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We investigate assumptions necessary for determination of the interaction region fireball in hadron
collisions from recently observed correlations between pions of the same charge. We show, in analogy to
quantum optics, that this is possible when the emission from fireball is partially incoherent. This leads to a
density matrix for produced pions which embodies several models previously used. A simple formula is
derived, relating space-time distribution of the emission region to the experimentally measured like-particle

correlations at small momentum difference.

I. INTRODUCTION

There have been several reports! on the observations
of positive correlations of like pions inhadron-had-
roncollisions. Namely, there is an excess of pairs of
pions of the same charge emitted with small
four-momentum difference as compared with an-
alogous pairs of opposite charge. This effect does
not seem to be of dynamical origin, as there are
no doubly charged resonances. Other explana-
tions, such as three-body decays of resonances
or kinematical effects, also seem to be ruled out.
Those correlations are most naturally interpreted
as the effect of Bose-Einstein statistics,® in an-
alogy to the Goldhaber effect.* In fact Grishin,
Kopylov, and Podgoretsky pointed out that such
correlations should be observable in hadron col-
lisions. Using definite models, these authors
showed that this effect could be used for the de-
termination of space-time dimensions of the inter-
action region. It is our purpose here to investigate
the assumptions underlying the production process
necessary to make such an interpretation possible.
It appears that the production process has to be
of a statistical nature and the interaction region
has to behave as a chaotic source. Similar sources
are widely used in quantum optics,® and the
Glauber representation® for the density matrix
of produced pions is most natural. Therefore we
see the measurement of like-meson interference
as a hadronic analog of the Hanbury Brown and
Twiss experiment.” The coherent-state repre-
sentation for the pion field was used previously
(see, for instance, Ref. 8) but the space-time in-
terpretation was not given. In Sec. II we review
the concept of coherence as used in optics. We
also introduce there the coherent-state represen-
tation. The description of the interaction region
in hadron collision as a chaotic source is presented
in Sec. ITI, and its properties are discussed in
Sec. IV.

II. COHERENCE AND COHERENT STATES

Let us recall that in classical optics one intro-
duces, for the description of coherence pheno-
mena, the function of mutual coherence which is
defined as the statistical average of the (electric)
fields,’ i.e.,

L(F, 1 T, )=(V*F, OV (E, t')) . (1)

Thus defined, the function I' obeys the wave equa-
tion with respect to T, ¢ as well as with respect to
',

( ——tz)r‘(rt ,2)=0. )

One can use Green’s theorem to generate an in-
tegral representation for I' at arbitrary points
just in terms of its values on some surface which
can be the surface of the light-emitting source,

i@ #;0)= a3
> 8G = >
x [ a3 @3 8)5er (7, 3)FG, 53 0) ,

3)

where G is the appropriate Green’s function and T
is the coherence function for a single frequency

TG, 57, 0= e oFE Finar . @)
0

Notice that even if different points of the source
emit light independently,

f(g’ E'; V)=I(§7 V)ﬁ(s)(g_gl) ’ (5)

the mutual-coherence function is not proportional
to the delta function in other points of space
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IE,7;7)= f d"-?g(f §)—a§-(r BIE, v)

#83(F-7). (6)

In other words, the field, which is statistically
independent for different points of the source, re-
quires partial spatial coherence after propagation.
In the wave zone, formula (6) takes the following
form:

- - 1 Vs - -
(T, 1, v)=ﬁffs exp ["ﬁ s(r - r')] I(8, v)ds ,

(7

where R> |F—¥| is the distance of observation
points from the source. - This formula shows that
under the assumption of independent emission,

the coherence function is simply the Fourier trans-
form of the emission intensity at the radiating sur-
face. This property is the basis for the inter-
ferometric determination of stellar diameters.
Quantum description of chaotic sources shows®
that the correlations among the photon-counting
distributions are also expressible in terms of
geometric properties of the source. For more
detailed treatment of those topics, see for in-
stance Ref. 5.

Coherence properties in quantum theory are
most easily expressible in terms of coherent
states. Let us denote by a'(ﬁ) and a(lz) creation
and ann1h11at1on operators of a particle of momen-
tum k with, the following comutation relations:

[a(®), a'(®)]=6,(k-k’) . ®)

We consider -for simplicity scalar isospin=0 part-
icles. By definition, the coherent state Ia) is the
eigenstate of the annihilation operator:

a®)|a)=a®)|a), )

where a(E) is an arbitrary complex function. The
state la} can be written in the form

|ay=exo -4 [ |a@)|2a%]
X exp [f a(l?)a*(ﬁ)dsk]lo) , (10)

where |0) is the vacuum defined by

a®)|0y=0 . (11)

We denote w=(u2+Kk2)!/2 the pion energy, where
u is the pion mass. States Ia) are normalized to
unity but are not orthogonal

<aIB>=exp[—% f{QG?)—B(li)Izd’k]. (12)
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The probability density of finding » particles with
momentak,, ...,K, is

[©]a(k) « + - a(k,) | @) |?/n!
=|a®)]? - |aE) 2 /nl ,  (13)

where the average number 7 in the state |a) is
=(a| fdska*(k’)a(lz)la)
= fd3k|a®]2 . (14)

The multiplicity distribution in the state |a) is
given by the Poisson formula

Pn)= [ &k -+ d%,|0]al,) - - a(E,) | )| 2/n!

7
-;‘—-e . . (15)
Although not orthogonal, coherent states form a
complete set:

1= [ TI5 Headad (16)

where [{a,})=|a),
d’a,=d(Rea,)d(Ima,) . (17)

The continuous product in (16) should be under-
stood as a functional integration, or we can think
of our system as enclosed in a large box.

All the density matrices can be written in a form
diagonal in the coherent-state representation®

o= J PlaHoddad [T, (18)

where the weigth function P is, in general, a dis-
tribution. For a pure coherent state |)/), the
weight function is simply a product of delta func-
tions: '

P({ak}) =IkI 52(ak - 'Vk) . (19)

It is worth noting that a classical radiating cur-
rent j(T, ¢) produces a field in a coherent state®

[,

1 d®vdt . - -
Y= @v)7? @nEre expli(wt -k -D]i(F, 1) .

(20)

One of the nice properties of the coherent-state
representation is the composition rule for several
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radiating currents. Given two currents producing
separately coherent states |8) and |v), the state
produced by both currents taken together is simply
|B+7). For the weight functions we have then

Phah=J PdsbP,@vD
XI;I az(ak - Bk" Yk)"%'q%y'& . (21)

III. INCOHERENT-EMISSION MODEL

We have seen in the previous section that, in
optics the shape of the source could be deduced
from the correlation functions if we assume that
the radiation from different points of the radiating
source is statistically independent. We will con-
struct here a density matrix for a source (“fire-
ball”) independently radiating pions. The source
can be taken as the interaction region in the had-
ron-hadron collision. More specifically, let us
assume that the fireball can radiate pions.at point
T and time ¢ with probability p(T, #).

In general, in the “elementary” act of emission
many pions can be produced. For simplicity we
assume here that they are produced in the co-
herent state |[{y,(F,#)}). The function p(%, t) is the
probability density of elementary acts of emission.
Our conclusions are to a large extent independent
of the assumptions concerning the elementary
act of emission, provided that the radius of the
elementary source is smaller than the characteris-
tic radius of the fireball. We can think of the ele-
mentary act of emission as the radiation produced
by a small classical source concentrated around
7, and ¢

J(F, l:; 707 to) =jo(7— ?oy t- to) ) (22)

i.e., all the elementary acts are expressible in
terms of a unique function j,. Using Eq. (20), the
function y k('f', t) can be expressed in terms of the
Fourier transform of j,:

Yol £) = exp[ i(w(B)E — T +K)] 7, (K) , (23)
where

1 div dt

'y()(k): (Zw)uz (217)3/2 ei(wt“i.;)jo(;,t) . (24)

The Erobability of the emission at the point x
=(¢,r) is p(x)Ax, and the probability of no emis-
sion is 1 - p(x)Ax. The weight function for this

case has the form

P.({a})=[1- p(x)ax] I;I 0%(a,)

+p@)ax [T 6% ay-v,) . (25)
k
We now have to add the contributions from all

points x. According to (21), the weight function
for the whole process is

Plab)=/ [I;[ 52 (a,,_; B,,(x)) UPA{Bk(x)})]
X I,I Hdzﬁk(x) . (26)

It is convenient to introduce the Fourier transform

of P{a,})
E({2) =fP({ a})exp [z ‘k_/:, (o eng ak)]

x [[a%a,, 27
k

where the asterisk indicates complex conjugation.
In our case, we have

WIS | EAC RO - 29)
where x |
200 /P8 e [i T 40,8 4180
x ];[ dzg, . (29)
Using (25) we find

Z, {2 3)=1+p(x)ax

X {exp [z Z i xgyk(x)+xk-y;;(x)]] - 1}.
k
(30)
Taking the logarithm of both sides of (28) and using
(30) we find

1= (A= [ dptx)

x {exp {i ; 3] h;‘yk(x)-mky;{(x)]] - 1} .

(31)

This exact result can be further simplified if the
average number of particles produced by the fire-
ball is much larger than the average number of
particles produced in the elementary act. In this
case we can expand the right-hand side of (31)
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keeping only terms linear and quadratic in 2,.° We finally obtain

={xD) =exp{% Z TRy +2}) = 5 ; [GE (B, R ) (A A + X ENE) + 2G4 (R, k')xkk;;,]}, (32)
[]

where
T (k) =7,(R)Pe(R) , (33)
G®(k, k") =y, (R) v,k £ k') . (34)

We have introduced the four-dimensional Fourier
transform of o(x):

(k) =/d“xe”“" o(x) , | (35)
Po(k) =Pk, w=(u2+k91/2) . (36)

Formula (32) is our basic result, as it defines the
pion density matrix in our model. Actually, it is
never necessary to compute the weight function
P{ a,}) as its Fourier transform Z is the gener-
ating function for inclusive cross sections.

IV. CONSEQUENCES OF THE MODEL

We begin the discussion of our model by looking
at the one- and two-particle inclusive cross sec-
tions. One can easily check that the n-particle
inclusive cross section can be expressed in terms
of

do.lncl
n
dyqy °c°d;qy,
o) << g ®
- X o000 X :'({Kk}) .
(aquex:l O\, ON% -
(37

In particular, we find for the one-particle in-
clusive cross section

doincl :
2o =16 g, a)+T%q)]

=y, " () 1+0,%(q)] /4 . (38)

If we assume that the radius of the elementary act
of emission is much smaller than the fireball
dimension, the Fourier transform y,(k) is a slowly
varying function compared with Eo(q). Thus the
inclusive one-particle cross section for center-
of-mass-system (c.m.s.) small momentum is
determined only by p,(k), i.e., by the fireball
shape. Only for large c.m.s. momentum can we
see fine details of the production mechanism— the
effects of elementary acts of emission. Looking

r X - :
at a two-particle cross section we find

dO’;"cl dallncl dO‘énd
d3qd®k  d3q d°k

+&5{2(q)T(R)[ G (g, k) + G~ (g, k)]
+G™ g, B+ G g, k)% . (39)

We see that the model indeed gives nontrivial two-
particle correlations, expressed by the second
term in (39). From the definitions of I'(%) and
G®*)(k,q) [Eqgs. (33)-(37)] we see that they are
most pronounced for K~q. The dominant term

is G- (q,k)?, the other terms being smaller by at
least a factor of e~ 2"2"2, where 7 is a character-
istic time of interaction. The correlation function

do ;ncl <d0"im°1 dO’inCl >
d3qd3k d3q d3k

R(q,k)= (40)
does not depend on the structure of the elementary
act of emission. It depends only on the fireball
density distribution p(r,#). For T sufficiently long
to make p(k+q) and p,(k) negligible we find a par-
ticularly simple expression:

- > 1 -~ - >
R(q’k)=1+W pz(wq— wlnq_k) . (41)

Formula (42) provides a direct link between the
experimentally measured function R and the
space-time distribution of the emission region.
Its physical content is the following: the range of
correlations in energy (w,- w,) is inversely pro-
portional to the duration 7, of emission, while the
three-momentom correlation range is inversely
proportional to the radius 7,. Note that R can
never exceed 2 (reached at q=E); in the case of
partial incoherence it may be less; full coherence
implies R =1 (no correlations).

Recent results of Biswas ef al.® indicate that

R=1+Aexp[ - B(§-Kk)?] , (42)
with

A=0.8zx0.1 (43)
and

B=(11.2+2.4) GeV~-2. (44)
Formula (42) predicts

A=1, (45)

in fair agreement with (43). From (A4) we deduce

({r2))/2=(1.64+0.18)fm . ‘ (46)
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The fact that (42) depends only on the momentum
difference suggests that

T,< To/c~1.64 fm/c . (47)

To find 7,, experimentally one should carefully
measure the dependence of R not only on (E- k)
but also on (E+T{). On the other hand, analysis
performed by Para'? leads to different conclu-
sions concerning the interaction time. This high-
statistics experiment was interpreted in terms of
formulas provided by Kopylov.? In our language
it describes a source which is a disk of radius 7,
having a duration 7,. Para'?finds for 7~ _p inter-

actions
7,=(1.85+0.15) fm , (48)
c1,=(1.0£0.2) fm . (49)
Production is found to be totally incoherent,
R=2 (50)

for w,— w,=0, §-k=0.

The general expression (32) yields, under addi-
tional assumptions, some of the models used pre-
viously. Neglecting incoherence effects, i.e., the
part quadratic in A,, we recover the uncorrelated-
jet model'® which gives the Poisson multiplicity
distribution. In this model, inclusive cross sec-
tions (39) are factorable; in particular, the cor-
relation function R [ Eq. (40)] is equal to 1 and
does not depend on the momentum of pions, in
spite of the fact that this model takes properly
into account the Bose-Einstein statistics of pions.
Therefore we see that the positive correlation of
like pions does not follow automatically from Bose-
Einstein statistics, but is instead evidence for
(partial) incoherence of the pion field.

Kopylov et al.® presented several specific
models for purely incoherent radiation, i.e.,
neglecting linear terms in (33), in the context of
two-particle correlations.

Karczmarczuk,'! also neglecting the coherent
part and assuming, for the incoherent part, sim-
ple Gaussian dependence in difference of rapidities
(short-range order in rapidities) has shown that
the resulting multiplicity distribution is given by a
Poly4 distribution, which is indeed broader than a
Poisson distribution and has been applied to de-
scribe proton collisions.!? Botke et al.? noted
early the advantages of using a coherent-state
representation for the pion field and constructed
on this basis several eikonal-type models which
have exact s-channel unitarity, emphasizing the
fact that the pion field should not be taken as pure-
ly coherent.

V. CONCLUSIONS

We have shown that like-pigon correlations are
the effect of the incoherence of the pion field pro-
duced in hadron-hadron collisions. In analogy to
quantum optics, such an incoherent field arises
naturally if we assume stdtistical emission from
an extended source. For this case we have con-
structed explicitly the density matrix for pions.
Generating the function for the density matrix has
two parts, corresponding to purely coherent and
purely incoherent radiation. The incoherent
(chaotic) part gives rise to the like-pion correla-
tions and allows for the determination of spatial
extension of the production region: the two-par-
ticle correlation function is approximately given
by the Fourier transform of the source density
distribution. Our formalism can be easily ex-
tended to include impact-parameter dependence
and the effects of isospin, topics which we are now
investigating.

ACKNOWLEDGMENT

This research was supported by the National
Science Foundation under Grant No. GF 36217.

1y, G. Grishin, report at the Fourth International Semi-

nar on High Energy Physics, Dubna, 1975 (unpublished);

M. Deutschmann et al., Nucl, Phys, B103, 189 (1976);
F. Grard et al., Nucl, Phys B102, 221 (1976)
E. Calligarich et al., Lett, Nuovo Cimento 16, 129
(1976). =

%A, Para, private information, see also Ref, 1,

3G. I. Kopylov, Phys, Lett. 50B, 472 (1974), and refer-
ences therein,

‘G. Goldhaber et al., Phys. Rev, 120, 300 (1960),

3. R. Klauder and E, C. G. Sudershan, Fundamentals

of Quantum Optics (Benjamin, New York, 1968),
SR. J. Glauber, Phys, Rev. 131, 2766 (1963).
"R. Hanburry-Brown and R. Q. ’I‘wxss, Phil. Mag, 45,
633 (1954).
87, C. Botke, D, J. Scalapino, and R. L. Sugar, Phys.
Rev.D 9, 813 (1974).
'N. N. Biswas et al., Phys. Rev, Lett, 37, 175 (1976).
10D Sivers and G, H. Thomas, Phys. Rev. D 6, 1961
(1972);
113, Karezmarczuk, Nucl, Phys. B78, 370 (1974),
127, Para, Nucl. Phys, (to be pubhshed)



