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Vacuum tunneling and fluctuations around a most probable escape path
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We study vacuum tunneling in field theory directly in Minkowski space. We do this by extending the
concept of "most probable escape path" (MPEP) first introduced by Banks, Bender, and Wu to the infinite-
dimensional configuration space of fields and then constructing a wave functional, satisfying a Schrodinger-
type equation, by a WKB expansion along this MPEP. The first-order results show that the tunneling
process may indeed be described by one quantum variable tunneling in a one-dimensional potential barrier as
proposed by us earlier for gauge theory. Corrections to this picture can now be calculated systematically.
The first-higher-order corrections are shown to take the, form of a "free energy" term that may be
interpreted as a modification to the one-dimensional potential barrier obtained earlier.

/

I. INTRODUCTION

The existence of instanton solutions' appears
to play an important role in the nature of the
ground state of non-Abelian gauge theories. It
is generally accepted that these Euclidean so-
lutions are the realization of tunnelings between
different vacuum states. ' 'Thus the nature of
these instanton solutions and their possible im-
plications for hadron physics are at present among
the important and exciting topics under consid-
eration in particle physics. '

In a previous paper, 4 we studied the vacuum
tunneling between two vacuums in a non-Abelian
gauge theory from the Minkowski-space point
of view. We consider the vacuum tunneling as
the result of a continuous change of field con-
figurations A(x, t) =f(x, X(t)); the two vacuum states
are described by A'" =f (x, X,) and A"'=f(x, X,),
and as the parameter X varies from X, to X„ the
system changes from one vacuum state to another.
Assuming that the vacuum tunneling is described
faithfully by this one-parameter family of field
configurations, we can reduce the vacuum tun-
neling phenomena to a one-dimensional quantum-
mechanical problem with X as the dynamical vari-
able. We then determine the optimal field con-
figuration by choosing a, function f (x, X) which
maximizes the tunneling amplitude.

In this paper. , we continue our analyses of the
vacuum tunneling problem in Minkowski space.
For notational simplicity, we restrict ourselves
to a scalar field theory with the field variable
Q(x). As we shall demonstrate in the last section
of this paper, we can extend our results to non-
Abelian gauge theories as well as to the inclusion
of fermion fields.

We start with the full Hamiltonian II(p, Q )
= 8($, (Iji)&/5Q), and write down a Schrodinger
wave equation II/(g) =Eg(Q) in the Q represen-

tation. +e then apply the WEB approximation
to the wave functional P(Q). By extending a me-
thod developed by Banks, Bender, and Wu, "' we
can study' P(Q) as a power series in K The low-

- est-order WEB approximation gives rise to the
equation of the most probable escape path
(MPEP). The equation which determines the
MPEP is identical to the equation which deter-
mines the optimal field configuration as des-
cribed in Ref. 4. The next-order WEB approxi-
mation includes the contribution due to the Gaus-
sian fluctuations around the MPEP. We have ob-
tained a set of equations which determines the
effect of these fluctuations.

By a proper choice of the parameter X(t) which
describes the field configurations along an MPEP,
we can always express the equation of an MPEP
in the same. form as a Euclidean field equation.
The parameter v =—X(t) now plays the role of a
"Euclidean time". We wish to emphasize here
that the parameter v' has nothing to do with the
analytical continuation of t to the imaginary axis.
In our approach, even though the equation of an
MPEP has the same functional form as a Eucli-
dean solution, it has a completely different phy-
s ical interpre tation.

The contribution associated with the Gaussian
fluctuations around an MPEP also has an in-
teresting physical interpretation. It has the same
functional form as a partition function in statis-
tical mechanics. Using an analog in statistical
mechanics, we can introduce naturally a free
energy F(X) along an MPEP. This free energy
I' gives rise to an additional contribution to the
effective one-dimensional Hamiltoni'an II(A), and
will modify the field equation associated with
the MPEP. As we shall see in the text, the mod-
ified MPEP equation can be expressed as a Har-
tree field equation, and it has a simple mean-
field interpretation.
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The paper is organized as follows: In Sec. II,
we formulate the vacuum tunneling problem as a
Schrodinger equation with infinite degrees of
freedom. In Sec. III, we apply the WKB approxi-
mation to this infinite system. We write down
the equations which determine both the classical
orbit and the MPEP. We show in Sec. IV how the
Schrodinger equation near an MPEP reduces to
the one-dimensional quantum equation as we have
obtained in Ref. 4. In Secs. V and VI, we study
the contribution due to the paths around a classical
orbit or an MPEP. The Gaussian fluctuations
provide a natural statistical-mechanical inter-
pretation in the tunneling region. In the last sec-
tion, we extend our results to non-Abelian gauge
theories, Bnd also discuss several related physics
problems.

path P(x, A.) by

(dr)' =, dx [d(b(x)]'. (2.2)

In other words we have

2- i. /2
dr= I dx dx.

BX
(2.3)

(2.4)

We may then define a tangential vector along
the path of length Ch by

~&(an = d~
sp
Bh

(2.5)

Thus if h, the length along the path, is used to
parametrize this path we have X = h and

II. FORMULATION OF THE PROBLEM

A. Configuration space

We consider the infinite-dimensional space
of fields Q(x) where x is one or more spatial
continuous field variables. A point in this space
is labeled by a parameter X and has coordinates

(2.1)

Let A. = 0 designate the point whose coordinates
are given by Q(x, 0) and X=1 designate the point
with coordinates P(x, 1). If P(x, X) interpolates
between these two points as X varies continuously
between X=0 and 1=1 then (tl(x, X) 0 ~ X ~ 1 defines
a path in our space joining the two"-'points in ques-
tion. There are of course infinitely many su„"h

paths. Furthermore, each path may be para-
metrized by a variety of parameters A. .

The points X =0 and A. = 1 may describe two dif-
ferent states of a physics. l system if P(x) is a
quantum field. Q(x, X) then corresponds to a spe-
cific quantum field fluctuation that contributes
to the transition between these two different
states. Indeed the functional integral formalism

- gives the amplitude for this transition as a cer-
tain sum over all such field fluctuations. Alterna-
tively one may construct a wave functional in this
space, which satisfies a Schrodinger-type equa-
tion, and whose magnitude at every point would
give the relative probability of occurrence of the
physical states these points correspond to. Thus
the transition amplitude between the points X =0
and X =1 is proportional to the ratio of the mag-
nitude of the wave functional at these points. In
this section we lay the ground work for such an
approach.

We define an increment of length Ch along the

where 8$/sr is, from (2.4), a unit tangential
vector. One may consequently define a vector
orthogonal to the path P(x, x) by

6Q, =5/ —a dr
B

Bh ' (2.6)

where 6Q is an arbitrary varia. tion and a is to be
chosen such that

dxll(, ( )=0. (2.7)

This implies that

ad@= ' dxi!( ( ) . (2.8)

There are in general infinitely many such ortho-
gonal vectors at every point P(x, x) of the path.
For every such direction n(y) we may define a
unit vector as

(2.10)

Consequently, if we consider a point Q(x) near
the path defined by Q(x, x) then there is an r such
that

where 5$,(x, x) is given by the expansion of Eq.
(2.10) above.

(2.9)II(v) ~

[1d (gy )2]g/2

where it is clear that Q„&((rx) depends on r and
the variable Y denotes the coordinates of the di-
rection n(y). Let n(y) also measure length along
this orthogonal direction. Then we have in gen-
eral
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H = ) dx [2 p '+ s(&Q)'+ V($)] 3 (2.12)

B. The Schrodinger equation

The Hamiltonian for a scalar field Q(x) is given
by

The solutions to Eqs. (3.4), (3.5), etc. , are,
however, nontrivial as the equations are highly
nonlinear. It is, however, possible to reduce
these equations, in first approximation, to one-
dimensional equations. In doing so two cases
must be considered. Define the potential

where Q = s(I)/st. Since we have

[(j&(x)t), Q(x', t')] 6(t —t') =i 5 64(x —x'), (2.13)
U(y) =-, dx[-,'(~y)'+ V(y)]. (3.6)

we may in the configuration space of (f)(x) re-
present Q by (P/t) 6/6Q. Thus the Hamiltonian
operator in this space reads

@'2 Q 2

H = dx — —— ~-,'(~y)'+ V(y) . (2.14)
2 6Q

The time-independent Schrodinger equation is
then

Then there are two types of regions in configu-
ration space. The first is where E& U((t)) which
is the so-called classically allowed region, and
the second is where E &U(Q) which is the so-
called classically forbidden region and in which
quantum-mechanical tunneling may occur. We
are mainly interested in this region and we shall
concentrate on it in the following.

H4(4) =E 4(4) (2.15)

where ())(Q) is an eigenfunctional of H correspon-
ding to an eigenvalue E of the total energy of the
system. Therefore we have

A. Classically forbidden region: most probable escape path

If we define, in the classically forbidden region
E & U(@)3 R, and R, by

(&Q) +V(p) g(Q)=Eg(Q) ~

(2.16)

1
Ro= —. $0, (3.7)

III. %KB APPROXIMATION

As a first step towards solving the eigenfunc-
tional equation (2.16) above we consider a WKB-
type solution and assume that P((I)) has the form

gj((t)) g s((th)s(o) (3.1)

where A is a constant. Fquation (2.16) then reads~

~

~

~

i 6's(g) 1 6s
tt'

y —('P3) y ( 3)I(g('I") ( ) @g( I")~ ( & (3 3)

Proceeding as usual by expanding S((t)) in powers
of 5 and then comparing equal powers of 5 we
obtain

s(y) =s,(y)+as, (y)+ ~ ~, ~ (3.3)

and the Schr5dinger equation (3.2) leads to the
following set of equations:

(3.4)

(3.5)

(t)(Q) has the usual probability interpretation, and
hence its magnitude for various choices of Q(x)
is a measure of the likeliHbod of their occurrence.

(3.6)

then the WEB equations (3.4) and (3.5) become

(3.9)

M, M, (3.10)

6Ro
( )

6po 6Ro

oo(x, ~) 6)( 64. o, (x, ~)

For if such a path exists then the solutions to
Eqs. (3.9) and (3.11) lead both to a, determination
of Ro(g) along the MPEP and to an equation that
determines the MPEP itself. We have along the
MPEP,

= 0. (3.11)

Now for an arbitra. ry path P(x, X) in this region
one has, in general, nonvanishing values for
6Ro/6@ for all variations 6P, along the path and
along all orthogonal directions to the path. We
define the most probable escape path (MPEP) by
Qo(x))() such that 6Ro/6Q is nonvanishing only
along this path. This is a direct generalization
of the concept of MPEP to our configuration
space, as first introduced in two dimensions by
Banks, Bender, and Wu. In other words. the
MPEP satisfies

etc.
sR, sR,

GX
o o (3:3 )()

(3.12)
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When Eq. (3.12) is combined with Eq. (3.11) we
are led to

c{z)= '
]] dx ( ')

and hence the WKB equation (3.9) becomes

(s.is)

(s.i4)

If we now use the length x along the MPEP
for the parameter X, this equation reduces fur-
ther to

(3.17) and (3.19) determine the WI&B wave func-
tional (to first order) at "any point Q, (x, ~) along
this path. We have

1

(2[U(r) —E]}"'
rr

xexp ——
~

dr'{2]v{r')—z]]'~*:~ ).
0

(3.20)

Furthermore, Eq. (3.17) combined with Eq.
(3.11}leads to an equation whose solution is the
MPEP. To see how this comes about note that.
B0 is such that

(3.15) r
6R, = 6 dr'(2 [U(x') —E]}{~'= 0

0
(s.ai)

where the potential U(Q (x, x)) becomes, along
the MPEP,

U(~) =
~

dx (-,'[V {t&,(x, ~)]'+ V({t],(x, r})}. (3.16)

Equation'(3. 15) is clearly soluble and one has
then, along the MPEP,

for arbitrary variations 6$, about Q, (x, ] ). The
MPEP is the solution to the Euler-La, grange equa-
tion that follows from (3.21). In order to derive
this Euler-Lagrange equation we transform back
to the arbitrary parameter A. which, in contrast
to x, is not affected by the variations |]Q to be
applied to Bp. Thus we have

ap
d~'(2 [U(] ') —E]}"'. (s.i7)

dx By(x, ~ )
BX'

B9ilp BR0 BB,
B~2

which with Eq. (3.17) gives

(3.18)

Furthermore, Eq. (3.10) becomes, along the
MPEP,

x (2 [U(y') -E]}'"
where from Eq. (3.5) we have

40(x, X)

=0, (s.aa)

R, = 21n(2[U(r)-E]}'~' (3.19)
U(&') = dx(-.' [&p(x, i.')]'+ t (y(x, X'))}. (3.2S)

which is of course the magnitude of A, a,long the
MPEP. Thus if the MPEP is known then Eqs.

The Euler-Lagrange equation following from
Eq. (3.22) is

which leads to

li2

2 dx' UX -E — 2 dx UX -E =0,
4=Op{X,X)

(s.a4)

-V'{t] + dx(B{t]/Bx)' (2 [U(X) —E]}'
BA. BX [fd (Byx/By) ]{~22' B@

~~

2 I I 2

~ »~ ~ ~

~~ ~ 2 ~
V

II
~

~ ~ «I

I I 2
~

~ I

{

(3.25)

Note that in Eq. (3.25)

If ee choose the parameter A. such that

—=(2[U(X) -E]}"', (3.26)

then the Euler-Lagrange equation (3.25) for the

MPEP in the "tunneling region" becomes

B2 BP
, y, (x, X)+V'y, (x, X) (3.27)

BX B
0

Note tha, t X(r) as determined by Eq. (3.26) is real.
We remark now that Eq. (3.27) is identical in

form to the Euclidean eqUation of motion for the
field P(x) with X replacing Euclidean time. We
emphasize here, howevei, that--X: is iot Euclidean
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time nor an analytic continua, tion thereof; for it
must be recalled that our method involves con-
structing a (true) time-independent Schrodinger
wa, ve functional in ordinary Minkowski space.
The similarity of Eq. (3.27), nevertheless, to
the Euclidean equations of motion allows us to
construct the MPEP in the tunneling region if
real solutions to the Euclidean equations of mo-
tion are known. For if we formally replace
Euclidean time in these solutions by X we have
a real solution to equation (3.27) which is the
MPEP.

Before we turn our attention to the classically
allowed region let us consider the following pro-
cedure for an arbitrary pa, th (t)(x, X) that is not
an MPEP.

Construct on Q(x, X) the potential U(X) as given
by Eq. (3.5). Now clearly (BR,/5(t))' along this
path is not simply [fdx(B(t)/BX}2](BR /BX}' as on
an MPEP but is in general

8R 'I' "- a ' eg

into one-dimensional equations if one defines a
"classical orbit" by Q, (x, )7) such that

'
BSO BS, 5(t), BS,

(x, q) l '7 54). g, (:dptl)

For then one obtains along this "classical orbit"
(t),(x, ]7) from Eq. (3.4),

= 0. (3.33)

] d..(' ) (", ) E=V(p) (3.34)

which when q is replaced by the length s a,long
this classical orbit leads to

Sp=
+0

ds '(2 [E —U(s ')]])~ ' (s.s5)

8 P$0 880 Bi%~

88 84 BS'
(3.36)

leading to

Furthermore, along this classical orbit Eq. (3.5)
becomes

S, = 2i In(2[E —U(s)]](~2. (3.37)

+ positive-definite terms .

Thus for this arbitrary path

(3.28) Thus the wave functional along the classical orbit
in this region is as expected,

a@ ' BR, '
$2 [U(X) —E]]'~'. (3.29)

(3.30)

and hence if we evaluate

Now for X =7', the length along this path, we have

, ' -jr[U(r) -E]]"',

A

$2[E —U(s)]]' ', x, s) =

ix exp — ds']2[X p(s')]]' '+ )Q 0

(3.33)

Ro= I dr'(2[U(r') —E]j' '
«0

(s.sl)
The classical orbit itself Q, (x, s) is determined

by the stationary phase condition

we would be evaluating a quantity R,' larger than
the true Rp along this path. Clearly the MPEP
is that path for which Ro as given in Eq. (3.31)
is the true R, and hence is the path which min-
imizes the integral of (3.31). Thus if we can
parametrize a family of paths Q(x, r) by a para-
meter f then evaluate Rod(f) as given in Eq. (3.31)
for a member of this family we may obtain the
MPEP, if it is within this family, by finding (
for which

S

BSO = 6 d s ' f2 [E—U(s ')]] ) ~ ' = 0 .
0

(3.39)

B'y, (x,)i}, , B V

where g is defined by

= 0, (3.40)

When Eq. (3.39) is expressed in terms of the
parameter g, one obtains the Euler-Lagrange
equation for the classical orbit as

(3.32)

—=(2 [E —U(q)]}"'. (3.41)

We mention this procedure here as it is equivalent
to our discussion above and in particular cases
may be a fast and direct way of finding the MPEP
and the magnitude of Rp along this MPEP.

B. , The classically allowed region

In the classically allowed region E&U(Q) the
WEB equations, (3.4) and (3.5} may be transformed

As may be seen from Eq. (3.40) the equation
determining the "classical orbit" Q,(x, ]7) is sim-
ilar in form to the equation of motion of the field
Q(x) in Minkowski space. Thus one may obtain
the classical orbit from a real solution to the
Minkowski field equation by the formal replace-
ment of the time variable by the parameter g.

We wish to turn our attention now to a better
evaluation of the wave functional that takes into
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IV. REDUCTION OF THE SCHRODINGER EQUATION
NEAR AN MPEP

In Ref. 4, we obtain the MPEP by first reducing
the field theory problem to an effective one-
dimensional quantum-mechanical problem along
a particular path,

4(x, t) = 4(x, ~(t)) (4.1)

The MPEP (t) =go(x, A(t)) is the path which gives
. rise to the fastest decay rate. To obtain the ef-
fective one-dimensional quantum-mechanical
system, we substitute (4.1) into the Hamiltonian
H given in (2.12), and have

account the influence of points in the neighbor-
hood of the MPEP in the classically forbidden
regions of our configuration space. However,
we digress a little to discuss in the following sec-
tion the procedure, introduced by us in Ref. 4,
of reducing the problem discussed above to a one-
dimensional problem, and showing its equiva-
lence to the above treatment.

~ 1

[m(X)] &I 2

The parametrization r(t) is the same as r ap-
pearing in Sec. II. Using this familiar Hamil-
tonian (4.7), we obtain the quantum-mechanical
Hamiltonian operator

(4.9)

S2 8 2

H„= — —+U(r) .
2 8r (4.10)

8
+ U(r) g(r) =E y(r) .

2 8J (4.11)

The WKB wave function in the tunneling region
1s

1

(2[U(r) —E])' '

xexp -- de'(2[p(x')-p]P'). , (4.)p)
o

The Schrodinger equation associated with (4.10}
XS

2

Hq — dx 2 A. 2+ U(A. )

= —,
'

pm(X) i'+ U(X)

where

( )
+U(A.},

U(~) =- dx [,'(Vy)'+ V-(y)],

(4.2)

(4.3)

which agrees with (3.20). Thus the field con-
figuration (path) which gives rise to the maximal
tunneling rate is the MPEP as discussed in Sec.
III.

To obtain the corresponding quantum-mechanical
Hamiltonian and wave function for an arbitrary
parametrization X(t), we make a coordinate trans-
formation and have

y'(~) = [m(~)]"' y(r(X)), (4.13)

'a
m(x)-=I dx-,' &0,si (4.4)

H -[m(X)]' 'H (m(X)) ' '
82 1 8 2

=[m(~)]"' — —+ U(~) [m(~)]-""
2 [m(X)]') '

P, =m(X) X. (4.6)

We now wish to interpret B~ as a quantum-mechan-
ical operator. Since P~ and X do not commute,
there is no unique way of writing down the quan-
tum-mechanical H~. We find that the most natural
way of introducing the quantum Hamiltonian is
to reparametrize X(t) and to obtain a Hamiltonian
with a constant mass. Indeed, if we define an
r(t) through r =r(X(t)) with

m(X)-' ' — —[m(~)]-( '+ U(~) .-x/4 8 1, - l. /4
Bx [m(A)]))'2 sx

(4.14)

In the WEB approximation, the wave function in
an arbitrary parametrization A.(t) becomes

(t)' = (x)
1

(2m(X)[U(X) —E])' '

=[m(~)]"2,

we obtain

p'
H„= " + U(r),

2

(4.6)

(4.7)

x exp — dX' 2m X' U A.
' —E ' ', 4.15

0

as expected.
In Sec. II, we have written down the full quan-

tum-mechanical Hamiltonian (2.14) and the Schro-
dinger equation (2.16) as

where

U(r) = U(~), (4.6)
H= Jdx—h2

+ (vy}2+v(y)
2 ), 6

(4.16)
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and

(4.17)

It would be far more desirable if we could obtain
the effective one-dimensional Hamiltonian B„and
the corresponding SchrMinger equation near the
MPEP directly from (4.16) and (4.17) without
going through the detailed WKB expansion. We

-shall achieve this in the remaining part of this
section. First, we summarize the MPEP for-
mulation as follows:

(1) The wave functional g(Q) is dominated by
a family of field configurations QU(x, X) which
varies continuously from one local minimum to
another as X varies from some boundary values
X, to A. . '

(2) Near Q =Q„ the wave functional ((Q) varies
smoothly along the tangential direction

where m(X) is a, proportionality constant which
will be identified as the mass given in (4.4). To
verify that m(X) is indeed the mass, we note that
near (f& =P„

8 8(f)U

BA. BA, 8$(x)
(4.19)

Substituting (4.18) into the right-hand side of
(4.19), and identifying the coefficients of 8/BX,
we obtain

or

B,x, z)
m(X) = dx (4.20)

as promised. Now, we consider the Schrodinger
equation (4.17) in the neighborhood of Q = 4t4, (x, &).
We denote, to within a normalization factor A(X)
to be determined later,

and damps rapidly to zero in the perpendicular
direction. Hence, it is reasonable to assume
that, acting on the wave functional ((Q) near
P =. Q„we have approximately

or

(4.21a)

1 By(x X) 8

BP(x) m(X) BX eX ' (4.18)
According to our approximation, we have

(4.21b)

By, 2 1 8 1 8 By, 8'y, 1 8

BX m(X) BX m(X) BX BX BX2 m(&)2

8 1 8 1 1 Bm(X) 8

2 BX m(A) BX 2 m(X)' BX BX

—A(z) g(x),
[m(g)]1/2 Bg [m(g)]l/2 Bg

(4.22)

and

dx
J

= f/(x)A(x) y(~),

neighborhood of Q =&f&U, to

h' 1 8 1 9
. H~ g = A '(x)—

2 [m(y)]«2 BX [m(y)]4/2 BX

where

(4.23)
pU(4) A(~)I4(~)=UV(r); (4.25)

(4.24)U(X) = f dh — +V(4, )
1 Bqb

Thus the Schrodinger equation (4.17) leads, in the

Choosing

Z(r) = m(x)-4/' (4.26)
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we reproduce the Hamiltonian B~ as given in
(4.l4).

V. CONTRIBUTION FROM POINTS NEAR THE MPEP TO
THE WAVE FUNCTIONAL

Consi'der a point p(x) near the MPEP defined
by p, (x, r) T. hen there is an r such that

consider variations at constant n the point Q(x)
is moving parallel to the MPEP P,(x, r) and hence
all variations in the unit vectors p„&»(x, r) are
zero except for n{y) =n, which is the unit vector
lying in the plane of the MPEP. Thus Eq. (4.2)
reduces to

(5.3)

y(x) =y, (x, r)+ dyn(y) y„&,&(x, r). (5.l)

Our aim now is to solve the ~KB equation (3.4) for
S, when it is not strictly one-dimensional as on
the MPEP but nearly so. 'Thus we must first ex-
press the operation

(
II~A,

)
'

for points on and near the MPEP. For this pur-
pose we consider a local orthogonal coordinate
system' at every point r of the MPEP Q, ( xr)
The unit vectors of this local orthogonal system
are Bp, (x, r)/ar a.long the MPEP and rf „,»(x, r)
orthogonal to it. Our first step is to find the me-
tric tensor in this system. For this purpose con-
sider an arbitrary va. riation of Q(x) with r at
constant n(y). Then

where g„(x,r) is the unit vector orthogonal to

9$,(x, r)/sr in the plane of the MPEP.
If we define the curvature of the MPEP in its

plane by

sp., (x, r ) ey, (x, r)
B~ ~ B~

(5 4)

then we have, from Eq. (5.3),

dx = (l+n, p)'.sp(x) '
(5.5)

(5.7)

For va. riations of Q(x) at constant r and along
any unit vector P„&,&(x, r) we simply have

i&$(x)
~
„=(j)„„,(x, r) 5n(y) .

g hus

(5.2)

It must be clear, however, that as long as we

Equations (5.5) and (5.7), along with the ortho-
gonal nature of the local system under consid-
eration, allow us to determine the metric tensor
in this new system. For by definition

&rr I en, &rn, Bn, f sy sy„

&n,r &n,n, &n,n,

&n,r n, n, n, n, f Bg 8@
Bt BPE2

(5.8)

which leads to

g„„=(l+n, p)',

(5,9)

g"'=(lan, p) ',
+nn' gnn'

+rn O

(5.lO)

'The reciprocal metric tensor is then

Using this metric we can effect a change of vari-
able from configuration space Q(x) to this locally
orthogonal system of coordinates along the MPEP.
We get then
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dx — g —+ dy (5.11)
MPRP valid for arbitrary powers of 6n.

Define

which is what we need in the WKB equation (3.4)
above.

For points (I)(x) near the MPEP which are given
by Eq. (5.1) we can then express all relevant quan-
tities in this local orthogonal system by expanding
around the MPEP. We obtain for R,(p(x)),

R, (&t)) =R,(&t&,(x,r ))+ dx, ' 5&1),(x,)Mo
(»0(x, r)

a'a,
2 ' '

5(f&,(x,)5$,(x,) ~ („„)

and

(&„,„,(r) =- f«, , & „,„,(x,),5U(&t) )

yo(x, r)
(5.18)

5'U(~)
n(&&)»&()&') i 2 5y (x )5y (x ) go(x~ r)

&( 4 „(,)(x,)A.(,.)(x,) . (5 19)

5'R, (&t) )
(((y y r)

i
dx dx2

( ) ( ) o(x, r)

x &t&„(„)(x„r)&t)„(,, )(x„r),
(5.17)

x5&t) (x,)5$ (x ) + ~ ~ ~;

and for U(p) defined by

(&(&')= J(*(+&') +&(&')) «
we obtain

U(Q) = U(r) + dx, 5$,(x,)
&U

(&()(xi r )

~2U

2 ' ' 5)((,)(x,)6$,(x,) ~ („„)
x5$i(x )5P (x ) + ~ ~ ~

(5.12)

(5.13)

(5.14)

Note that i((y& y', r) is positive semidefinite since
(t),(x, r) is a minimum of Ro(&t)).

The WKB equation (3.9) then becomes, using
Eq. (5.11),

(&,„)..(' .(&))' „( .(&))'

= U(&t&) —E . (5.20)

Using the expansions of Eqs. (5.12) and (5.14)
with definitions (5.17), (5.18), and (5.19) we have

R,(&I)) =R,(&t,(x, r))

+ .-' dy dy'x(y, y'; r) «(y) «(y')
with U(r) given by Eq. (3.14) for (t) =&t&,(x, r).

Now by construction of the MPEP, ~ ~ ~ (5.21)

(5.15)5Bo =0
J. yo(xyr)

so there is no linear term in Eq. (5.12). Further-
more, since 5(t&, is a variation orthogonal to
$0(x, r) we have

thus

BR,(P) t)R,(&t),(x, r))
BJ' Bx

(&K y&y i r)
dy dy' ' ' Gay any'

»&,(xr) f«j pn(,,)=l„ (5.18)
and

+ ~ ~ ~

where 6n is considered small. Thus substituting
these expansions into the WKB equation (3.9) and
making use of Eq. (5.11) we would obtain a se-
quence of approximate equations away from the

».(e)
(& n(y)

dy"' x(y, y'; r) «(y') + ~ ~ ~ .

Equation (5.20) then becomes

(5.22)

«",)) * (',";) .(',";)(f«« "",,"'
o (~)o.(»))'"

dy dy' (((y, y', r) dy' (((y, y";r) 5n(y') 6n (y") + ~ ~ ~

1=2 E+U(r)+ dy-U„(,&(r) 6n(y)+ — dy dy'U„&,
& „&,, &(r) 5n(y) 5n(y') i ~ ~ ~ . (5.23)

2

Finally by comparing similar powers of 5n(y) we obtain the following sequence of equations:

(5.24)
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0 U (~)
BRO

0 2 0 B~(n„n„.r) dy" z(n„y', t) [[:(n„y',x) = U„„(r),

(5.25)

(5.26)

U„(,)(r) =0, n(y) ~n, (5.27)

BIto BK(yy y 2 t)
9 t' O'Y

dy" [((y', y;) ) ~(y",y', ~) =U„(,)„(,. ), n(y), n(y') xn, , (5.28)

etc.
Now Eq. (5.24) is the zeroth-order equation we treated in the preceding section of this paper. It leads

to the MPEP and to the evaluation of Ro along the MPEP. Furthermore, the quantities U„&„»U„& & „&,, &

al(",o become known as they are evaluated at the MPEP. From Eqs. (5.24) and (5.25) we may first calculate
p. We have

—U„,(x)
p=

2[U(~) E]
(5.29)

Then Eqs. (5.26) and (5.28) determine z(y, y';) ) and read

3[U (x)] B~„„
+f2[U(~) —E]}'~',"'"' +~„„2=U„„(~), (5.30)

12[U(r) —E]]' ' " „,'=U„„,„„, (5.31)

These are of course still nontrivial but in certain circumstances manageable. '
Finally Eq. (5.27) is a consistency equation on the MPEP. Note tha, t in this tunneling region where E

~ U(y) we see that )(:(y,y; x) is real and as noted earlier positive semidefinite and hence the wave function
in general picks up a further exponentially damping factor.

Collecting terms together we find from Eqs. (3.11), (3.13), and (5.12) that the wave function at a point
P(x, x) is

P(d(s, r))= exp —— dr'[2[P(r )-E))' '+ —f'dyA

2 [U(~) —E]].'&4 h
dy'S(y, y', r)en(y)pn(y')+ ~ )

(5.32)

This is to be compared with corresponding wave functional in the classically allowed region around the
classical orbit which would read

S

2 (d(x, s)) = exp — ds'[2 [E —U(s')])'i'+ — dy f dy' E(yy'; s)en(y)i! n(y'),
2 [E U(s)]

(5.33)

where .K is now defined as

(5.34)

in analogy with the above.
We see that in the tunneling region, paths near the MPEP give exponentially damped contributions to the

wave functional, thus justifying the leading character of the MPEP.

VI. THE EFFECT OF NEIGHBORING PATHS ON THE TUNNELING AMPLITUDE

A. Matching the WKB solutions

In Sec. V, we worked out the WEB wave functional in the neighborhood of both a classical solution (in
a classically allowed region), and an MPEP (in a classically forbidden region). Now, we consider the
tunneling of field configurations between two classically allowed regions I and III, separated by a clas-
sically forbidden region II as indicated in Fig. I. In Fig. 1, ~ is a parameter which characterizes the
change of field configurations, and U(&) is the effective potential defined in Eq. (3.5). The system is orig-
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inally in region I. The '@7KB wave functional in region I can be'chosen as

")~, 6n) = 1

(2m(X)[E —U(X)]}2~4

xenp — dn'(em(2')[U-U(n')]]'l'e — dydy'z(y, y', n)en(y)en(y')+
)

+ reflected wave.

To within constant phase factors, the %KB wave functionals in regions II and III are

&x~) X, 5n = 1

(2m(x)[U(x} E]}—2~4

(6.1)

x exp —— dz'(em(n')[U(z') —z]]'l'+ —fdy dy'n(y, y', n)en(y)en(y'} e ) (6.2)

(()
(II? )(y 5 +)

A

(2m(X)[E U(][.)]}"'

(6.2)

(6.4)

A.

xexp — dX' 2m X' E —tf X' "'+- dydy'g y, y', g gn y Qn y~

respectively. The definitions of K(y, y', ][), [((y,y', ][), and 5n(X) are given in the preceding section; and
m(X), U(][) are defined in Secs. III and IV. The relative coefficients in P") and (""are fixed by matching
the boundary condition at X=X,. From the boundary condition at X=&„we can determine the tunneling
amplitude A as

2

d =exp —— dn (2m(n )[U'lk ) —z']]' ''+, dydy'[e(y, y', 2,) —e(y, y', n, )]en(y)en(y'))

Note thatd4 depends not only on the value of m(X) and U(][.) along a MPEP, but also on the deviation of a
given path from the MPEP as denoted by 6n. Since A is always real and positive, the contributions from
paths described by different sets of 6n will add coherently. Hence the total tunneling amplitude is given
by the sum of A over all these paths,

X) 6n Jexp —— dX' 2m X' tJ X' -E ' '+ — dy dy' K y, y', X, —K y, y', X, 6n y &n y' +
1

I

= exp —— dX' (2m (X')[U(X') —E]}'~'
1

x S 6n Jexp — dydy' x y, y', X2 -z y, y', ~, 5n y 6n y' +''', 6 5
1

28'

where J is the Jacobian associated with the change
of integration variables S6$ to &X(t) &5n In.
(6.5), the first factor denotes the lowest-order
%KB tunneling amplitude; and the second factor
denotes the additional contribution due to the

neighboring paths.

l, u(x)

B. Contribution due to the neighboring paths

Z=- X~n J
xexp —— dy dy' z y, y', X, —v y, y', X,

x I!n(y)en(y')) . (6.6)

The contribution due to the integration over all
nearby paths around an MPEP is

FIG. 1. The potential U(X) for a tunneling configura-
tion.
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In principle, we can determine v(y, y', }).) by solv-
ing the coupled equations (5.26)-(5.28). In prac-
tice, however, this is too involved. %e shall
make here a further simplification. We assume
that R,(Q) near an MPEP is given by

respect to 5$(x, X) we have

U ~ &/2

R,(()=I d«'}2m(«')[U(«') —E]}'«' («.7)

Note that Eq. (6.7) is exact along an MPEP. Here,
we assume that we can use the same functional
form for the neighboring paths as well.

Now, we want to express our result in terms
of 6$,(x, A. ) directly. Define

&'R, ((t) }

@=go(x, )t)

2U E ~/2 g

(6.11)

Introducing a, new parametrization r = r(X) via

as the second functional derivative of 8, with

respect to an arbitrary variation 5$(x). Then,
we have

d7' m(X)
d}). 2[U(A. ) —E]

we obtain

(6.12)

«(«', )",«) f d«'d«) d«" d«' j„&,. &(«', «)

x K(x' }(.' ~ x" g") (6.9)

8~&]& BV
5R, = d7'5$(x, r), —V'(())p, (6.13)87'2 8(f)

and consequently

and

dy dy'en(y)en(y') ~(y, y', X)

ey(x, T) 87' +
By

Differentiating (6.14) once more, we have

(6.14)

dx' dA. ' dx" dX" 6, x', A.
' ey(x, ~)ey(x', 7')

x }((x~,V;x",~")ey,(x",~") .

(6.10)

It is straightforward to compute K in the neigh-
borhood of a,n MPEP. Varying Eq. (6.7) with

V'+ 5x x'by9'v
Br' 8(I)

(6.15)

Substituting (6.15) into (6.10) and (6.6), we have

1
Z = i $5/, Z' exp-

2h

T2 92
dT dx ey, (x)

BT
1

82 82/'

, , +, , ey„(x), (6.16)

with

(6.17)

and

g2y
Z= det'—

BT Bx2 8/2 (6.18)

82 g2 g2y -l/2
P = e "/~'"o'~o) det'

Br Bx2 8$

(6.19)

and J' is the Jacobian associated with the trans-
formation&5$-&5/, X)A.(t). We can write Z and
P symbolically as

This is the same expression (unrenormalized) as
obtained by +allan and coleman. "' Even though
the above expression is identical in form to the
Euclidean action, it is not the analytical con-
tinuation of the Minkowski action into the Eucli-
dean region. The parameter v=r(X) describes
the time dependence of the tunneling field con-
figuration in the Minkowski space. It has nothing
to do with the Euclidean time variable.

Several remarks are in order: (1) The kernel

Q2 Q2 $2+
Br Bx 8/2

is a positive semidefinite operator. It implies
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that the contribution from any individual path is
always smaller than (or, in exceptional cases,
equal to) the contribution due to the MPEP.
(2) It is known that the vacuum tunneling can
happen at any space-time region. Thus one ex-
pects an explicit VT factor in computing the vac-
uum tunneling amplitude. This VT factor comes
from the contributions due to integrations over
the zero modes associated with the space and
time translations. For a detailed analysis of these
zero-energy translational modes, we refer the
readers to the paper by Gervais and Sakita in

Ref. 7. (8) Depending on the interaction, the
integration over D(6$,) may lead to ultraviolet
as well as infrared divergences. It is expected
that' the ultraviolet divergences will be removed
by standard mass and wave-function renormali-
zations.

C. Free energy

The contribution due to the neighboring paths
has the form

It is important to note that (6.20) has the same
functional form as the partition functiori in sta-
tistical mechanics, where w is identified as the
inverse temperature. The interaction energy has
an explicit 7 dependence. It is convenient to de-
fine, to within a renormalization factor,

1
Z( ) JDI!Q,Z' *p —— ii B)'

1

1
=- exp —— dr'E(r')

1
=- exp — B(r)— (6.22)

1P = exp —— dX(2m(X)[U(X) —E]]'~'
5

where E(v') represents the free energy, and 8
the Boltzmann factor. We can now write the total
tunneling amplitude as

1
Z(r) = $5$,Z' exp ——1'

dr'8(5@, r')
1 v2

dry(7) .
8

(6.23)

with

(6.20) For small F, we can absorb the second term into
the first term by modifying U to an effective
U ff Indeed, if we define

8 82V
a(6y, r) = dr6y,-, V +872 BQ

(6.21)

U, ff =—U+F,

we have

(6.24)

N. '[2m(X')(U«Z)] "2= dA. '[2m(U —E)]' '+ dX' 2F +0 F

T

dA. ' [2m(U —E)]i/2+ d 7 IP(rI ) +0 (P2) (6.25)

P=exp —— dX 2m X U«E (6.26)

as desired. Thus, the overall contribution of the neighboring paths is to modify the classical energy U
associated with the path to the total energy U,«. The above finding suggests that an improved method of
obtaining the MPEP with corrections from neighboring pa. ths is as follows: We choose a path Q = Q(x, &),
and compute both the classical energy U and the renormalized free energy E due to the neighboring paths.
Then, we determine the MPEP by requiring that the tunneling amplitude P in (6.26) be maximal. This
improved method is closely related to the self-consistent Hartree approximation applied to the tunneling
problem.

To make the connection to the Hartree approximation, we first derive the equation for the improved
MPEP through the variation of (6.26), giving
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9 2U —E ' '8 2m
(6.27}

We express our result in terms of the paramet-
rization r defined in (6.12), and obtain the equa, —

tion for the MPEP Qo(x, 7) as

8'y, 8'y, BV(y, ) ea(y, )

Using the definition of 8 in (6.22), we differentiate
8 with respect to ((() and obtain

ey(x, ~) Z(~,) ' ' ' By'

Equations (6.31) and (6.32) are the realiza, tion
of the Hartree approximation in the familiar field
operator forms.

We can extend the above interpretations to study
the- contribution from the neighboring paths of a
classical orbit (in the classically allowed region)
as well. We can write the equation of a classical
orbit (t),(x, q) as [see Eq. (3.40)]

BV 8'y, 8'y, BV(y,)
Bq2 Bx2 8(t) ~ Bq~ Bx 8((t)

C

xexp —— d7 B
1

2 g 3

.' &(0 -4.)'&
8

(6.29)

where

(((' —(' ) ) -=—f&~4 & (&')*) &P('——xI''(») .

(6.30)

Now, we can relate the last two terms in Eq.
(6.30) to the expectation value of BV/8$ via

Bv(e) Bv(e.) 8'v(e. )

(6.ss)

For a classical orbit, . the quantity which is the
analog to the free energy I" in the tunneling case
is the zero-point energy, E,(Q,), in the presence
of Q, . We can express E, symbolically as

Eo = g —,
'

h(()((t),)-P —,
' h(d(vacuum) . (6.34)

all modes

VII. DISCUSSION

A. Non-Abelian gauge theories

We can generalize the method developed in the
previous sections easily to the non-Abelian gauge
theory described by

.-' '*"~'
(~ —( )*'")+

2 By3 o + with

, Tr(F„„)',I
2g

(7.1)

Bv((t'0) 1 'v(4', )
((~ ~ )2&

8$ 2 8&b'

BV(y,) BE
(6.sl)

8(t) 6$

where we have used the fact that (Q —(t)0& =0. Thus
we can interpret (6.26) as the expectation value
of the field equation

F „=8 A„—B,A + —, [A,A.„].
1

In the (temporal) gauge

gO 0

we have

Z, =ZO„= 8'A.„

(7.2)

(7.3)

(7.4)
8'y 8'y BV(y)
BT Bx 8$

(6.32) an&

under the Gaussian fluctuation. It is well known
that the use of Gaussian fluctuations as trial func-
tions is equivalent to the Hartree approximation.

1E =-Fa) = 8.&) —8)&a+ —l&a»i]

(k, I,I cyclic) . (7.5)



18 VACUUM TUNNELING AND- FLUCTUATIONS AROUND A MOST. . .

A = A(x, &(t)) ~ (7.6)

Most of the results that we have obtained in Secs.
II-VI are still valid after we make the identifica-
tion

A path in the function space is defined by the field
configuration

neling field configuration (MPEP) in the Minkowski
space, as demonstrated in Ref. 4.

We can evaluate the contribution for the nearby
paths in an analogous way. The total tunneling
amplitude after including the contribution from
the neighboring paths is

1P =~ exp ——R,
2 3 BA

m(X) = —, d'x Tr
g BX

(7.7)
where

and

U(A. ) = —, d'x Tr B'. (v.8)

dr m(A)
dX 2[U(A. ) —E]

we find that the field configuration associated
with the tunneling region obeys the equation

(7.8)

82

BT2 A
g +DkFftl

where D, is the gauge-covariant derivative.
Define the field

(v. io)

In terms of the new parametrization 7(t) defined
by

ft, = dX(2m(A)[U(X) —E]P~' (7.16)
1

is the tunneling exponential factor associated with
the MPEP, and

t™ Q2
Z= +'A/exp -2 k g+2 kl

D 5, I!AI'„. (7.)7)
k

In Eq. (7.17), &'A contains a gauge-fixing term
which we have omitted for notational simplicity,
and J is the Jacobian associated with the trans-
formation gOA to K)'ASK(t). As we have done
in the scalar case, we introduce a Boltzmann
factor 8 and a free energy F by

BA,
8j (7.11) Z =e a")= exp — dT'F(7') (7.18)

which is related to the electric field by

we have

(v. 12)

We can express the total tunneling amplitude
compactly as

X2

P =exp — dA, 2prl A. U+F —E ' ' . 7.19
it~

D.F.r+DkFki =0 (7.18)

where D, =s/svin the A', =O gauge. One rec-
ognizes that (7.13) is the Euclidean field equation
for a non-Abelian gauge field. In Ref. 4, we
showed that E and 8 fields associated with the
MPEP obey [see Eq. (7.1) in Ref. 4 and note that
the energy E =0]

Just as in the scalar case, we can obtain an im-
proved MPEP by applying the variational prin-
ciple to the total amplitude P. The resultant field
equation for the MPEP obeys

8'A
87 2 +( k kl ) 2 + k k)87

m(X) &"~

2[U(~) E] (7.14)

1 82

(7.20)
which implies that

(7.15)

which has a simple mean-field interpretation.

B. Coupling to a fermion field

Equations (7.13) and (7.15) imply that the field
tensor F„=S» F» =B, expressed in terms of
the 7 variable, obeys both the Euclidean-type non-
Abelian gauge equation and the self-dual con-
diton. ' This explains why a formal replacement
of r-X(t) in a self-dual Euclidean instanton so-
lution (A, = 0 gauge) gives rise to a maximal tun-

If the scalar (or gauge) field is coupled to a
fermion field tJ), both the tunneling amplitude
and the MPEP will be affected by the presence
of this field. Consider a simple system with the
I.agrange density

& = *'(8,( )'-)'(() + ()
2

)(-I) t)-(l i)i)(, (( 2()
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(Vy)' V(y)+-,' iq' —g ~
BX

-i4 y;9;0 44-~ gP-44 . (7.22)

Treating X as a canonical variable we then get
for the canonical conjugate momentum

P, —.= dx= —l +-, dx g —0),
BL '9/2 ~, . t 9

BA.

where g is the fermion field. To find the MPEP
in Q a,nd g, consider the field configuration
Q(x, X(t)), g(x, X(t)) which depends on the single
parameter X(t). Then as a function of X(t) a,nd

X(t) the Lagrangian becomes

Note that R, is now complex. It indicates that a
single X(t) parametrization for Q, P, and tjt may
not be adequate. We shall assume tentatively that
the equations determining the MPEP now in Q, P

space may be obtained by varying R, with respect
to Q and g. As before the first term gives us
the Euclidean-type equation for Q(X) that we dis-
cussed before except that U„(A) gives an extra
contribution due to the coupling of P with Q.

Furthermore, U~(X) and Q when varied with
respect to g give us a Euclidean-type equation
for g coupled to Q. Thus the MPEP in Q —P space
must satisfy the following Euclidean-type coupled
equations [after changing to the parameter given
by Eq. (6.12) with U(X) =U~+U~]:

and the Hamiltonian then reads

(7.23)
82

, Q(x, 7) yV'Q(x, r) —V'(&f&) =gpss, (7.32)

2.
H =P~X —L = dx ——X~+ U~(X)+ U~(X),

8
y, —+iy, V, +m+. gg(x, 7') (=0, (7.33a)

(v.24) $ —y, ——iy, V,. +m+gP(x. , r) =0. (v.ssb)

ol

H= (P, q)'+U, (~)+U, (~)
1

(v.25)

where we have defined

U~(X) = dx([VQ(x, &)]'+V($(x, X))j, (7.26)

U&(X) =. dx [i P y;V; g(x, X) + rn gg(x, X) +gQ gt/r],

(7.27)

S~ 8~ )' (v.28)

(7.28)

One could obtain H in Eq. (7.25) by first con-
structing H(P, Q) from Z of Eq. (7.21) and then
substituting Q(x, X) and g(x, X) in that expression.
To get the correct momentum canonical to A. (t),
however, one must work with L of Eq. (7.22)
directly to obtain Eq. (7.23) and hence Eq. (7.25).

For a tunneling transition at constant energy
E we have now

P~ —Q = i(2m(X) [U~(X) + U~(X) E)]]'~', (7.30)

82
2 y, (x, T) + V' y, (x, 7') —v'(y, ) = 0

y (v.s4)

and treat the whole fermion field g as a fluctuation
around Q, in the same manner one treated 5$ in

Secs. V and VI. Doing so one must introduce the
quantity R~ corresponding to K introduced in Sec.
VI [see Eq. (6'.8)],

6'R,
K~ = (7.35)

Using Eq. (7.31) as an approximation to R, around
the MPEP and performing the differentiation with
respect to the fermion fields one obtains

x&—-y —+i y,. V. ~gg, +m, (v.36)

so that the correct wave functional has now the
extra contribution

It is important to note that (7.33b) is not equivalent
to the Hermitian adjoint of (7.33a). The latter
can only be obtained by varying R,*. The only
solutions which are consistent with both (7.33a)
and (7.33b) are /=0. This leads to the usual
MPEP solution. One may now take as the MPEP
the solution Q =Q, (x, X), /=0, where P, satisfies

so that the WEB tunneling 'amplitude becomes to
first order e o with

X2

R = dX /2m(A. )[U (A. ) + U&(A. ) —E]]'~'

9
xp — &*S r—+ «p;+su. ,+ ) C (7.37)

X2
dx Q.+

1

(v.sl)
Upon matching wave functionals one must integrate
out the fermion fluctuations to obtain the Fermi
contribution to the tunneling amplitude in the form
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9
exp — d~F~~ =exp -Trln y' —+iy, e;+~+g

1

9
exp -Tr ln y —+i y . 8.+ ms (7.38)

where Tr indicates a trace in spin as well as
(r, x) space, a.nd

where U~ and m(&) are the same as in (7.26) and
(7.29), and

negative
energy states

~,(4.)— ~,(0) .
nega lve

energy states

dx(ig)~y, y, v, y. )+. mP'y, y'

The full amplitude then reads

where R is

R= d& 2m& tf „& E

(v.39)

(v.40)

+g4 0'r, 4'), (7.45)

(7.46)

with

U„f(&)= U(X) +Fo(X) +Fq(X) . (v.41)

U(X) is the classical potentia. l energy defined
in (4.3), F~(X) is the free energy defined in (4.22),
and F„ is given above.

Thus the fermions contribute an additional en-
ergy to the tunneling potential which describes
the change of negative energy sea in the presence
of &f&,. In the case of a massless fermion field
the contribution due to F~ can be extremely im-
portant and it may modify the MPEP significantly.
In fact in gauge theory where the tunneling in-
volves a change in winding number it is known
that F& for massless fermions is logarithmi-
cally divergent due to the necessary presence
of zero modes of the Euclidean Dirac operator
that appears in F&."

In general one can then obtain a modified MPEP
by applying the variational principle to R as given
in (7.40). This improved variational calculation
leads to a modified field equation

„;+(, )+~&)t)=0 (7.42)

as given in a Hartree approximation.
It is interesting to note that to the one-fermion-

loop approximation, we may replace the Lagrange
function ('l.21) by

.' (s„e)' &(0)—+0"r, (i-& m) 0'—
-g )l'" r, )t"0, (7.43)

H' = (p, —Q ')'+ U (A.) + U~(X),
1

(7.44)

for they both lead to the same ferm&on contri-
bution F~ in (7.38). Then, under the same ap-
proximation by considering the field configurations
)))) (x, &(t) ), P(x, &(t)), we arrive at a slightly dif-
ferent effective Hamiltonian

Now, Q' is purely imaginary. The new WKB tun-
neling amplitude becomes e ~o with

dA. 2m X U A. +U„'X —E

d)). Q '. (7.4'l )

R,' is now real. The equation determining the
MPEP in Q, P' space can indeed be obtained by
varying Ro with respect to P and g', giving

82
Q(x, r)+ O'Q(x, v) —V'()1) =g P' y, )1)', (7.48)

9
'Y,

&
+ir; &;+m+gQ(x, T) t/r'=0, (7.49)

g 'r, -y, —ir(&, +m+gp(.x, r) =0. (7.50)

Equations (7.48)-(7.50) are identical to the Eucli-
dean equations of motion of the system.

We can apply the same procedure to gauge the-
ory. In particular, the MPEP is determined by
the following set of Euclidean-type equations:

„D„F„=g
'~ y,y„t',)t), , v = (r, 1,2, 3)

(yo D, +iyq D;) g' = 0.
(7.51)

(7.52)

It is well known" that Eq. (7.52) always has
solutions if the gauge field carries a nonzero
winding number. Furthermore, these solutions
are eigenstates of y, with an eigenvalue equal
to the sign of the winding number. This property
means, however, that the source term on the
right-hand side of Eq. (7.51) always vanishes for
these solutions. Thus there is a family of
MPEP's with the same action carried by a gauge
field component that satisfies a sourceless Eucli-
dean-type equation and a fermion component sat-
isfying Eq. (7.52) which contributes zero action.
This degeneracy of MPEP's reflects the existence
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We can work out the Lorentz transformation
property of the wave functional g(Q) defined in
Sec. II Bformally. Consider the system

2 = —,'(BOP)' ——,'(V(f))' —V(&j)) .

The stress tensor of the system is

(7.53)

of the fermion zero mode inasmuch as the de-
generacy of pseudoparticle action with respect
to position or size reflect the gauge field zero
modes. The significance of this MPEP degeneracy
and its relation to tunneling in gauge theory will
be discussed in a forthcoming publication.

C. Lorentz transformation

dx x"T'" x"1'" (7.60)

The time-independent wave functional g(Q) obeys

+p ~ +

(7.61)

I
V Q P(Q) =P P(Q) . (7.62)

Under a Lorentz transformation, g(Q) transforms
to

(7.63)

Tllv —s gQ soy ggv g

In particular, we have

-T"= 2 0'+ r'(V0)'+ I'(4)
T&&k —

P

eked

In the Schrodinger representation, we have

@2 g 2

T = — — + k(VQ}'+ V(Q),
2 5$

Tok — 6k@

(7.54)

(7.55)

(7.56}

(7.57)

(7.58)

It is easy to see that g' is also an eigenstate of
P". The new eigenvalues P'"= (E', P—') are the
Loreniz transform of the old eigenvalues P~
-=(E, P}. For the vacuum states, we have P'=0
which implies P'I" =0.

We can obtain the vacuum tunneling amplitude
from the WEB wave functional as outlined in
Sec. III. For gauge theory one. finds that boih
the instanton number and the tunneling amplitude
are proportional to the total phase space VT. The
transition amplitude per unit phase space (or,
per unit instanton) is then Lorentz invariant.

The energy-momentum, and the angular momen-
tum operators are
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