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Recently one of us proposed a general theory of variable rest masses (VMT) compatible with post-Newtonian
solar-system experiments for a wide range of its two parameters 7 and ¢q, provided the asymptotic value of its
fundamental field f is in a certain narrow range. Here we show that the stationary matter-free black-hole solu-
tions of the VMT are identical to those of general relativity. In addition, for » < 0 and g > 0 (part of the range
mentioned), relativistic neutron-star models in the VMT are very similar to their general-relativistic counterparts.
Thus experimental discrimination between the two theories in the strong-field limit seems unfeasible. We show
that in all isotropic cosmological models of the VMT capable of describing the present epoch, the Newtonian
gravitational constant Gy is positive throughout the cosmological expansion. There exist nonsingular VMT
cosmological solutions; this is an advantage the VMT has over general relativity. For # < 0and g > 0 all VMT
cosmological models converge to their general-relativistic analogs at late times. As a consequence the asymptotic
f attains just the required values to guarantee agreement of the VMT with post-Newtonian experiments. The
VMT with < 0 and ¢ > 0 predicts a positive Nordtvedt-effect coefficient. It also predicts that Gy is currently
decreasing on a time scale which could be long compared to the Hubble time. Verification of these predictions
would rule out general relativity; its most natural replacement would be the VMT with 7 < 0 and ¢ > 0, and not
a generic scalar-tensor theory. The success of general relativity in most respects could then be understood because
the VMT with » < 0 and g > 0 mimics it. Because of this, general relativity could still be used, for most purposes,
as a good approximation to the correct gravitational theory.
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I. INTRODUCTION

General relativity (GR) assumes the validity of
the strong equivalence principle, and in particular
of the assumption that particle rest masses are
spacetime constants in units for which the gravita-
tional “constant’’ G is indeed constant. This as-
sumption is a strong one; the experimental evi-
dence relating to it is fragmentary, and is far
from establishing it on a firm empirical basis.
Let us recall that variability of a rest mass m
in units for which G is constant would be equiva-
lent to variability of the dimensionless quantity
v=Gm?/fic. Measurements of the orbital motion
of Mercury haye set an upper limit on the possible
time variability of the y for the electron y,, but
this limit is not incompatible with variability on
a time scale of the Hubble time ¢,.' By contrast,
studies of the moon’s orbital motion have been
interpreted as showing variability of y, on the
time scale of #;.?> Thus the evidence for the con-
stancy of rest masses is ambiguous; there clearly
is a need for a general theoretical framework for
testing the possibility that rest masses vary in a
wider class of phenomena.

Such a framework was proposed by one of us in
the form of a general classical field theory of
variable rest masses (VMT) within the framework
of Einstein’s gravitational field equations.® The
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VMT has just two free parameters, » andq. In
units for which rest masses are constant the VMT
turns out to be identical to a small subset of the
scalar-tensor theories of gravitation (STT’s). ¢
In scalar-tensor form the VMT is easily com-
pared with the results of solar-system post-
Newtonian (PN) experiments. In this way a large
fraction of the »g plane is experimentally ruled
out.? But there is still a wide range of 7g values
for which the theory will be compatible with the
experiments if the asymptotic value of a scalar
field f appearing in it falls in a certain narrow
range. In the present paper we shall show that
for most of this range of g values, the predictions
of the VMT for solar-system PN experiments,
black holes, neutron stars, and late phases of
cosmology are so close to those of GR that there
is little hope that observations in the foreseeable
future will discriminate between the theories
(barring confirmation of the time variability of
vy which would rule out GR). Thus GR is bound
to be a good approximation to the correct theory
even if the constant masses postulate is violated.
The plan of the paper is as follows. In Sec. II
we briefly review the VMT and show that in its
STT form it is also the most general variable-G
theory possible under fairly general assumptions.
In Sec. III we show that all stationary black-hole
(BH) solutions of the VMT are identical to the
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corresponding ones in GR. Thus, for the strongest
gravitational fields the predictions of the VMT and
GR merge. In Sec. IV we show that relativistic
neutron-star (NS) models in the VMT with » <0
and ¢ >0 (range compatible with PN experiments)
approximate the corresponding ones in GR so
closely as to make observational discrimination
between the two theories unfeasible. Thus in the
strong-field limit the VMT with » <0 and ¢ >0 is
virtually indistinguishable from GR.

The asymptotic value of f which decides whether

the VMT with appropriate » and ¢ can fit the solar-

system experiments is determined by the cosmo-
logical model chosen to describe the universe at
large.® Thus in Sec. V we turn to cosmological
models in the VMT. We write the equations for
isotropic models, and show that unlike cosmologi-
cal models in a generic STT, VMT models have a
positive Newtonian gravitational constant G,
throughout the expansion. Further, unlike GR
models, VMT models can be nonsingular. Thus
rejection of the experimentally unverified con-
stant-masses postulate of GR offers a way out of
the cosmological singularity dilemma. In Sec.
VI we show that, again for » <0 and ¢ >0, VMT
cosmological models spontaneously converge to
those of GR at late times. Further, the asymp-
totic value of f determined by the model at late
times is just such as to secure agreement of the
VMT predictions with the results of PN experi-
ments. The time scale for f to approach this
value can be much shorter than the time scale
for changes of Gy. Thus a model starting with
nearly arbitrary initial conditions can reach the
required f by the present epoch without this lead-
ing to large variability of G, which is not ob-
served. ‘

Our conclusions are summarized in Sec. VII.

II. THEORY OF VARIABLE REST MASSES

On the basis of a number of experiments all
rest masses are regarded as proportional to a
universal scalar mass field x.® The dynamical
action for x is determined by simple assumptions:
general covariance, second-order equation for ,
and the absence of a constant scale of length in
the theory. The gravitational action is taken as
Einstein’s action so that the VMT retains Ein-
stein’s field equations. Of the resulting general
VMT? a special case is Dicke’s” reformulation of
Brans-Dicke theory® as a variable -masses theory.
For the general case X o §” where 7 is a real pa-
rameter, and the dynamical action for the real
field ¢ is

S:,_éf(zp,azp’“+q1§¢2)(—g)1/2d“x. (1)
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Here q is the second (real) parameter of the
theory, and R and F are the scalar curvature

and determinant of the metric, respectively. Up
to now the units are such that the gravitational
‘‘constant’’ is constant. It is convenient to trans-
form to units for which rest masses are constant.
Let

f=81Gc™y? >0, ‘ (2)
¢=0-gf)f 7, ®)

and define the implicit function of ¢

w(¢p)= -3 -7 [(1-6q)gf - 1][r+(1-)gf 2.
(4)

Then in the new units the combined action for
gravitation and the field x takes the STT form?

§=c (167G [ [6R ~w(#)976 40N (~g)2a .
(5)

Here G, is a constant coupling constant and R and
g refer to the metric in the new units. (From now
on we shall set c=1.) Thus the general VMT is
equivalent to a very small subset of the STT’s —
those defined by constant w (Brans-Dicke theory),
and those defined by w(¢) given by (3) and (4).

The STT’s are commonly regarded as theories of
a variable gravitational constant G. Here we shall
argue that this interpretation is meaningful only
for Brans-Dicke theory, or for STT with w(¢) de-
fined by (3) and (4). As stressed by Dicke’ one
can talk about absolute variability only in reference
to a dimensionless quantity, such as the y, of Sec.
I. I y, varies, one can describe this as variabil-
ity of mass and constancy of G in certain units,

or as variability of G and constancy of mass in
some other units. It follows that any good theory
of variable G (in units for which masses are con-
stant-particle units) must also be expressible as a
theory of variable masses (in units for which G is
constant-Planck-Wheeler units). The Brans-
Dicke theory meets this criterion; Dicke” has
given the transformation to a variable-masses
theory. The STT’s defined by (3)-(5) also meet

. the criterion; their variable masses version is

just the general case of VMT.® However, for a
STT with more general w(¢) there is no way to
effect the transformation to a variable -masses—
constant-G version.

Suppose such a transformation were possible.
It would necessarily give a variable -masses theory
more general than the VMT of Ref. 3. In this
case one or more of the postulates on which the
VMT is predicated would be violated. The postu-
late that the VMT is generally covariant cannot be
violated since every STT is generally covariant,
and the scaling factor of the transformation must



4380 JACOB D. BEKENSTEIN AND AMNON MEISELS 18

be a scalar (it is just a ratio of two different units
for the same quantity). The postulate that the
equation for the mass field is of second order
cannot be violated since the equations for all
STT’s [see (6) and (8) below] are of second order
and a transformation of units will not raise the
order (the scaling factor cannot depend on the
derivatives as indicated below). Finally, the
postulate that the variable-masses theory does
not contain a constant scale of length could be vio-
lated only if the scaling factor of the transforma-
tion contains this length since the STT’s do not.
Now the (scalar) scaling factor is a ratio of two
different units for the same quantity, and is there-
fore dimensionless. It can thus contain a constant
with dimensions of length only in conjunction with
some scalar having dimensions of length. The
only quantities we have available to construct
such a scalar are derivatives of ¢ or the curva-
ture. If the transformation in question exists, it
maps a variable G into a constant G, and this
means in general that the variable G depended on
derivatives of ¢ or on the curvature. Yet in the
STT’s G depends only on ¢ [see Eq. (24)]. Thus
the scaling factor containing a constant scale of
length cannot be found. We conclude that the VMT
of Ref. 3 in STT form is also the most general
theory of variable G under very general assump-
tions.

The gravitational field equations of the VMT in
STT form are obtained by varying the complete
action with respect to the metric*:

G,"=81Go¢7'T," +w¢™(¢,, 0" =56,,678,")
+oHo " -9,758,"), (6)
where G,” is the Einstein tensor and 7" is the
stress-energy tensor obtained by varying the
matter action. In particle units the matter action

does not depend on ¢; thus variation of the total
action with respect to ¢ gives

R+o Mo -wdp™e ,¢%+2wd™ ¢ /=0, ()

where w’= dw/d¢. Replacing the scalar curvature
R by the expression obtained from the trace of (6)
we get an equation? which may be put in the form

91/2(91/2(1)’“);&:87IG0T, (8)

where T=T," and Q=3 +2w. Equations (2)-(4),
(6), and (8) are the basic equations we shall use.

1. IDENTITY OF BLACK HOLES IN THE VMT
AND IN GR

The viability of the VMT for weak fields was
considered in Ref. 3. Let us now enquire how it
fares in the limit of the strongest gravitational
fields possible, those of black holes. For this

purpose we focus on an exterior matter-free BH
solution of the VMT endowed with stationary and
axial symmetry. Let ¢=¢ — ¢,, where ¢, is the
asymptotic value of ¢. We shall show that neces-
sarily ¢ =0 throughout the BH exterior so that the
metric satisfies Einstein’s equations with gravita-
tional constant G,¢,™* [see (6)]. Thus our VMT
BH solution is also a solution of GR. That every
GR BH solution is also a VMT BH solution (with

¢ constant) is trivially true. Thus the Kerr black
holes constitute the totality of stationary matter-
free black holes in the VMT.

The procedure we follow is adapted from those
of Hawking® and one of us,’ used to establish the
identity of Brans-Dicke apd GR black holes. It
follows from (8) that

$(2'/2),, =0 (9)

since ¢ ,=¢ ,. Let us integrate (9) over the
whole BH exterior between two spacelike hyper-
surfaces related by a translation along an asymp-
totically timelike Killing vector of the geometry.
After integration by parts we get

fﬂ”zcl?,ai'“(—g)”zd“x —f;n”z&cﬁ'“dza =0,

(10)

where the surface integral is taken over the hori-
zon H between the spacelike hypersurfaces. The
integrals over the hypersurfaces have canceled by
symmetry and that over infinity has vanished be-
cause ¢ and ¢ , must vanish as 1/ and 1/72, re-
spectively. The vector (5 .o has no components in
the time and axial directions by symmetry. Thus
on H it is orthogonal to dZ, which, being parallel
to H’s generator, is entirely in a Killing direc-
tion.® Therefore, the surface integral in (10) will
vanish provided the norm of the vector /?¢¢
is bounded on H. If it is not bounded we proceed
as follows.

We first write the surface integral as

- /27 (4% ,a
15_}1(1‘9 odd/af)f2dz, . (11)

Now f must not vanish or blow up on H. Such be-
havior would lead either to x becoming unbounded
(masses infinite at the horizon) or vanishing there
(with consequent vanishing of the metric in par-
ticle units or blowing up in Planck-Wheeler units
since x2 is the ratio between the two metrics?).
All these kinds of behavior are incompatible with
the regular character of a BH horizon. A direct
calculation based on (3) and (4) shows that
2Y/2¢(dd/df) will be bounded on H, the pole of
2*/2 being canceled by d¢/df. It only remains
to show that f'*dZ, vanishes on H.

Our assumption that the norm of Q'/*¢(d@/df )f ,
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diverges on H clearly means that f ,f'*— there.
By eliminating ¢ ,’* between (7) and (8) with T=0
we have

fof *=R*[(do/df P(w - 3w’ o2 I] . (12)

Clearly, the scalar curvature R must be bounded
on H for it to qualify as a BH horizon. Also f
must be bounded and nonzero on H. Thus f ,f'*
can become unbounded as assumed only if f takes
on H a constant value f, which is one of the zeros
of the function in square brackets in (12)., [There
are at most four such zeros; see (3) and (4).] Let
us exploit this fact to define in the neighborhood of
H a radial-like coordinate which is taken to be a
function of f only [also f=f(£) only] with £=0 at
f =fy. Clearly there is an enormous freedom in
defining £; we shall use up part of it to arrange
that the metric component g** behaves as an inte-
gral power (positive, negative, or zero) of ¢ near
£=0.

Let us define the hypersurface element on sur-
faces £=const:

AT, = 2(=8)" % 4p,edxPNdx "N dx" . (13)

The dx® are in all directions normal to the £ di-
rection. Thus the only nonvanishing component
of dZ, is dZ,. In the limit £~ 0, dZ, must be-
come the product of the horizon’s (normal) genera-
tor n,, the two-surface element on H, and an in-
crement in affine parameter along n,.* Thus
dZ, cannot vanish as ¢ —0. However, by the null
character of »n,, d2*dZ, =g*(dZ,)*—0as £ —~0.
Clearly, g*! vanishes in the limit, and since it
behaves as an integral power of £, it must vanish
at least as £. Thus, f'*dZ,=f ,g*dZ, must be
bounded by £f,, in the limit. Now, in order for f
to be bounded at £ =0 the integral [ f,¢dE must
converge there, and this implies that £f ,—~ 0 as
£—~0. Thus, f:“dZ,— 0 and the surface integral
in (11) must vanish even if the norm of Q*/2¢¢ ,
blows up on H. '

From (10) it follows that the four-dimensional
integral vanishes. Since 5,,, has no component in
the timelike directions it is spacelike: ¢ ,$*> 0.
Suppose that Q is strictly positive or strictly nega-
tive in the BH exterior. Then the integral can
vanish only if ¢ is constant throughout. If Q is
of one sign throughout, but vanishes on a closed
two-surface, 2!/2 can be opposite in sign inside
and outside it. In this case we carry out the pro-
cedure leading to (10) twice, once in each region.
The two-surface does not contribute a boundary
term since £2'/2 vanishes on it. The proof that ¢

~is constant for the interior region exactly parallels
that given earlier, while that for the exterior re-
gion is trivial since there is no boundary term. If
Q is positive in one region and negative in another,
the requirement that real and imaginary parts of

the four-dimensional integral vanish separately
produces the desired result ¢ = const. Finally,
if @ vanishes throughout the exterior, ¢ is con-

. stant trivially. Since ¢ =0 asymptotically we

conclude that ¢ = ¢, = constant throughout the BH
exterior. Our earlier conclusion that the BH so-
lutions in VMT and GR coincide follows.

Our assumption of axisymmetry is not really
required. For GR BH solutions Hawking has
shown'? that axisymmetry follows from station-
arity, and little modification is needed to extend
the proof to the general STT. Our proof also ap-
plies for a black hole endowed with an electro-
magnetic field for which T'=0 also. The assump-
tion T=0 is essential and matter in the BH ex-
terior will split the degeneracy between VMT and
GR. However, in all astrophysically interesting
situations, matter will be a small perturbation
and the difference between the predictions of the
VMT and GR should be minute. Thus, observa-
tions of x-ray sources which may be black holes®®
will not allow one to discriminate between GR and
VMT in the foreseeable future in view of the large
uncertainties in the nongravitational physics of
such sources, '3

We must stress that our proof relies heavily on
the specific form of w for the VMT. It is not clear
that black holes in an arbitrary STT will be identi-
cal to those of GR. The role played by the vari-
able-masses interpretation of the theory must also
be underlined. One of us has given a solution of
GR representing a BH endowed with a conformal
scalar field.'* The equations are also, formally,
those of the VMT with »=1, g= 1. But a black-
hole interpretation in the VMT is ruled out be-
cause x blows up on the would-be horizon.

IV. RELATIVISTIC NEUTRON STARS IN THE VMT

Next to black holes, neutron stars are the sys-
tems with the strongest gravitational fields.
Whereas for BH’s study of matter -free solutions
suffices to elucidate the main features of the prob-
lem, for NS’s, consideration of the matter content
is crucial for the analysis. We saw that matter
can split the degeneracy between VMT and GR
BH’s. To what extent do VMT and GR models of
relativistic neutron stars differ? For simplicity
we shall consider only spherically symmetric
stationary models.

The metric can be chosen of the form

ds®= — Bdi® + Ddg? + £2(d0? + sin?64d?),  (14)

where B=B(¢) and D= D(¢) are positive, well be-
haved at { =0, and reduce to unity as £ — =, Since
¢ =¢(2) and T=T(¢), the scalar equation (8) re-
duces to
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[(BQR/D)2¢c*d¢p/df) f']" =8uGo(BD/Q)*/?¢T,
(15)

where a prime denotes derivative with respect to
¢. Integrating (15) between the center of the star
¢=0 and a general ¢, we have, using (3),

[ ==81Gy(D/BR)M ™ q(1-v)(f —f )
xfE(BD/Q)”zTdec , (16)

where
feErlr -1)"q . (17)

For all known forms of matter, T'<0. Thus f’
has the same sign as g(1-»)(f -f ).

Consider first the case » <0 and ¢ >0. We see
that as ¢ decreases, f approaches f, monotonical-
ly whatever the sign of f —f,. As noted in Ref. 3,
for the VMT to agree with the PN solar-system
experiments, the (universal) asymptotic value of
f, fo, must lie sufficiently near f,, the double
pole of w, in order that w(f,) >60 [the residue of
the pole is necessarily positive, so the possibil-
ity® w(f,) <-33 need not be considered]. Thus,
far from the star, f is near f,, and it steadily
draws nearer to it as ¢ decreases. Therefore,

w steadily grows from its large asymptotic value
w(f,) >60 as one approaches and enters the star.
Now Eq. (8) shows that for a given matter distri-
bution ¢,, is O(1/w) (recall that @ ~w here). The
same is true of ¢ , 5. Thus the derivative terms
in the gravitational-field equations (6) are O(1/w)
and become negligible compared to 87G,¢™'T,” for
large w. In this same limit ¢ becomes constant.
Thus the larger w, the closer STT is to GR local-
ly. In view of our previous conclusions we can
plausibly conclude that a NS model in the VMT
with » <0 and ¢ >0 will resemble its GR counter-
part closer than the corresponding Brans-Dicke
model with w=60.

Now Hillerbrandt and Heintzmann'® and Saenz'®
have shown that Brans-Dicke NS models with w =6
are already very close to the GR models. The
difference in critical mass being only 5-10%,
for instance. For models with w =60 the agree-
ment should be considerably closer, and for the
VMT models even more so. Therefore, in view
of the uncertainties in the nongravitational physics
of pulsars'” and neutron-star x-ray sources,®
one can state with confidence that observations of
neutron stars will not be able to discriminate be-
tween the VMT, with » <0 and ¢ >0, and GR in the
foreseeable future.

We cannot draw similar conclusions for other
viable regions of the 7¢ plane, especially 0 <7 <1
and ¢ <0 [for which the pole of w (17) is also in
the physical range f>0], because in that case f

tends to recede from f,as { decreases. This,
however, is of little consequence since only for
7 <0 and ¢ >0 can one understand why f, is near
f.in a cosmological context (see Sec. VI). Let
us thus turn our attention to cosmology.

V. VMT ISOTROPIC COSMOLOGICAL MODELS

As a first step in the demonstration that for
<0 and ¢ >0 one expects f, to be near f,as re-
quired in the previous section and in the consider-
ations of Ref. 3, we study some general proper -
ties of VMT isotropic cosmological models. We
take the metric in Robertson-Walker form

ds?= —dt®+a(t)?[(1 - kg?)de?
+£2(d 6 + sin?6d3?)], (18)

where =0, z1 is the curvature index. The scalar
equation (8) takes the form

(@9M29) = - 816G /2 T, (19)

where a dot signifies a time derivative. We shall
find it useful to write this equation in integrated
form:

. t
¢)=—877Goa-39'1/2(f Tasﬂ'”zdt+ C), (20)
[

where ¢ =0 represents the beginning of the ex-
pansion, and C is an integration constant. The
field equations (6) with u=v=0and p=v=¢
give, respectively,

a\*, k _81Gyp E(éz 1_'1_51_)

() ea-tmres(e) -2 e
i /2% b 81C fina w s
R

where p=-T,"and p= T,® are the average density
and pressure of the fluid filling the universe. We
assume both are positive. Equations (3)-(4) and
(20)—(22) are the equations of VMT isotropic cos-
mology. In view of their complexity we shall be
content to establish some general results without
delving into the exact form of the solutions.

In astrophysics an important role is played by
the local Newtonian gravitational constant Gy .
For the STT the standard PN analysis gives*

Gy=God (1 +Q7), (23)

where in the present context ¢ and Q are just the
cosmological quantities determined by Eq. (20).
It is not immediately clear that G, will always

be positive. A negative G, would have unpleasant
consequences: galaxies might not form and clus-
ters of galaxies might become unbound due to the
effectively repulsive character of gravity. It is
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thus satisfying that one can show that for a VMT
model capable of describing the present epoch,
Gy >0 throughout the expanding era of the uni-
verse.

First, it is clear that today G, >0 (gravitation
is locally attractive). From PN solar-system ex-
periments we know? that either Q@ >123 or @ <-63.
Thus Gy =~G,¢}, and since G, is positive from
first principles,?® it follows that ¢ >0 today. Sup-
pose ¢ is negative at some other time. Then it
must pass through zero at some ¢=¢, [a change in
sign through infinity is ruled out by the form of
¢, Eq. (3), and the condition f>0]. We must
have ¢(¢,)#0. Suppose that ¢(¢,) were to vanish.
Then (20) could be written as

b= -81G,aQ/? f Tt . (24)
t

Since T= -p+3p <0 we see that ¢ would change
from negative to positive at t=¢,, i.e., ¢ would
have a minimum at {=/{, and thus could not change
sign there as assumed. Thus ¢(f,)#0. Finally,
we note that as a function of f, w changes sign
through zero at f=¢™, precisely the point where
¢ changes sign. (The only exception to this state-
ment occurs for 127g =1; this case of the VMT
was ruled out in Ref. 3 and is therefore, uninter-
esting. )

Now we focus attention on (21). For the expand-
ing era, a+0 and the right-hand side changes sign
when ¢ changes sign. For 2=0, +1 the left-hand
side is strictly positive. Thus ¢ cannot change sign
throughout the expansion era. For k=-1 it would
appear that such a change in sign is possible pro-
vided & changes from less than unity to more than
unity, or vice versa, at {=¢,. But this would
mean that @ does not change sign at =¢,. Now
let us subtract (21) from (22) and replace ¢/¢
by its value determined by (19):

o ErGafoci prip] (N[, bwol(dy

al\lé
A)E)

We recall that @ changes sign with ¢. A check of
(4) shows that w’¢ does likewise. By contrast Q
does not. Thus the right-hand side of (25) changes
sign if ¢ changes sign while the left-hand side
cannot change sign by our previous comment, The
contradiction shows that even for 2= -1 ¢ keeps
its (positive) sign throughout the expansion era.
(We note that our proof is inapplicable to Brans-
Dicke theory for which w cannot change sign.)

Since ¢ >0, it follows that gf <1. A look at (4)
shows that @ >0, since f>0 always. Then it
follows from (23) that G,>0. Thus, in any VMT
cosmological model which describes correctly the

present epoch (G, positive today), G, will be posi-
tive throughout the expansion era. This is an at-
tractive feature of the VMT. (Incidently, our con-
clusion that Q >0 rules out the possibility® that
Q < -63 today.)

A further attractive property of the VMT is that
it possesses nonsingular cosmological solutions
in contrast to GR which has none. For the metric
(18) the cosmological GR equations can be formal-
ly obtained by setting ¢ =1 in (21) and (22). Sub-
tracting one equation from the other we get

2a7 0=~ :f:-1rGo( p+3p). (26)

We see that <0 always. Thus a cannot have a
minimum which would imply ¢ >0. Neither can

a be bounded from below without having a mini-
mum; this would imply that @ becomes positive
asymptotically at early or late time. We con-
clude that ¢ must pass through zero at some finite
t giving rise to a singularity. Thus, in GR, non-
singular solutions do not exist.

In the VMT the story is different. The analog
of Eq. (26), Eq. (25), shows that d could have
either sign. Thus nonsingular cosmological solu-
tions exist.

For example, suppose it is desired to construct
a model which expands from a minimum at {=0
[2(0)=0], at which time p and p have predeter-
mined values appropriate to very hot matter (hot
big bang). It is well-known that for such matter
0<p-3p<p+3p<2p. According to (21) we have,
at t=0,

W (i)z_ 87Gop | k.
F(E) =50 ‘& @D

Since we want ¢ >0 we must arrange for the term
in (25) proportional to ¢* to be positive and domi-
nate the other terms at =0 so that @>0. For 0
<f<q™* we have >0; in addition w’>0 for the
interesting cases ¢ >0 <0. For a wide range of
values of f(0) near f=0 one finds, either analytical-
ly or numerically, that w<0 while @ is not small.
One can then use (27) to determine ¢ (0) for a
choice of f which makes w<0 [in the case k=+1
one chooses a(0) sufficiently large]. Comparison
of (25) with (27) shows that the positive term in
(25) will definitely dominate the negative matter
dependent terms. Thus one can set initial condi-
tions for our nonsingular model.

It is worthwhile noting that even though a non-
singular model can be constructed for the given
initial conditions, it is not clear a priori that it
will be capable of describing the real universe.
This will become clear only after the model is
integrated numerically. We intend nothing so
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complicated here. However, there is one aspect
of the fit between model and reality which can be
investigated readily. To this we turn now.

VI. THE CONVERGENCE TO GR

The PN predictions of the VMT are determined
by two parameters which are calculated by the
standard procedure*

y=(@-1(Q+1)", (28)
B=1+(Q+1)%Q w'e, (29)

where ¢ and w(¢) refer to the cosmological values
(asymptotically far from the solar system). A-
greement with solar-system experiments can be
obtained for a large part of the »q plane, princi-
pally for 0 < » <1, ¢ <0 and for <0, ¢>0.° How-
ever, it is essential that the cosmological value
of f be in a narrow range about the point f,

=7(r —1)"'¢"* which marks the pole of Q.%® The
question before us is, how likely is a cosmologi-
cal model with arbitrary (and unknown) initial
conditions to produce today an f in the required
range? To answer this question we focus on (20)
which we rewrite as an equation for f:

 BrGyB e [lr+(1—1’)qf|]
=iz grr 6 2 L v+ (A=raf

’3-1/2+> 30
x(/o'Tasz ar+c). (30)

The term in square brackets is just the sign of
(1-7)g(f -f,). Now we enquire into the sign of C.
Let us define a time ¢, by

f “Ta*Q 2t =C . (31)

tc

Then j’(t) is proportional to an integral over ¢ ex-
tending from /. to £. On grounds of causality we
expect that £, <t over the whole evolution of the
universe (otherwise the dynamics of f at ¢ will
depend on the behavior of the matter for times
later than ). This means ¢, <0. The value £,
=0 corresponding to C =0 seems appropriate to a
model which begins from a singular state at #=0.
A value ;<0 corresponding to C<0 is more ap-
propriate to a model having a minimum at =0,
Thus on physical grounds we conclude that C <0,
It follows from all we have said that the sign of
f is opposite that of (1-#)g(f -f,). For 0<y<1
and ¢ <0, f has the same sign as f—f,. Thus,
whether f>f_ or f<f,, f always recedes from
fo For generic initial conditions f should be
far from f_ by the present time. Thus the VMT
with 0 <7 <1 and ¢ <0 fails to provide a self-con-
sistent framework for understanding the results

of the solar-system experiments. However, for
7 <0 and ¢>0, f has a sign opposite that of f—f.
Thus, whether f>f_ or f<f, f approaches f,
monotonically: for generic initial conditions f
converges to f,. If the time scale for conver-
gence is sufficently short, f will be near f_at
present. Thus the VMT with »<0 and ¢>0 pro-
vides a self-consistent explanation of the results
of the PN solar-system experiments.

The sucess of the VMT with <0 and ¢>0 is not
limited to this. We note that as f—f,, w—=. Re-
calling the discussion in Sec. IV we see that for
7<0 and ¢>0 the VMT cosmological models them-
selves (the run of ¢ with time, for instance) spon-
taneously converge to the corresponding GR mod-
els at late times. This is one more example of
the merging of the predictions of VMT and GR that
we noticed in Secs. IIl and IV. From now on we
shall assume <0 and ¢>0.

We return now to the question of the time scale
for f to approach f,. Without integrating (30)
and (21) numerically we cannot be certain that the
approach takes place fast enough to be relevant.
But supposing there are models for which it does,
we face a potential difficulty. If the time scale
for approach is short compared to the Hubble time
¢y (expansion time scale of the universe), we might
expect that the time scale for significant change in
Gy is equally short compared to ¢, in disagreement
with experiment.’ To show that this need not be
the case, we differentiate (23) with respect to time
to get

Gy/Gy=-[1 +29'1(n+1)-1w'¢]<¢'>/<p. (32)

The experiments’ place constraints on GN/ Gy or,
equivalently, on the time scale for variations of
Gy, te =Gy /Gy (¢, can be positive or negative).
Let us eliminate w’¢ from (32) by means of (29)
and replace ¢ by the expression in terms of f.
We get

o= — (I—V)qf(l—qf) ¢
T r+(-vgfPole T +2(8 - +Q D] *F?

(33)

where ¢,=(f, - f)/f is the time scale for f to
approach f.. Itis a positive quantity according
to our previous discussion. Let us now substitute
for @ the expression following from (4), and for
Q™! the expression (1 +y)(1-%)"! which follows
from (28). Our final result is

—_ 20-7ql-gN+y) ,
¢ T (1-gf+64%)(4 -y -3) 7"

The beauty of (34) lies in the fact that it relates
tc to 48—y -3, the coefficient which is a measure
of the Nordtvedt effect.* This is the “polariza-
tion”” of the moon’s orbit in the sun’s direction

¢

(34)
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which is expected in any STT. (For GR, 48-y -3
=0.) A search of this effect by laser ranging has
been analyzed by two groups'''® leading to the re-
sults 48—y -3=-0.001+0.015 and 48 -y -3
=0.00+0.03, respectively. Since y= 1 [see (28)],
we see that

2(1+v) |48 -y -3|1>133. (35)

Now, for |7| and g of order unity (which means
fc and f are of order unity), the other factors in
(34) are also of order unity. Thus |/;| can well
be two orders of magnitude larger than ¢{,. Hence,
the agreement of the VMT with the PN experi-
ments at the present epoch does not clash with
the absence of variations of G, on time scales
shorter than #,.*

The sign of GN can also be deduced. According
to (20) the sign of B —1 is the same as that of w’¢.
A direct calculation gives

w'¢=451-gN[(1 +7 - 127)f ~ ]l + (1-Paf I*.
(36)

It is easily verified that for »<0 and ¢>0, w’¢p >0
for f = f,. Returning to (29) we see that according
to the VMT B is slightly greater than unity [recall
that » + (1-¥)gf is small for f~ f.]. Also, accord-
ing to (28) vy is slightly smaller than unity. Thus
483 —y — 3 must be small and positive: the VMT,
like Brans-Dicke theory, predicts that there is a
Nordtvedt effect, and that its coefficient is posi-
tive. This is an experimentally testable predic-
tion. Since ¢ >0, 1—gf>0. Consulting (34) we
see that for » <0 and ¢>0, {;,<0. Thus, the
VMT, just like Brans-Dicke theory, predicts that
Gy is presently decreasing. Further, the VMT
reveals a relation between the magnitude of the
Nordtvedt effect and {; which may have deep
significance.

Van Flandern and Muller? have presented evi-
dence suggesting that G, is decreasing on a time
scale t,. It is too early to draw conclusions from
these preliminary investigations. However, if
this result is confirmed by future work, GR will
be ruled out, and the VMT with » <0 and ¢>0
would be its natural replacement. It is also clear
that if future investigations reveal that Gy is in-
creasing, the VMT itself will prove unviable.

VII. SUMMARY AND CONCLUSIONS

The VMT presented in Ref. 3 is also the most
general genuine theory of variable gravitational
constant (Brans-Dicke theory can be regarded as
a special case). The VMT retains all elements
of GR except for the experimentally unverified
assumption that the gravitational coupling constant
Gw?/fc is a space time constant. Because of this
the VMT seems more appropriate than GR as a
working theory by *“Occam’s razor.’’ The matter-
free black-hole solutions of both theories are iden-
tical. Neutron-star models in the VMT with » <0
and ¢>0 are very similar to their GR counter-
parts. For the same range of » and ¢ all VMT
cosmological models converge to the correspond-
ing GR ones at late times. Related to this is the
convergence of the PN predictions of the VMT to
those of GR. Because of all this, the VMT with
¥ <0 and ¢ >0 is today as experimentally viable
as GR.

Like GR the VMT predicts that gravitation has
been attractive throughout the expansion of the uni-
verse. Unlike GR the VMT possesses nonsingular
cosmological solutions. Conditional on a demon-
stration that some of these solutions are realistic,
this property makes the VMT all the more attrac-
tive than GR. By contrast to GR, the VMT with
7 <0 and ¢> 0 predicts that the Nordtvedt effect
coefficient is positive, and that G, is presently
decreasing on a time scale which could be long
compared to ;. According to the VMT the two
effects are connected. Verification of these pre-
dictions would rule out GR and would point to the
VMT with » <0 and ¢>0 as its most natural re-
placement. One would understand the success of
GR in other respects by virtue of the tendency of
the VMT to converge to GR. By virtue of this
one could continue to use GR for most purposes
despite its being incorrect as a theory of gravita-
tion.

Let us also contrast the VMT with Brans-Dicke
theory. In the latter agreement with the PN ex-
periments is secured by setting its parvameter w
large by hand. In the VMT with » <0 and ¢>0,

w is a dynamical quantity which, whatever its
initial value, spontaneously grows large as the -
universe expands leading to agreement with the
PN experiments. ‘
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