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We develop a model in which hadron production in the true asymptotic region proceeds via the exchange of
a factorizable singularity at J = 1, which implies a sensible meson spectrum. The rise of the hadronic total
cross section and the inclusive plateau are ascribed to threshold efFects of this mechanism, which is estimated
to take efFect at Fermilab energies. In the true asymptotic region the total cross section decreases like a
small power of the rapidity, while fireball structure appears in the one-particle distribution. Both the
exclusive (multiperipheral) and inclusive (Mueller) approaches are exploited, The discussion is in the language
of statistical mechanics and our key assumptions are (i) existence of sensible thermodynamic limit, (ii) Koba-
Nielsen-Olesen scaling, and (iii) factorization. We show that the nearest-neighbor interaction implied in the
Feynman-Wilson "gas" by our factorizable singularity is responsible for its critical behavior at infinite
rapidity.

I. INTRODUCTION

In a recent paper, ' hereafter referred to as I, it
was pointed out that the Koba-Nielsen-Olesen
(KNO) scaling' assumption implies that when the
true asymptotic region is reached, the Feynman-
Wilson (FW) gas' undergoes a phase transition.
The hadronic gas is looked at from the grand-
canonical-ensemble point of view, and is assumed
to be at constant temperature. As is the case
with any classical system, one has to strictly
consider the infinite-volume (infinite-total-rapid-
ity) limit in order to reveal the mathematical
characteristics of the phase transition, since at
finite total rapidity the grand partition function
is a polynomial, with positive coefficients, in the
fugacity variable and the pressure cannot develop
any singularities on the real fugacity axis. '
Therefore, the infinite -rapidity limit considered
here may become the source of undesired diver-
gences. The way out proposed in I was to promote
Yang and Lee's theorem' of classical statistical
mechanics to a fundamental postulate in hadron
physics and require that the F% gas have a finite
and not identically vanishing analog pressure at
infinite rapidity. This is certainly true in the
context of a factorizable multiperipheral model
with simple poles. The hadronic phase transition
is, in general, of higher order. Results very
similar to those obtained by the absorptive-model
cutting rules' io Reggeon field theory' are found
in I, unless the KNO scaling function decreases
too rapidly to zero. In the latter case, the results
of the simple two-component (multi-Regge plus
simple diffraction) picture' are resurrected,
namely a first-order phase transition and a log-
arithmic multiplicity growth.

In the present work we shall investigate the im-
plications of the "macroscopic" properties of the

FW gas found in I from grand-canonical-ensemble
considerations, on the detailed form of the
"microscopic interaction' between individual
"molecules" of the hadronic gas.

We shall assume that the truly asymptotic dif-
fractive contribution to hadronic collisions, which
is responsible for the critical behavior of the FW
gas, is built up by multiperipheral diagrams in
which a factorizable singularity is exchanged.
The structure of this singularity is simply related
to the form of the interaction between FW gas
nearest neighbors, which because of factorization
are only allowed to interact. We then deal with a
one -dimensional system with nearest-neighbor
interactions only, hence the macroscopic infor-
mation about the system, which is summarized
by the asymptotic behavior of the KNO scaling
function, uniquely determines the dynamics. '
We find that the "potential energy" of a pair of
FW gas nearest neighbors has a particularly
simple and natural form, with a power-behaved
hard core and a logarithmic long-range part re-
sponsible for the critical behavior of the hadronic
gas, as revealed from macroscopic arguments
in I. There emerges a well-defined model for
asymptotic hadron physics in the longitudinal reg-
ion. In particular, we find that before critical
phenomena do strictly appear, the symmetry pos-
sessed by the lowest-potential-energy state of an
FW gas molecule in the potential well of its nearest
neighbors is spontaneously broken, hence conden-
sation phenomena (clustering) appear in the FW
gas at finite rapidity. The two-body interaction
we found, supplemented by s-channel unitarity,
requires the existence of a complicated Pomeron
singularity with intercept at exactly unity, which is
accompanied by an infinite series of complex- con-
jugate pairs of daughters. We predict that in the
true asymptotic region the hadronic total cross
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sections slowly decrease to zero, while fireball
structure appears in the one-particle inclusive
distribution.

The plan of this paper is as follows: In Sec. II
we formulate the FW gas analogy, develop the
macroscopic description of the hadronic gas in the
grand canonical ensemble and summarize some
of the results in I for further reference. In Sec.
III, from the leading asymptotic behavior of the
KNO scaling function together with finite thermo-
dynamic limit and faetorization assumptions, we
determine the form of the potential acting between
FW-gas nearest neighbors. Its releva, nce to the
meson spectrum is investigated in Sec. IV, while
in Sec. V we present our solution to the problem
of hadron physics in the asymptotic longitudinal
region. In Sec. VI we look at the FW gas from
the inclusive point of view and check the self-
consistency of the scheme, proving that both the
ma, croseopic and microscopic approa, ches lead
to identical behaviors for the moments c~. Final-
ly, our conclusions are given in Sec. VII.

points and a general multiperipheral model for
hadron production where the transverse variables
are averaged. Of course, the analogy may be ex-
tended to include many-body forces as well. ' In
the following, we assume the FW gas to be at
constant temperature, and set P =—1.'

We define the grand partition (generating) func-
tion by

q(e, F)=P ~"o„(F)/~,(Y),
n=O

(2. 3)

where we have introduced the para, meter z which
is the fugacity of classical statistical mecha. nies.
Our normalization is such that Q(l, Y) = 1. Next
comes one of our most crucial assumptions,
namely that the hadronie gas obeys KNO scaling:

(n)v„(F)/o, (F) = ((x), x= n/(n) . (2.4)

Hence, at large rapidity we obtain the following
integral representation for the grand pa, rtition
function, in terms of the KNO scaling function
q(x):

II. FEYNMAN-W'ILSON GAS ANALOGY AND KNO SCALING

The configurational partition function of a one-
dimensional classical system of n pa.rticles con-
fined in a "box" of total length L may be written
as

Q(w) = e "((x)dx, w=(n)inc.
0

We next define the quantity

1
P(z, Y) = —in@(w),F

(2. 5)

(2. 6)

1 L L
Z„(L)=—, dx, dx„exp —p &(x„x,)

n t 0 0 t& j=O

(2. 1)

where V(x, , x~) is the potential energy of the pair
of particles at positions x,. and x~, and P= (kT) '.
The factorial accounts for the correct Boltzmann
counting, and since classica, l particles are dis-
tinguishable, it disappears when we integrate over
the subregion 0 & x, & x, & x„~L. We imagine
the end particles to be rigidly placed at positions
x,= 0 and x„.,= L but allowed to interact freely
with the rest of the particles in the system. On
the other hand, the n-particle production cross
section in the most general multiperiphera. l mod-
el, where the total rapidity available is Y and all
transverse dimensions are integrated over, may
be written as

(F) e-2F r r tl

—(16 syn+i
' ' '

dye ' '
dyn „„,~ (yg~yy) ~

0 j&j=O

(2.2)

where r(y, , y~) is an effective propagator corre-
sponding to the object exchanged between particles
with rapidities y, and y~. The target and projec-
tile have rapidities y, =0 and y„„=F, respective-
ly. Equations (2. 1) and (2.2) reveal the formal
mathematical analogy' (x, —y„ I,—F) between
a one-dimensional classical system of material

and as explained in I, we require that in the ther-
modynamic limit Y-~, it converges uniformly to
the finite and not identically vanishing analog
pressure P(z). This is the fundamental require-
ment which gives physical content to the formal
mathematical analogy expressed by (2. 1) and
(2.2). In the context of a factorizable multiperi-
pheral model with internal coupling constant gMp,
(2. 3) may be written as

o,(g, F)=Q(g'/g~', Y)~,(g p, Y), (2.3')
where g'= zgMp' is an "unphysical" coupling con-
stant for z1. We thus see that the requirement
of finite thermodynamic limit in this model is
equivalent to the requirement of Regge-behaved
total cross section when the coupling constant is
continued from its physical value g„p, and the
pressure is related to the continued Regge inter-
cept, P(z)=e(z) —e(a=1).

For further reference, we next list some of the
results obtained in I which we shall heavily rely
upon. Without restricting the genera, lity, the
KNO scaling function is written as

q(x) =g(x)e~[-f(x) t, (2. 7)

where the function g(x) is bounded by a power of
x, and f(x) must increase faster than x for large
x, in order that the grand partition function we
constructed converges for z&1. It can then easily
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be seen' that zn the Y- ~ 1~mat the asymptotic be-
havior of g(x) only, uniquely determines the (mac-
roscoPic) analog Prcssure P(z) of the FW gas, as
a function of the fugacity. Specifying the asymp-
totic behavior of f(x) for large x to be

f(x) = nx", (2. 8)

where cy is a positive constant and z &1, it is ob-
tained in I for large Y that

'1
7 [-(const)»lwl + o{I)] I«& I,

P(z, Y)= {'

u &"
n(~ —1) —

l
+0(lnw) if z)1,

~Y nit". )

order moments of the multiplicity distribution,
it is found that

c, -={n')/{n)' ~ (const) X p"~ . (2. 15)

All these results are checked in I to be consistent
with the results obtained with the absorptive-
model cutting rules' f."om Reggeon field theories. '
In particular, the quantity I/v is identified with
the critical exponent g of Beggeon field theories
and is essentially the only parameter to appear
in all our considerations in the rest of this paper.

Finally, we want to throw some more light onto
the analog significance of the exponent g. We
consider the ensemble average

(2.8) N(z, Y) =z —In@(w),
8 (2. 16)

{n)=cY' ", (2. 10)

where c is any positive constantandg= I/v, hence
0 &q&1. Moreover, for the analog pressure we
have

where v= v/(x —1). In fact, the result P(z&1,
Y-~)= 0 is independent of the particular asymp-
totic behavior of g(x). Thus, requiring that the
thermodynamic limit does exist and also that
P(z) $0, we obtain a definite prediction for the
asymptotic behavior of the average hadronic
multiplicity, namely

P( , Y) =-Y = »„,P(z, Y),N(z, Y) 8
(2. 17)

which in the Y-~ limit becomes the analog den-
sity p(z) of the FW gas. Eliminating z between
(2. 9) and (2. 17), we obtain the equation of state
of the hadronic gas, which for Y-~ reads

(2. ie)

where N(1, Y) =—(n) is the average hadronic multi-
plicity, and define the quantity

0 lf 8&1
~

e

( —inc) if z&l

The constant b is defined by

[a(~ —1)]"",
K —1

(2. 11)

(2. 12)

Since the critical values of pressure and density
of the FW gas are both vanishing [P(z -1, Y- ~)
=0, P(z-l, Y-~)=0] from relation (2. 18) we
see that the exponent ~ is naturally identified with
the critical index 5 defined in statistical mechan-
ics. ' This index governs the relation between the
"order parameter" and the "ordering field" near
the critical point. E.g. , for a gas-liquid trensi-
tion, we have

a=ac ". (2. 13) p —p, ~ (P P,)'~', - (2. 18')

f(x) = o,x"(lnx)", (2. 14)

then the behavior (2. 10) of the multiplicity is
modified by a power of ln Y, but the pressure
(2. 11), and therefore the critical behavior of the
hadronic gas, remains unchanged. If f(x) in-
creases for large x faster than any power of x,
or if g(x) has an explicit cutoff, one obtains the
above results with x-~ (q= 0). For the large-

The result (2. 11) shows explicitly that the pres-
sure of the FW gas is a continuous and nondecreas-
ing function of z, but since it is manifestly non-
analytic at a=1 and v&1, the hadronic system
undergoes a higher-order phase transition, which
is a X transition unless v is an integer. When
v-~, a first-order phase transition is obtained,
while (n)=cY. If instead of (2. 8) one considers
the more general asymptotic behavior

where p, and P, are the critical values of density
and pressure. For a ferromagnetic transition,
the same relation reads

M ~B"' (2. 18")

where 8 is the (external) magnetic field and M is
the (spontaneous) magnetization.

III. TWO-BODY ANALOG POTENTIAL

IN THE HADRONIC GAS

In the preceding section, we briefly reviewed
the implications of KNO scabng together with the
requirement for a sensible thermodynamic limit
on the macroscopic properties, namely average
multiplicity, pressure, and density of the hadronic
gas. We have seen that the appearance of a phase
transition will characterize the macroscopic be-
havior of hadron physics at infinite total rapidity.
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We now want to throw some light on the micro-
scopic form of the interaction among the FW gas
molecules, which gives rise to the critical be-
havior revealed macroscopically. We shall as-
sume factorization in the multiperipheral ladders
which buildup the asymptotic diffractive component
of hadron physics we will be concerned with.
From E(ls. (2. 1) and (2.2) this means that only
nearest-neighbor interactions will be allowed in
the hadronic ga,s. On the other ha.nd, since we
are dealing with a one-dimensional system, it is
well known from classical statistical mechanics'
that we should not expect it to exhibit critical be-
havior, unless the intermolecular potentia, l is of
long range. Hence, it is no longer instructive to

think of a one-dimensional "gas" as the analog
of longitudinal hadron production, since long-
range interactions between nearest neighbors only
do not make proper sense in a classical gas (but
for simplicity we shall continue to speak of the
FW "gas"). We may still think at the classical
level of a one-dimensional system of material
points connected with light strings, which will be
required to have peculiar mechanical properties.
The end points of the system are rigidly placed at
positions 0 a,nd F and form the walls of the con-
tainer of the system.

Under these circumstances, the configurational
partition function (2. 1) of the system may be ex-
pressed as

Z (Y) dy e-&&r-»»& dy e-&'(»&-»»-(& I ~ ~ dy e-&(»2»1&e ((&1&
n n n-1 1

0 0 0
(3.1)

v„(Y)/27(g' —Z„(F), g= G„~'/g„p

g„~'e "~'(y)/16((' —exp[-V(y)],

(3.2)

(3.3)

where v(y) is the effective factorizable propagator
relevant to a,symptotic multiperipheralism and we
have explicitly introduced the external (G„~) and
internal (g„p) coupling constants appropriate for
the multiperipheral graph. We obviously have

v, (Y)/27(g' =- cr„(Y)/27(g'= exp[-V(F)] . (3.4)

Now, E(l. (3.1) is simply an iterated Laplace con-
volution and it is equivalent to'

e 'rZ„(F)d F=lf""(s), (3.6)

where the Laplace transform K(s) of (3.3) has
been introduced, i.e.,

dy exp [-sy -V ( y) ]=K(s) . (3.6)

The parameter s is known from statistical me-
chanics' to be directly connected to the pressure
of the system: s=PP=P. In classical statistical
mechanics, given the intermolecular potential in
the system under consideration, one calculates its
partition function from (3.5) and (3.6), hence, all
of its properties follow. Here we shall follow the
reverse process; in fact, given some information
about the partition function of the FW gas through
the a,symptotie behavior of the KNO function, we
shall comPletely determine the form of the two-
body potential V(y). It is because we deal with a

Thus the mathematical analogy between (i) a fac-
torizable multiperipheral model in which only
longitudinal phase space is available and (ii) a one-
dimensional cia,ssical system with nea, rest-neigh-
bor interactions only is realized by the identifications

o', (F) =u(Y)exp[-h(Y) ],
where

limb(F) = 0,

(3.7)

(3.8)

and u(F) is bounded by a, power of F for large Y.
(iii) The average multiplicity is also bounded by

a power of the rapidity, in fact (n) & Y in order to

one-dimensional system with nearest -nei ghbox
interactions only (factorization) that the macro-
scopic properties of the system (described by the
asymptotic behavior of the KNO scaling function)
uniquely define the dynamics. Let us also point
out that it is not a priori certain that only nearest-
neighbor interactions can give rise to a, prescribed
critical behavior of a classical system. In fact,
it is not certain that any sort of potential interac-
tions can result in it at all.

We shall presently show, however, that (i) fac-
torization, together with (ii) the re(luirement that
hadron physics possesses a, sensible thermody-
namic limit, and (iii) the asymptotic behavior of
the KNO scaling function are enough to determine
uniquely and unambiguously a very natural two-
body potential which does gives rise to the critical
behavior of the hadronic gas found in I.

We now start the calculation of the analog po-
tential V(y) by collecting together all the pieces
of information we ha, ve about the structure of the
partition function of the FW gas, namely'.

(i) We have KNO scaling (2.4), and the KNO
scaling function has the form (2.7), with f(x)
bounded by a finite power of x, since otherwise
we ha, ve to dea, l with an extreme and rather un-
interesting case as explained in Sec. II.

(ii) For the total cross section we shall assume
the behavior
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have a finite thermodynamic limit as found in I.
Consequently, the partition function of the FW gas
may be written as

Z„(F)= ', g(x)
c,(F)
2' n

—exp[-f(x) -h(Y)],u(Y)g(x)
27]g'{n)

or, more compactly,

Z„(F)= G„(Y)exp[-F„(F)],

{3.9}

(3.9')

s= -E„'(Ya). (3.11)

Considering the n-~ limit, the kernel K(s) is
found to be independent of g(x) and u(Y):

sY +F„(Y)Kjsj = lim exp
fl ~'e n

(3.12)

It is clear from this relation that an arbitrary
asymptotic behavior of the KNO scaling function
is not in general consistent with factorization, in
the sense that the right-hand side of (3.12) is not
independent of n for an arbitrary function E„(Y).

We now consider explicitly the asymptotic be-
havior (2. 8) of f(x) which allows for thermody-
namic limit if the average multiplicity has the
asymptotic behavior (2. 10). By virtue of (2. 8)
and (2. 10), relation (3.11}becomes

[s + h'(Y, )] Y,"= ( ~ —l)an", (3.11')

where the constant a has been defined in (2. 13).
This shows that F,-~ for n-~; hence, because
of (3.8), the saddle point F0 is determined inde-
pendently of the particular form of the total cross
section in the n-~ limit:

Y,= [(~ —1)a/s]'i "n. (3.13)

We note that at the position of.the saddle point we
have for large n

{n}-Y,'"-n'"«n. (3. 14)

with an obvious definition for the functions G„(F)
and F„(Y) which are then both bounded by powers
of both n and F.

We next estimate the kernel K(s) with steepest-
descent approximation to the integral in (3.5).
The result is

2m i i 2 G &2))) &( YK~'is =
E„"(1;)) I~ (2 )!I ()'„"();)]"]

x exp[-s Y, -P„(Y,)], (3.10)

where the saddle point FD is defined by.

The constant 5 has been' defined in (2. 12). If
Z„(Y) (&(: Y'x'e " (y, 5 constants), the result (3.15)
may be checked by direct integration of (3.5), to be
exact, in the n- limit, for g = —,

' or s = 0. As al-
ready discussed, the fact that K(s) was found inde-
pendent of n means that the asymptotic behavior
(2.8) of the KNO scaling function is indeed consis-
tent with factorization. Note that the condition
for "mechanical stability" of the FW gas, namely
BP/(] Y(0 which indeed follows from the equation
of state (2; 18), guarantees that the second deriva
tive of the exponent in the integrand of (3.5) with
respect to F is negative, which is necessary in
order that the steepest-descent approximation be
sensible.

To conclude this discussion, it is worth noting
that the relation"'

1
dy e-Py-v'(y )

Q

(3 6')

which holds quite generally in one-dimensional
systems with nearest-neighbor interactions and
uniquely interrelates the macroscopic pressure
P=P(z) of the system to the underlying dynamics,
is equivalent to our Eqs. (3.6) and (3.15). Indeed,
inverting the expression (2. 11) for the pressure
of the FW gas which was determined by the asymp-
totic behavior of ]{)(x) only, we obtain

—= exp(-5P'-") =K(P) .
8 (3.15')

This result is not surprising, since (3.6') is a
general relation, but it shows the consistency be-
tween our macroscopic and microscopic consider-
ations. In fact, we could have worked from the
beginning with (3.6') and (3.15'), instead of {3.5)
and (3.6), in order to determine the two-body po-
tential V( y).

Once we have determined, one way or another,
the structure of the kernel K(s}, we may now in-
vert the Laplace transform (3.6) in order to deter-
mine the two-body "potential energy" V(y}. We
have

exp[-V(y)]= . '"ds exp(sy —bs'"). (3.16)
PZ c-fw

The behavior of (3.16) for small y can be found by
the standard stationary-phase approximation tech-
nique. We choose a contour of integration which
passes through the point of stationary phase s, of
the integrand (c=s,), which lies on the real s axis
and is defined by the relation

K{s)= exp(-bs' ") . (3.15)

This means that the asymptotic behavior of g(x) we
considered is indeed only relevant to the calcula-
tion of K(s) in the n- ~ limit, which is then un-
ambiguously determined to be

y —(1-q)bs, "=0.
We find

exp[-V(y)], ,= [~(~ —1)a/2v]' 'y '"""'
x exp(-a/y" '),

(3. IV)

(3.18)
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which means that the potential has a. "hard core"
of the form V(y) -y' " (y -0), which also provides
the threshold behavior to the elastic cross section.
Note that the small y behavior (3.18) is continued
for ally if &=2.

We next convert (3.16) into an integral along the
cut of the integrand, i.e.,

00

exp[-V(y)] = — ds e "exp(-bs" cosy')
7f 0

xsln(bs sing, 1T) q (3.19)

where p, =1—g. Hence, expanding the last two
factors in the integrand of this representation in
a power series in s", we obtain the following ser-
ies representation of the potential:

1 ~ (-1)"b 'sinl p, w I'(f p + 1)exp[-V y ]= —Z $g+ j.

(3.20)

which is convergent for all y. The behavior of
(3.20) for y-~, i.e. , V(y) - (2-q)lny shows the
form of the long-range part of the potential which
is responsible for the phase transition of the one-
dimensiona. l system. It also shows the asymptotic
behavior of the elastic cross section v„- F "".

In Fig. 1 we show the result of a numerical
evaluation of the potential and of the elastic cross
section, using the exact series representation
(3.20). The particular numerical values of the

parameters we have chosen will be justified in
the next section. In the same figure, the station-
ary-phase approximation (3.18) is also shown as
a dotted curve. Although it does not have the
correct asymptotic behavior, (3.18) provides a
good numerical estimation of the potential for
rather large rapidities.

Let us finally remark that had we started with
the more general asymptotic behavior (2. 14) of
the KNO scaling function, instead of (2. 8), we
would have been led, as remarked in the preceding
section, to the same pressure (2. 11) and relation
(3.15'); hence, the potential (3.20) would remain
unchanged.

IV. MESON SPECTRUM

From the asymptotic behavior (2. 7) and (2.8) of
the KNO scaling function and the asymptotic be-
havior (2. 10) of the average multiplicity, which
in turn was dictated by the requirement of the ex-
istence of thermodynamic limit in the theory, we
were able in the preceding section to determine
uniquely and unambiguously the structure of the
analog potential which is relevant to nearest-
neighbor interactions in the F% ga,s. In order to
carry over to high-energy physics the techniques
of classical statistical mechanics, we had to con-
sider the limit of the production of an infinite num-
ber of hadrons. But since we assume that hadrons
are produced from an infinite factorizable multi-

C

5

4—

]0 20 30 50

FIG. 1. Two-body analog potential (3.20) acting between Feynman-Wilson gas nearest neighbors for g= 4. The para-
meter a is chosen, so that the model gives the correct pion intercept, Rem„(0) =-0.02 as explained in Sec. IV. The
approximate closed formula (3.18) is also shown as a dotted curve. The quantity exp[-V(y) j is proportional to the elastic
cross section.
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peripheral chain, the structure of the propagator
that our analog two-body potential implies is in
fact relevant to the production of any finite number
of hadrons. In the rest of this paper, we consider
a factorizable multiperipheral model in which only
longitudinal phase space is available and an object
with structure exp[-V(y)] is iterated in the multi-
peripheral ladder.

We shall show in this section that the potential
(3.20) implies rich and interesting pole structure
in the t-channel elastic partial-wave amplitudes.
Denoting by A(Y) the imaginary part of the asymp-
totic s-channel forward elastic amplitude, s-
channel unitarity at t=0 in our model, namely

Qv„(Y) = v, (Y)= e "A(Y),
n=0

is equivalent to the integral equation

A(Y) =2' 'exp [Y-V(Y) ]

+ dy exp[y-&(y)]A(Y-y) .
0

(4. 1)

This equation is of convolution type, and since at
high energies the Froissart-Gribov projection
reduces to a Laplace-transform, for the t-channel
elastic partial-wave amplitudes at t=0, we readily
obtain

A( j)= 2''[expb( j-1)' "—1] ', (4.2)

2''m VV7t'

Rej =1+ cos —,
27t'm . vw

Imj =+
tn sin —.

(4. 3)

That is, in general, they lie in complex-conjugate
positions on the j plane, except for the mother
(m = 0) singula, rity which is always real and lies
at exactly unity. This is our Pomeron, which is
then seen to have a complicated cut structure and
to pass from exactly unity. All the daughters
(m = 1,2, . . . , become real when

3 5
9 9 ~ ~ ~ 92 496 (4 4)

while they acquire maximal imaginary part, and
all fall on the Re j= 1 line on the j plane when

4 695979 ~ ~ ~ 4 (4. 5)

Vfe are very much tempted to interpret these poles
as the intercepts of Regge trajectories j„=—o,„(0),
associated with physical particles which should
manifest themselves as first-sheet poles on the
j plane. Assuming that extrapolation of the high-
ranking members of (4. 3) to physical masses will

where we used the result (3.15) for the Laplace
transform of exp[-V(y)]. This expression is ex-
plicitly seen to have poles at j=j, m = 0, 1,2, . . . ,
with

not move them very much on the j plane —which
is a reasonable assumption at least for the pion-
and requiring that the poles (4. 3) themselves lie
on the first sheet, for the critical exponent g we
obtain the bound

~ l
fl z ~

In order that all first-sheet poles satisfy the
Froissart bound one by one, i.e., Reo,„(0)~ 1
for m = 1,2, . . . , we must have

Q~&q~&) .1

(4. 8)

(4. 7)

[1-Rem (0)]/[1-Reo,(0)]=m". (4.8)

Since it is an experimental fact that meson trajec-
tories are almost equidistant, we see at this stage
that the critical exponent g cannot be close to
unity. Qn the other hand, it is very crucial to
have a good candidate for the pion pole which is
very close to t = 0, and we do not need to extra-
polate our scheme very much in order to reach it.
Fifteen years of experience with few- and many-
body reactions teaches us that no meson intercept
lies close to unity. ' In fact, we think that the
estimation

Reo. ,(0) & 0.6 (4 8)

is quite justifiable. Hence, if Reo.„(0)=0 for
some m, from (4. 8) we obtain

m" &2.5. (4. 10)

This means that the pion may only be the second
daughter, whence from (4. 10) we obtain

g &0.25. (4. 11)

Although values of g close to zero are favored
by the meson spectrum, since they lead to almost
equidistant trajectory intercepts (4.3), they also
suggest that the KNO scaling function is too rapid-
ly decreasing with x (for x &1) to be consistent

Since 0 &g &1 is a priori required in I in order that
the grand partition function of the hadronic system
exists for z & 1, we see that all first-sheet poles
do respect the Froissart bound individually. This
is a good situation because, although the sum of
the contributions of all of the poles (4. 3) to the
s -channel elastic amplitude obeys the Froissart
bound, as we shall show in the next section, we
may speculate that introduction of internal sym-
metries into our scheme will allow the exchange
of only a few of the poles (4.3) for a particular
process, since the residues of those poles not
consistent with quantum number conservation
are expected to vanish.

Let us now look closer at the structure of the
meson spectrum predicted by (4.3). The inter-
cept of the first daughter is related to that of the
mth by
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with the existing Fermilab data. Instead, if we
choose q=-,', the upper bound, and if we require
Reo.,(0) = -0.02 (the pion), we obtain from (4.3),
5=7.36, hence from (2. 12), a=310. With these
values of the parameters, it is apparent from Fig.
1 that the threshold for the onset of this mechanism
is at about three units of rapidity. This is just at
the right place if we decide to ascribe the rise of
the total hadronic cross section and of the inclu-
sive plateau at Fermilab and CERN ISR to the
threshold effects of this asymptotic mechanism.
VYe will come back to this point in the next sec-
tion.

We note that the spectrum (4. 3) appears highly
degenerate. Our first daughter intercept should
possibly be identified with the p A, & f--p--f'-
trajectory intercept, while A„g, and B should
all possibly lie on the second (pion) daughter.
For 7l = —,

' and a = 310 [which means Reo, (0)
= -0.02], we obtain Rem, (0)=0.59 and also
Ren, (0) = -0.75(q ', 5, S*7), Rea, (0) = 1.57 (e?) .
In Fig. 2 we illustrate these results. Of course,
these numerical estimations of the degenerate
intercepts should not be taken too litera, lly. %/hat
is important and should be concluded from this
discussion is the correlation of the truly asymp-
totic behavior of hadron physics with the proper-
ties of the existing meson spectrum, through the
introduction of the critical exponent g.

One could perhaps worry that even ~=4 is too
large a value to be consistent with thy existing
data on the KNO scaling function. But remember
that it is only asymptotically ( Y ~) that we re-
quire KNO scaling with (2.8) as the large x be-
havior of the KNG scaling function. In fact, we
shall show in the next section that, in the context
of this model, at nonasymptotic rapidities, the
quantity (n)v„(Y)/a, (Y) decreases for large x much
slower than is apparent from its asymptotic (Y-~)
behavior (2. 8).

3
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V. TRULY ASYMPTOTIC HADRON PHYSICS

Having shown that the truly asymptotic diffrac-
tive component of hadron physics, which we un-
covered by considering the critical behavior of the
FW gas at infinite rapidity, implies a meson spec-
trum with reasonable properties, we now turn to
calculate the contribution of this component, to
some quantities relevant to longitudinal asymp-
totic physics. We have seen that (i) the assump-
tion of the existence of thermodynamic limit and
(ii) the asymptotic (n»(n)) behavior of the KNO
scaling function completely determine the macro-
scopic properties (pressure, density, average
multiplicity) of the FW gas. Moreover, since we
assume (iii) factorization and the hadronic gas
lives in one dimension, its macroscopic proper-

FIG. 2. Positions of the poles (4.3) in the t-channel
elastic partial wave amplitude for )= 0, q=~, and
Ben~(0) =- 0.02. Their conjectured identification with
the intercepts of degenerate physical meson trajectories
is shown.

ties uniquely determine the dynamics. Hence,
in this model the physics for large n completely
determines the physics for a/l n. In particular,
starting from (3.20), we shall determine in this
section the behavior of o, (Y) and g(x), which al-
though present in (3.9) did not affect the determi-
nation of the kernel. K(s) in the n-~ limit.

n-particle production and total cross sections

In the framework of our factorizable multiperi-
pheral model in which no transverse dimensions
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the one-dimensional FW system must be searched
in the spontaneous symmetry-breaking property
possessed by (5.5). Since

V(y)-lny (y- ), V(y)-y' "(y-0), (5.6)

it follows that the stationary point of V,(y; Y) at
y=0 changes character for a finite value Y, of
the total rapidity, which is given as a solution of
the equation

(5.7)

and from a local minimum it becomes a local maxi-
mum. Conditions (5.6) guarantee that (5.7) does
have a solution F,= Y,(e, a). For example, using
the approximate closed formula (3.18) for the po-
tential, we easily find

F,=2[2~(~ —l)a/(~+ 1)]'~'"". (5.8)

Hence, there always exists a critical value Y, of
the total rapidity such that if F ~ F„one minimum
potential energy position exists at y = 0, leading
to pionization in the one-particle exclusive rapid-
ity distribution

But if Y & F„ two symmetric minima appear in
V,(y; F) and fragmentation phenomena show up in
the one-particle distribution. %'e are thus faced
with a spontaneous-symmetry-breaking phenome-
non, which in the language of physical chemistry
means that condensation phenomena (whichmay be
called clustering phenomena in high-energy phys-
ics) will manifest themselves in the FW gas, after
a finite value Y, of the total rapidity is reached,
before the phase transition actually takes place at
Y-~. With the favorite values of our parameters,
we find Y,=22. 8 units. Figure 4 illustrates the
above results at two values of the total rapidity,
below and above its critical value.

KNO scaling

Recalling the asymptotic expressions (2. 10)
and (5.4) for the average multiplicity and total
cross section, we readily obtain from (5. 3)

(n) 1 ~ (-1)"'(cb)'sintpv
v ( Y) " & -"7r ~ ~t

=exp[-V, (y;Y)]. (5.9)
where at large F, (n+ 1)/(n) = n/(n) =x. That is,
although we started assuming KNO scaling essen-

- 0.03
Cl&i

Clg

- 0.02

(b)

- 0.01

=20
0

gv fpd

X)
-2O~

U

Y=30&Y~

-10 10

FIG. 4. (a) Potential energy of a Feynman-Wilson gas molecule in the potential well formed by its nearest neighbors
and (b) one-particle exclusive rapidity distributions, for total rapidities 20 and 30 units. For q=~ and Beo.„(p)=-0.02,
the critical value of the total rapidity is 22.8 units.
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P(x) - x"~'exp(-(yx") . (5. iS)

That is, we obtained the exponential piece of g(x)
which we started with, plus the behavior of the
function g(x) which was irrelevant to the calcula-

tially at large x, ' our factorizable model implies
KNO scaling for all x. For x-0 the KNO scaling
function behaves like g(x) - x. In order to find its
behavior at large x, we remember that (3. 18) is
the small-y behavior of the series (3.20); hence,
recalling relation (2. 13), we immediately find
from (5. 10)

tion of the potential on which our scheme is based.
The asymptotic (Y-~) expression (5.11) with ((=4
is too rapidly decreasing with x for xg 1 in order
to be consistent with the existing Fermilab data,
although it has a maximum at x =1. But KNOis on-
ly an extreme asymptotic property in our model. In
fact, in Fig. 5 we illustrate the quantity (n) v„/0,
as a function of x at various rapidities, we wel1.
as the asymptotic expression (5.11), as well
clearly seen that at nonasymptotic rapidities the
quantity (n)u„/o, decreases with x (for x a1) much
slower than its asymptotic (Y-~) behavior (5. 11)
suggests.

VI. MUELLER APPROACH

We now turn to the implications of the potential (3.20) for the Mueller graph. We have

(n(n —() (m-p+())v(r)-p f"dv, f. "dy, ., /"dy,
0 0 o &~i~~2' ' '

&&p

Summing up the multiperipheral diagrams which build up the Mueller graph, we obtain

(6. i)

spain ( p

2 ct(Y y()) t(3 () 3 ()- 1)' ct(32 v 1) t(~l) P
dy, dy, '

dyp I,G«
(6.2)

where the internal (g„„)and external (G„„)coupling constants in the Mueller graph are related to the cou-
pling constants gM~ and G„p of the multiperipheral graph by

(6.3)

Thus (6. 1) becomes an iterated Laplace convolution and, similarly to (3.5) and (3.6), we obtain as equiva-
lent to (6.1) and (6.2) the equations

CO p
A('"(s) = dYe 'r(n(n —1) ' ' ' (n -P+ 1))a,(Y) PI

0 GML
(6.4)

where

A(s) = dy e. '"c,(y) . (6.5)

It is worth noting that these equations, with the
asymptotic behavior (5.4) of the total cross sec-
tion, lead" to the behavior (2. 15) of the large-P
moments obtained in I from macroscopic consid-
erations in the FW gas, assuming KNO scaling.
Conversely, and similarly to our procedure in
Sec. III in determining the potential (3.20), as-
suming the structure (2. 15) for the moments c~,
we may determine from (6.4) and (6.5) the be-
havior of o, which they imply. Indeed, assuming
the general structure (3.7) and (3.8) for v„with
standard steepest-descent approximation to the
integral in (6.4) in the p -~ limit, we find

A(s) = (const)/s' ", (6.6)

independently of the particular form of the total
cross section. As discussed below (3.15), the
fact that A(s) was found from (6.4) to be indepen-
dent of f) means that the behavior (2. 15) of the

moments cp is consistent with factorization. The
result (6.6) may be checked to be exact, in the
P -~ limit, by direct integration of (6.4), if c,(Y)
is assumed to be an arbitrary power of Y. Inver-
sion of (6. 5) with the kernel (6.6) leads us back
to the asymptotic behavior (5.4) of the total cross
section, and this may serve as another test of
the consistency between the macroscopic and
microscopic approaches to the FW gas statistical
mechanics.

The above discussion shows that the system we
have considered in this work is equivalent to a
hadronic world in which c,(Y) - Y " for Y-~
(0 &q & 1) and the multihadron production is gen-
erated by factorizable Mueller graphs. In parti-
cular, owing to factorization in the Mueller
graphs, the critical phenomenon which was found
to dominate the physics of hadrons for Y-~ can
be described by a pole-cut interaction in an ap-
propriate complex plane. In fact, the generating
function (2. 3) satisfies the following integral
equation, obtained by Bardeen and Peccei,"which
is a direct consequence of Mueller factorization,
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1

&»Gn/e)t

and in our notation and normalization reads:

,(I )e(., I )=,(I ) +g„„G„„'(.—I)

x dy o,(y)(r, (I' y—)Q(s, &-y) .
0

(6.7)

The solution to this equation is given by

10

c,(I')Q(s, I') =2si, ,„A '(8) -g„„G„„'(g-I) '

(6.8)

Since the total cross section satisfies the multi-
peripheral integral equation (4. 1), recalling the
Laplace transform (3.15) of exp[-V(y)], we read-
ily obtain

A(t)) = 2wg'jexp(b &' ") —1] ',
and because of (6.3), relation (6.8) becomes

(6 8)

) SO )25 ) 15

—-" Xn
&n&

FIG. 6. The quantity (n) a„/a, as a function of x=s/(n)
at various values of the total rapidity F, for g= ~ and
Heo.„(0)=- 0.02.

'(" (, r)- ' "'- """'
(6.8)2'' ' 2', ,„exp(b &' ") —s

This relation may also be obtained by combining
(2. 3) with (5.1). The integrand in (6.8') has a
real moving pole for s & 1 which dominates Q(s, I')
for F-~, and it is-identified with the pressure
(2. 11) in this region. In fact, (6.8') for large F
gives (2. 6) which is the definition of the analog
pressure. - If z &1, the dominant singularity is the
fixed branch point at 8=0, and, therefore, the
pressure vanishes for all z &1. The pole and the
branch point at 8= 0 exchange their role when they
collide at z = 1, and this mechanism is the com-
plex-8-plane realization of the phase transition in

0.4-

g ~)tl

0.3-
Y

in

Q2-
0

L

U

Y =10

I

10

FIG. 6. One-particle inclusive rapidity distribution (6.10) for q=~ akd Heuv(0) =-0.02 at various values of the total
rapidity below and above its critical value (at about 19 units).
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the FW gas under consideration. A byproduct of
this discussion could be the determination, through
the singularity structure of (6.8'), of the coupling
constants in the Mueller graph, in terms of the
coupling constants of the multiperipheral graph.
Indeed, requiring that the pole in (6.8') for z & 1
coincide with the pressure (2. 11), relation (6.3)
follows. Let us remark that although (6.9) is a
steepest-descent result, all the conclusions which
are based on it 'may be checked to be exact for z
close to unity, where only the asymptotic part
(5.4) of the total cross section is relevant, by
direct integration of (6.5).

Finally, we calculate the one-particle inclusive
rapidity distribution, in the center of mass:

(6. 10)

It is illustrated in Fig. 6 for the favorable values
of the parameters. The threshold effects in a„
(hard core) provide the walls of the rapidity dis-
tribution. We have similar phenomena as in the
exclusive distribution, but more pronounced and
at lower critical rapidity, at about 19 units for
the favorable values of the parameters. When
Y &19 we have pionization and the center of the
plateau rises to a maximum value. The rise of
the inclusive plateau for pp —hadron+X, recently
confirmed" at ISR, may be attributed to the setup
of this mechanism. When the critical rapidity is
reached, the bump in a„reflects itself into a
clear fireball structure on d&x'"/dy. This struc-
ture remains near the walls at higher rapidities,
leaving a flat plateau in the central region, while
secondary fireball effects appear as well. Note
that these predictions are similar, although at
much larger rapidities, to those of the fireball
models designed to explain old cosmic-ray data
above ISR energies. " At asymptotic rapidities
we only have approximate Feynman scaling, with
a slowly decreasing plateau height.

VII. CONCLUSIONS

We have argued that the critical behavior of the
FW gas at infinite rapidity reveals the existence
of a new asymptotic diffractive component for
hadron production which takes effect at Fermilab
energies. Assuming this component to be built
up by multiperipheral diagrams in which a new
factorizable singularity is exchanged and guided
by the critical behavior of the FW gas, which in
turn is necessitated by KNQ scaling and finite
thermodynamic limit assumptions, we have de-
termined the form of the potential interaction be-
tween FW gas nearest neighbors which, because
of factorization, are only allowed to interact. We
have shown that a factorizable long-range interac-
tion can indeed result to the critical behavior of

'the FW gas, and in order to determine it with the
techniques of classical statistical mechanics we
had to consider the limit of the production of an
infinitely large number of hadrons. But once only
nearest-neighbor interactions are important, this
very same potential is relevant to the production
of any number of hadrons at sufficiently high en-
ergies. We thus obtained a solution to the truly
asymptotic diffractive component of hadron pro-
duction, the relevance of which to longitudinal
high-energy physics was investigated. We have
also shown that an equivalent approach to the FW
gas statistical mechanics may be formulated
starting from the inclusive point of view.

Our main points may be summarized as follows:
(i) The critical behavior of the FW gas at infinite

rapidity requires the existence of a meson spec-
trum with daughter structure. The mother (Pom-
eron) singularity is real and lies at exactly unity,
while all daughters appear in complex-conjugate
positions and as far as the critical exponent g
satisfies the bound g &» they all lie on the first
sheet and have intercepts below unity.

(ii) Our mechanism takes effect at Fermilab
energies and may possibly be responsible for the
rise of the hadronic total cross sections and of
the inclusive plateau there. After all threshold
effects have settled, a smooth total cross section
is established which in the true asymptotic region
behaves like o, - Y ".

(iii) The exponent q has the meaning of the criti-
cal index 1/5 of statistical mechanics as revealed
by the relation p - p" near the critical point of the
FW gas.

(iv) In the true asymptotic region we have KNO
scaling. The average multiplicity behaves like
(n) - F ' " while the large order moments of the
distribution like c~ - (const/ x p"~. As long as
we have factorization, this behavior of c, is
equivalent to the asymptotic behavior v, - Y " of
the total cross section.

(v) At moderate rapidity we have pionization
in the one-particle distribution, but after a criti-
cal rapidity is reached fireball structure appears.
We have only approximate Feynman scaling and
the height of the inclusive plateau decreases slow-
ly in the true asymptotic region.

In subsequent work we intend to look more
closely at the possible phenomenological impli-
cations of these ideas, and to include transverse
dimensions in the formalism.
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