraic
structure is given by Eqs. (5.13). If spin- —,

' con-
stant spinor parameters &', are introduced via

and +' then generalized supersymmetry
follows. " Pn the other hand, if one entertains
constant vector-spinor parameters &~, then
spin--, algebras emerge.

VI. MASS AND SPIN OF FS MULTIPLETS

We now consider very briefly the physically
interesting and important question of defining the
"mass" operator on FS. It can be shown that the
following operator, 5R', is a Casimir operator on
S:

multiplets, where mass is defined completely
through the momentum operator P„. Presently,
we are following this exciting possiblity to obtain
allowed patterns of "mass shifts" in an $8 multi-
pl.et.

'The Pauli-Lubanski operator

(where the indices u, etc. , take on five values)
allows us to form

which, however, is not an invariant on FS. This
is, of course, the underlying reason for a given
supermultiplet. containing particles of different
spin. "

m2 — g (g-l)B Cg (g &)DA
t' -1~c

For large 8, it reduces to

(6.1)
VII. FORM INVARIANCE IN THE FERMI SECTOR

3R' = —(P,P') —,[n (q-') 'nB]
8 large

(6.2)

Equation (6.2) shows very clearly that if one
performs the necessary limits given by Eq. (5.11)
to obtain supersymmetry, both the second and
third terms go to zero giving us the standard re-
sult

5tf ~ PP" . —

But, if A. 'k remains finite then only the third
term is negligible and we have a left-over "spin
contribution" to the mass operator. In general,
therefore, FS multiplets should be labeled by the
eigenvalues of the %' operator which does include
the second term. This should be contrasted with
the mass degeneracy present in supersymmetric

As discussed in Sec. II, the general formalism
envisions expanding the connection (and/or the
metric tensor) in a power series in 8 ", whose
coefficients are the dynamical fields. In examples
with realistic internal symmetries, the resulting
number of terms is very large. For instance,
calculations of every Taylor coefficient of the
H, icci tensor Rg~, in terms of the fields intro-
duced in the metric tensor g~~, becomes pro-
hibitively tedious. In fact, no complete result
for such cases exists so far.

In this section we show that a judicious use
of invariance under global Fermi displacements
allows us to calculate al/ the coefficients of 8
in g„-~ provided the zeroth order in 8 has been
calculated in an arbitrary gauge.

'The method starts out from the following iden-
tity. Consider the 0 expansion of a tensor
gAB(+

E
gAB(+» 8) oAB(0]( )+ Q t CAB[a ~

~ (P))3(n
(7 1)

Clearly then, the following functional identity holds:

( ])))
(» P)=»»P

&
PP &,... P(»)

& . , P»& )( ) *P '''')
nt l"' n gCD[a ~ o ~ ~ ]Pl

where in Eq. (7.2) no symmetry is assumed forgcB with respect to the indices C and D.
Now, consider a global Fermi displacement

gQ eIat gal + ~N

where e is a constant spinor.
We now require form invariance of the tensor gBB under the transformation (7.3). That is to say,

(7.2)

(7.3)
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where 0„'(x) is the. transformed field corresponding to 0„. So, the change

8r~egu, n, .. . n„)(x)-=&~s(p. . . n u)(x)&"

I)"' Zgega. . . n ny (x)e" ~ (7.5)

Thus, for form-invariant tensors, we may substitute for Eq. (7.2)

Zx, (", &~=~*V —',",r;. . ..„., ~"~"
n „, &",m, ~*~ *&il ) .

n 8'cat;n, . . .u„) x) &n 0
(7. 6)

Defining the operator
N-y

1@a:
~

~ca[a. . . u ng(X) ( )
n-0 cn ~ n .. '. n„g (x)

(7.7)

we may equivalently write

gg (x, 8)=eo e
g~ „,(x)e e e (7.8)

Now consider the connection I'e"c(x, 8). In a
metric theory, I"e"c(x, 8) is a known functional of

gee, S„g„"e, and (&/88 ) gee. Noting that for any
field g

&,~4 =8(&„4),

one easily derives that

I'8"c(x, 8) =cone I" " (x) e (7.9)

where I'e"c«, (x) is the coefficient of the zeroth
term in 8 of I'e"c(x, 8). The construction of
I'g"c,» (x) requires only g "e& i(x), g~e, &(x),
and ggs«&(x). However g &» (x) is completely
determined from gee«, (x) and thus a considerable
amount of labor involved in inverting the full me-
tric is avoided. Finally, Eq. (7.9) allows us to
obtain the full I'e"c(x, 8). Of course, we do not
need to carry it out completely, because the de-
sired quantity Bga«& only requires knowledge of
I'e"c(x, 8) to first order in 8. R„"e(x,8) can
be obtained from R„"e«,(x) through an equation
analogous to Eq. (7.9). Clearly, similar proced-
ures can be used to obtain the Lagrangian density
L(x, 8) provided L«&(x) is known. Anyone who

has ever attempted to generate a superspace La-
grangian or all the equations of motion will ap-
preciate the great saving of labor.

In the Appendix, we illustrate this technique via
an example which is nonphysical but computation-
ally involved.

The spontaneous breaking of a local SS to a glo-
bal one implies the choice of a gauge and hence
for such theories the above procedure is not di-
rectly applicable.

VIII. CONCLUDING REMARKS

In this paper, we have reviewed a theory of in-
teracting fields, 4 formulated on superspace. %e
have shown how this theory contains' Einstein's
free gravitational equation of motion. %e have
also examined the relationship between the gen-
eral superspace theory and its flat limit. This
study shows that the "antisymmetric" part of
GGL(Ne, Nz, R) contains generalized supersym-
metry upon certain group contractions. It also
permitted us to construct the displacement opera-
tors for both the Bose and the Fermi coordinates
via a graded de Sitter group. Form invariance
under Fermi displacements was utilized in devel-
oping a procedure for calculating all the coeffici-
ents of 8 of any tensor provided the zeroth order
in 0 is known in an arbitrary gauge.

This work was supported in part by the National
Science Foundation.

2
G =—

0 2 '
=2 1 =2

2 19 2 2 2P 3 2 3' (A1)

The metric tensor g„"e(z) can be decomposed in
terms of fields as

g (e) =A(x)+H'(x)8+F(x)(8G, 8), (A2)

APPENDIX: AN ILLUSTRATION OF THE FERMI
DISPLACEMENT METHOD

Here we present, in some detail, an example
of the Fermi displacement method developed in
Sec. VII. The model we consider has, X~=1 and
Nz='2, i.e. , one Bose (x') and two Fermi dimen-
sions (8„, m =1,2). On the Fermi (internal)
space, we have GL(2, R) invariance, for which
we choose to write the generators G, (a =0, 1, 2, 2)
as
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g.„(z)= -S„.(~)

= iy „(x)+H,(x)„(G,8)

+ ix„(x)(8G,8), (A2b)
f(x) = E(x) .1

(A5b)

Z„.(z) = -g.„(z)
= (G,) „(2s(x) —2Ã(x)(8G, 8)

-4[~(x)G,8]f. (A2c)

x' =x'
7 (A3)

Form invariance, under a global Fermi dis-
placement,

The connection I's"c(z) is given by

r-', (x) =( I)'"-'[(-I)"g - ( )

+ ( I)exeexecxc+ (&)

-g'gc, zk"'(z) . (A6)

Thus, to calculate "zeroth I"', we need g"~„,(x).
Let

0'= 8+q

(with & a constant spinor) gives, through Eqs. (V.4)
and (7.5), the following rules for variations of
the fields:

goo„,(x) = A(x),

g'",.&(x) =X (x),
g""„,(x) = 2s (x) (G,)„„.

(A7a)

(A Vb)

(A7c)

6A(x) = -iA(x)(q, (x)e),

6q, (x) = -2i[f(x)+ y, (x)G,(t, (x)](G,&),

5f(x}= i((t,(x)e)t(x),

6y(x) =iH, (x)(G,e),
6H, (x) = -4i(z(x)G,G,q),

6z(x) =0,
6s(x) = 2[KG,(d(x)],

5(o(x) = -IC(x)&,

6K(x) = 0.
In the above, we have redefined some fields:

g, (x) =A( )g(x)

(A4a)

(A4b)

(A4c)

(A4d)

(A4e)

(A4f)

(A4g)

(A4h)

(A4i)

(A5a)

, 2[X(x)G.X(x) ]
A(x) A'(x)s (x)

(A8a)

X(x) =
( } ( }

[G.X(x)], (A8b)

[X(x)G,X(x)]
s (x) s'(x)A(x) (A8c)

Now, Eqs. (A2), (A6), and (A8) give for
I's"c„,(x)

The zeroth-order (in 8) version of the equation,

Z"'(&)g pc(&) = 6"c,
allows us to solve for the fields with carets in
terms of g„-s,»(x):

( ) ie 1~(„) 8
X(x)G.X(x) ti(x)G,X(x)

s(x) ' A(x) s(x)

i . y(x)G, g(x) I i H, (x) 2iooj()=4()'()().0()+()sJ()+()X()+()()H()[GGX()j(A9b)
)

~ p („) (tl ( ),(,X( )) i,
( ),5 H~(x)(

) I g x)G,X(x)
s(x) " ' ' "& s ~ ' "~ A(x)s(x) . '

s (x) H, (x) 2 2i)„x&(x) —(C,)„„—
( )

x Ixx(x)x '( )
(x

( ) ( )
)((x)G,X(x) x

( ) (
)[tx(x)X(x))I,

2i H, (x)' 2(o, (x)
"

y(x)G, y(x)
mn(.'o]( } ( 2}mn A( ))IG2~( )] 80 (X)

( ) ( )
1

( ) ( ) y

1
o olo~(x) =

( )
[Gnk), (x)]-

( )(~o —ksoinA) „[GnX(x)j — 2(') „(G,g, ) —
( )(G,Box(x))

(A9a)

(ABd)

(A9f)

[The notation Hz(x)G, . implies a sum over all a o 2. ]
To obtain Rg~~„(x}, we need all the 1 n"c(z) up to first order (in 8), but I"'„o„(z) to zeroth order only. We

apply the method developed in Sec. VII to boost I"s to first order in 8 through Eqs. (A4) and (A9). Thus
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z 2H. (x) i X(x)G,X(x)I','„„)(x)=- a,g, (x) —;,g, (x)G,G, „+ (,e, (') g,„(x)

+ a, ' y(x)G, G, „+ )[f(x)+g, (x)G,&,(x)h„(x)
2i H.(x)

x

+, [q,(x)G,)((x)][(o(x)G,] —, a, A
' ((d G,)„,X(x)G.X(x)

1' '„„,(x) = f(x) —
& &(x)+((t),(x)G.4,(x)) (G.) .1
2S x

+ e, lns (x) + ' H, (x)(G,)„„- '," [y(x)G,y(x)](~G,)„

2
4,„(x)H.(x)(X(x}G,G.).+ A „,, [X(x)G.X(x) ][j(x)+ 24|(x)GA(x}1(G.)„„

2

+A( )s(x) ' s(x) ' " 2A ' s " 2A(x)s(x) "

iX.(x)
) ( )

[x(x}G2&(x)](G2)mn A( ) (
)(eo+(x} 2)n

(A10a)

H, ( } (G,~G,~( }}( ( }G )„+
(

H, ( }„[G„~G,~(

F„'„,)(x) = -ig, (x) ' (G,G,)~,+'," ~[G,g(x)](u)(x)G, ), — [f(x)+y, ( )xG, t((x))]~(G,y)(G,)„,H.(x) 2(1),„(x) 2i

(A10b)

X(x)G.X(x) 2i
+ ( —

( ) ( )
—

(
)(B„td(x)G,),5„$—

( )
P(G.) |(8G.),)

ixx

(a.l ( ))~„,+4, „"(G G.)„, , '. '+-A, (XG.G,) +2A (XG.X)('0 —,—( G.) ),
~el hs

2~ .r,~(x) =( .} .A &(G,X) e.h)s +, g„+—(~G,),
lxx

(A10c)

+—e,lns+e H, (G,G,)» -—,(G,y) (e,&oG,), -2s~ — &,~ 1 — ' + —,&,~(&oG,~)
)

2i(d, 2H (yG,y) 4i
-A (xG.G,),+ A' („+, (~G ),) I—, .

I',"„„,(x) =, „(G,g, )((uG,)„-—5 „-—(a, --,'a, lnA)H, (G,G,)„„

(A10d)

+,—,(~G.).[(e.—-'e.h)A)„(G.X)]—,— (G.x)(e.(I,.)
+A,l.(G.e.X) (XG.G.).+ A, .(XG.X)(eP.) (G.G.),4B, 2

—,—..(G.e,)H.(XG.G.)„-,—.„(G.e,)(XG.X)(~G.).

; [f+(q,G,q,)]a„„+,(qG, X) „(G,a,q) q„+—( G,)„. (A10e}

We have checked the validity of Eqs. (A10) by
recomputing it through the standard method. Need-
less to say, our proposed method is much more con-
venient.

Given Eqs. (A9) and (A10) we are in a position
to compute Rgs«, (x}. The answer is less
awkward in terms of the tilded fields defined be-
low.
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y, ', = —,
' (S,lnA),

The tilded fields have been defined such that
under the local (internal-symmetry) gauge trans-
formation

2, = (8, lns+ h,),

Sl/2 &

X
X 1/2s

(G,(o)
S3/2

(A11)

eX [&2)(G(2')CBOGO]

they transform simply:

s2)4(2gG~ cm )I) (ax g 2)

X, (3, and z tra, nsform as )I) does. Also,

A'= A 7

A'=A,

K' =K

h.'=h. +f,„,x, , h, + s,x, (h'~2),

S =8 2S ~

(A12)

(A13)

(A14)

((oQ,)
M = 3/2 js

where f,„, -4=trf(G, G„G G,) —(Q,G,Q,Q„)j.
We also define some "covariant" derivatives:

4=4i- A' (Q.'Q.x),

K=-
s2 7

D,A, = (so —yoGo)A

D,(d+ (8, -2h„G~G, )G (a'422),

DOX= (eo —yo'o —2h~G~Q2)X .
(A15)

z=, i, +4ih, (G,G,(4)) .
s

Armed with these definitions then, we can write
R~s«~(»

~0

A2
R„„,(x)=—(gG, g) 1+ "A' +Af 1- "A'" +2A,

A (XG, D, X)-(XQ, It))+ ' 1+2" '"

+ (DOAO) 1 - A2" - 4iA($G2(4)) 1 -
A

- 4iAO((PGIX) —Bi((4)tGBDOX) 1 - 2 A2
ha )2

(A16a)

sj. i'2

R..«&(x) =- 'A (XG.D.X)~.+ s'"(60.(XG.~) -2(PG,~)X.— 'A (XG.~).(DGX)+»"'.(D.~) 1&1
- "A'"

3s' '
j. XG,X 3~s' '

X2X ss' '
2 0" ' A A ~ —

A +2A o" 2

is' (XG,X) Si,g, I 5 XG2X') is' - - is'
0 2(2( ox) A 4 j) 4 I

+
2 A I 4 (&G2&)x()2]

R„„«,(x)=s(G,) „X, where

X=4i($G2(d) 1+ ' + &(XG2z)+ A
(w~G~DOX) 1+ Am

— (XGQOQ)+ A AD(XG3(4))
4 (xG,x ) 6 6i z xGmx 12i 14i

f(1+21 X) ((G t)} (1+4X X)+48(GsG G)((( 2X X) 4(((1 X X)

2A A. - A. 2(G,A, )
(1

XXG,X 24,
( )

4, (- )
A,

( XXG,X~x+ A
+ (A16c)

Following the same procedure utilized to boost I"s, we can construct Rgs,„,(x) and Rgs,„„,(x), using
Eqs. (A4) and (A16). Since we do not intend to pursue the resulting e(luations of motion, we do not bother
to write them here.

We hope that the above discussion wi11 convince the reader of the virtues of the proposed method of cal-
culation.
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