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The nature of the impulse approximation in local field theory is clarified by dividing the interaction
Hamiltonian into two parts V and W, where V contains only those interactions causing large energy
transfers. Partons are introduced as eigenstates of G{!0+V, where g{-.'0 is the free Hamiltonian. Their time
development is governed by the soft operator W, thus making it possible to use the impulse approximation in
deep-inelastic processes. Application is made to deep-inelastic electron scattering and to the Drell-Yan
process. The variation of parton density functions with Q is expressed in terms of a set of
integrodifFerential equations, which reduce to the known results when restricted to the longitudinal
distributions. Explicit solutions of the scaling-violation equations are obtained in some simple cases.

I. INTRODUCTION

The parton model' has been a very useful guide
in analyzing deep-inelastic experiments involving
a large momentum transfer Q. In this model
the structure functions of the deep-inelastic lepton
scattering processes are identified with the lon-
gitudinal-momentum distributions of partons in-
side the hadronic targets. The partons are assumed
to be free at large Q, giving Bjorken scaling, in
rough agreement with experiment. In local field
theories, however, the partons cannot be free
and there is no reason to expect Bjorken scaling
to occur. This dilemma was solved by the dis-
covery of asymptotic freedom in non-Abelian
gauge theories, ' in which the scaling is violated
only logarithmically. Further more, explicit
calculations' based on quantum chromodynamics
(QCD) give results which agree well with recent
experimental data.

However, the reconciliation of the simple parton
model with field theory does not seem to be com-
pletely satisfactory. First, the usual analysis4
'of scaling violations involves sophisticated
mathematical techniques such as the operator-
product expansion and the renormalization-group
equations, whose physical meaning is not as
transparent as the intuitive parton model. Second,
the method has been successful only for the cal-
culation of the longitudinal-momentum distributions
of partons, but not successful for the transverse-
momentum distributions. Finally, the usual treat-
ment cannot. be generalized in a straightforward
manner to other deep-inelastic processes such
as the Drell-Yan process. ' This is because the
Drell-Yan process is not light-cone-dominated'
so the operator-product expansion does not '

apply. ' In contrast, all deep-inelastic processes
are more or less on the same footing in the frame-

work of the parton model.
The purpose of this paper is to provide a more

satisfactory field-theoretic foundation of the par-
ton model in the context of QCD. ' The starting
point of the present approach is to recall that the
concept of the parton is useful and natural only
in connection with the impulse approximation. '
Now the validity of the impulse approximation
depends essentially on our choice of the basis
states which are thought to interact with the ex-
ternal hard currents. Thus the impulse approxi-
mation may be applicable for scattering of a fast
electron off a nucleus, but it will not in general
work if one chooses the nucleons themselves as
the basis states. In atomic physics the choices of
the basis states is obvious because the length
scales change discontinuously. In field theories,
however, the change in the length scales is con-
tinuous and the identification of the basis states
is not so straightforward. To identify the correct
basis states in field theory, it is necessary to for-
mulate quantum-mechanically the classical notion
that a system remains essentially the same during
a short time interval &I;. In quantum mechanics,
the time evolution of a system is described by the
U matrix. Therefore, it is natural to define the
basis states to be such states in which U(t+ &t, t)
can be approximated by 1 for a small time in-
terval 4t. In this paper, this will be achieved by
defining the basis states (i.e. , the partons) to be
dressed quanta whose internal energy transfers
are restricted to be larger than some given value
which depends on Q. With this definition of the
parton states, it is then possible to give a physical
derivation of the parton-model expressions of
cross sections for deep-inelastic lepton scattering
and the Drell-Yan process. The scaling violations
arise in the present approach simply because the
parton states change as Q varies.
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The physical basis of the scaling violation was
originally treated on an intuitive level by Kogut
and Susskind io, u They argued that the partons
probed in a deep-inelastic process with momentum
transfer Q are the dressed quanta whose internal
transverse momenta are larger than Q. However,
in their approach it is difficult to formulate the
transverse-momentum cutoff in a precise way.
The cutoff in the energy transfer employed here
is precise and its relation to the impulse approxi-
mation is straightforward.

The paper is organized as follows:
In Sec. II a precise definition of the parton

states is given by dividing the interaction Hamil-
tonian into two parts, one containing the large
energy transfers while the other contains the rest
of the interactions. The matrix element between
the parton states so defined is governed by an
effective coupling constant. This is to be expected
in view of the usual renormalization-group analysis
in the Green's-function theory. Section DI dis-
cusses some properties of the parton states which

play an important role later on. In particular,
it is shown that hadrons have finite wave functions
if expressed in terms of the parton states defined
in Sec. II. In Sec. IV, the physics of the impulse
approximation is clarified in terms of the present
definition of the parton states. Although the im-
pulse approximation fails in general for a local
fieM theory, the approximation is justified in the
so-called A picture. In Sec. V, the concepts de-
veloped so far are applied to deep-inelastic elec-
tron scattering and to the Drell-Yan process. For
the former process, one obtains the usual parton-
model result, the only modification being the re-
placement of the naive parton distribution func-
tions by the Q'-dependent distribution functions.
For the latter process, one obtains a formula
identical to the one recently conjectured by
Kogut" and Hinchliffe and Lleweylin Smith. " How-
ever, some more assumptions are necessary in
arriving at this result. Section Vl is devoted to
the subject of scaling-violation effects. An in-
tegrodifferential equation is derived which de-
scribes the change of a general distribution func-
tion of partons as Q' varies. If restricted to the
longitudinal distribution, the equation is identical
to the one derived using the method of the operator-
product expansions and the renormalization-group
equations. This formalism is applied in Sec. VII
to discuss the parton transverse-momentum dis-
tributions. Explicit solutions are obtained for the
parton's transverse-momentum squared averaged
over the longitudinal fraction x. Section VIII con-
tains some concluding remarks. Finally in the
Appendix, the explicit form of the QCD Hamil-
tonian used throughout this paper is derived.

II. DEFINITION OF THE PARTON STATES

In order to discuss wave functions of hadrons
in terms of partons, it is necessary to employ
time-ordered perturbation theory. The rules
of time-ordered perturbation theory are simplest
in the infinite-momentum frame (IMF) because
vacuum effects are absent there. Therefore I
will be working with time-ordered perturbation
theory quantized in the IMF" throughout this paper.
Thus the momentum P and the coordinate variable
x have the following IMF decompositions:

p" = (o', p„p') = (n P., &),

x'=(x', x„x'}=(7,x„S},
where

. (E+P,), h = (E-P,),1 =1

(2.1)

(2.2)

Here E, P„and P, are the components in the
ordinary reference frame. For the particle on
the mass shell, one has

(2.3)

where M is the mass. One also has

p x=$7.+gp -P, x, (2.4)

g gpss ~&a Gvva

where

D = 8 —ig T'A'„,

Ga —s~ a ega +gf abcg bP c

(2.5)

(2.6)

In the above, g and A', 's are the field variables
for the quarks and the gluons, respectively, and
f'~'s are the structure constants of the guage
group and T"s I'e the group generators in the
fermion representation. Notice that the quark
masses are set to zero in the above Lagrangian.
Although the follwing discussion can be generalized
to incorporate the mass of barks, it will be
neglected for simplicity. To obtain the Hamil-
tonian it is necessary to impose a gauge condition.
In the IMF, it is convenient to choose the in-
finite-momentum (IM) gauge'b defined as follows:

In the IMF, one identifies v as the time variable.
Then its conjugate variable is 8, which is identified
as the energy variable. Finally, the vector p
= (q, p,) will be used to specify the momentum of a
state.

The discussions in this section are applicable
to any theory, but I will work with QCD defined
from the following Lagrangian density:
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A'(x) =0. (2.7) and W~ so that

In this gauge, no ghosts appear and the indepen-
dent variables are the transverse components
A, of the gluon fields and the two component Pauli
spinor X of the quarks. The derivation of the
Hamiltonian X is well known'4 and the iesult is
given in the Appendix. For the present purpose,
it is sufficient to write the Hamiltonian X in terms
of the free part X, and the interacting part 3CI as
follows:

where A is an arbitrary parameter. Next in-
troduce the parton Hamiltonian X~ as follows:

(2.9)

(2 ~ 10)X~ =Xo+ V~.

Let ~n, A) be the eigenstates of X~ with energy
8„." The operator W~ will now be specified in
terms of its matrix elements (n, A ~W~ ~m, A) as
follows:

X=++Xr (2.8)

X~ in the above is a sum over virtual processes
such as those shown in Fig. l. Each of these
processes conserves the total moments P= (q, p,)
but causes the total energy to change from 8, to
8&. It should then be possible to divide XI into
two parts so that the first part V contains only
those interactions involving large energy transfers
while the second part W contains only small energy
transfers. If one defines the parton states as the
eigenstates of the operator X,+ V, their time de-
velopment will be governed by the soft inte'raction
W only.

In lowest order, it is trivial to carry out the de-
sired decompositiori of XI. In higher order, how-
ever, the operators V and W cannot be expressed
in a closed foim because of the occurence of
divergences. One would like to have the wave func-
tions of a hadron in terms of the dressed partons
free of ultraviolet divergences. To meet these
requirements, the operator V (or W) and the cor-
responding parton states will be defined in the
following steps: First let there be operators V~

q )

(7 'i)

(c, .k)

(b)

(2.11)

q, in the above is the g of the parent hadron whose
partons are under study.

The definition of the operators W~ and V~ in-
troduced above is not a simple one because they
are defined in terms of the states

~
n, A), which

in turn are defined in terms of 8'~. Therefore
V~ and W~ can only be determined perturbatively.
Nevertheless, it is clear from the above definition
that S~ is the operator which contains only small
energy transfers. Since V~ =X,—W~, it follows
that V~ contains only large energy transfers. Since
every particle appearing m the intermediate states
is on the mass shell in time-ordered perturba-
tion theory, it. follows from the mass shell con-
dition Eq. (2.3) that large energy transfers cor-
respond roughly to large transverse momenta if
the longitudinal variable g is not too small. It
is in this sense that the present definition of the
parton states is qualitatively the same as the
one introduced by Kogut and Susskind" in their
intuitive analysis of the sealing-violation effects.

Explicit construction of operators V~ and W~,
and the parton states ~n, A) is equivalent to
carrying out a renormalization-group analysis in
the Hamiltonian approach. An exact analysis of
the Hamiltonain renormalization group involves
complicated calculations and has not been carried
out yet. However, the analysis becomes simpler
if one truncates the momentum space to the fol-
lowing set of the well-separated intervals:

(b, j)

(c)

~ $"A ' -p,' - $"A,', n = 0, 1,2, . . . ,
j.

Xo go

where Ao is a dimensionful parameter. The
dimensionless numbers $ and x, satisfy the
following inequalities:

(2.12)

FIG. l. Examples of virtual processes contained in
XI. e, b, and c are the group indices andi, y, and k
are the polarization indices of gluons.

$»1 and 1 «x, «&. (2.13)

The second inequality in (2.13) was introduced so
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091 ~ 0)'''P )) t OP''' (2.14)

where t is the same number that appears in (2.12).
Then for an adjacent pair of A, = A and A„„=A',
k»1,
(n, A'~(W, , —W, )~m, A)

(2.15)=0, otherwise.

In the above,
~

n)'s are the bare states, i.e. , the
eigenstates of the free Hamiltonian K„and g
-g(A') implies that the bare coupling constant g
should be replaced by the effective coupling con-
stant g(A'). The restriction of the energy transfer
appearing in Eq. (2.15) follows from Eq. (2.11).
In the present case, g(A') is given by

g(&P) =g,* ((+,bg, *ln(A*/A, ')),1

where"

(2.16)

that the energy variable E =P,'/2q also lies on a
set of the well-separated intervals. Notice that
the variations in the longitudinal variables q/q,
are negligible compared to the variations in the
transverse variable p, in the truncated momentum
space defined by (12).

Wilson' was the first who carried out the Hamil-
tonian renormalization-group analysis in the
truncated momentum space. He considered a fixed-
source Hamiltonian. He used momentum cutoffs
and his analysis could not be generalized straight-
forwardly to the case of a general field-theoretic
Hamiltonian. The use of the cutoffs in the energy
transfer, however, makes it possible to discuss
the Hamiltonian renormalization group for a
general field theory. In the particular case of
the fixed-source Hamiltonian, the two cutoffs
become equivalent.

A detailed discussion of the Hamiltonian re-
normalization group in the truncated momentum
space defined by (12) will be published in a forth-
coming paper. Here I will simply state one of the
results useful for the purpose of this paper. To
do this, consider the following sequence of A, :

= 0 otherwise (2.18)

where X' is a quantity of order A'. To determine
X', note that A' enters into S'~ only in the com-
bination A'/2q, . Therefore, the most general
structure that X' can have is

A2

0
(2.19)

Here g is the 0 component of the total momentum
of state n. $„„is a dimensionless quantity de-
pending on momenta and quantum number of the
states n and m. It must be invariant under longi-
tudinal boosts as well as Galilean boosts. For
the discussions in this paper, it is only necessary
to consider the three-point coupling shown in
Fig. 5, in which case it is easy to see that g„„
can only depend on the ratio x/y [in the notation
of Fig. 5], being independent of p, or p,'. As-
suming that $„„is independent of the quantum num-
ber of the states n and m, one has

5, „=5(x/f) ~ (2.20)

However, it should be emphasized that Eq. (2.18)
is only a rough guess. In fact, there will be
O(g'(A')) corrections to (2.18). Further discus-
sions of these points are beyond the scope of the
present paper.

the entire interaction K~ so that V=X~- W~ ap-
proaches zero in some sense. Consider Eq. (2.15)
in the limit A-~, keeping A'»A. Then it is
reasonable that the matrix element will be governed
by the bare coupling constant g in this limit. The
behavior specified by Eq. (2.15) is reasonable
since the effective coupling g(A') approaches the
bare coupling constant g as A

How will Eq. (2.15) be modified in a nontruncated
theory'2 The answer to this question is only
possible after one has carried out the renormali-
zation-group analysis in the full momentum space.
However, one may guess the following for A"
—A2«A2 and A2 —~.

(n, A'~W, .-W, )~m, A&

11 C+ 2 (2.1'7)
III. PROPERTIES OF PARTON STATES

g, in Eq. (2.16) is the coupling constant at A =A„.
g, =g(A, '). Throughout this paper, b will be taken
to be positive so that the theory is asymptotically
free.

A crude argument can be given which renders
the statement made in Eq. (2.15) plausible. Con-
sider a parton state ~n, A). As A approaches in-
finity, ~n, A.) should approach the bare state ~n).
This is because the operator W~ must approach

There are several important remarks con-
cerning the nature of the parton states defined in
the preceeding section. First, a parton state
~n, A) depends on the property of the parent hadron

through the appearance of the quantity q, in Eq.
(2.12). Therefore, to completely specify a parton
state, one should label the state in terms of the
quantity A as well as q„ i.e. , ~n, A, q,). This



j.8 IMPULSE APPROXIMATION AND SCALING VIOLATION IN. . . 4289

dependence on g, means that the states are not
invariant under longitudinal boosts' which trans-
form a momentum (q, P,) into (Xq,P,). This is
also clear from the fact that the quantity 8„
—8„transforms into (8„—8„)/X under a longi-
tudinal boost. More precisely, there exists no
unitary operator which connects a state l(q, P,),
A, q,) to the state

l (xq, P,),A, q,). This property
is desirable because one should expect that the
nature of parton states changes under longitudinal
boosts. The Lorentz invariance is not lost, how-
ever, because there exists a unitary operator
which connects the state l(q, p,),A, q, ) to l(xq, p,),
A, Xq,). In the following, the level q, wi. ll be sup-
pressed when no confusion will occur.

It is possible to define parton states which are
invariant under longitudinal boosts. This can be
achieved if one replaces the inequality in Eq. (2.11)
by

l
8„—S„l «'/2&&i, where q is the total longi-

tudinal momentum entering the vertex. Then both
sides of this inequality transform the same way
under longitudinal boosts. Recently, Lam and
Yan" have investigated the transverse-:momentum
distribution of partons by generalizing the scaling-
violation equations to incorporate the tr ansverse-

momentum distributions. Their analysis essential-
ly amounts to introducing an energy cutoff which
is invariant under longitudinal boosts as discussed
above. However, it will be shown later in this
paper that the impulse approximation cannot be
established if one uses parton states which are
invariant under longitudinal boosts. In contrast,
the parton states introduced in this paper are
quite well suited for the impulse approximation
in deep-inelastic processes.

On the other hand, the parton states defined
above a~e invariant under Galilean boosts" which
transform a momentum (7i,p,) into (q, p, +rjv, ).
This is because the quantity 8„—8 is invariant
under such transformations. Therefore, there
exists a unitary operator which connects a state
l(q, P,),A, q, ) to l(q, P, +qv, ),A, q,). This in-

variance of the parton states under Galilean boosts
will play an important role in deriving the Drell-
Yan formula in Sec. V.

The definition in the preceeding section implies
that the wave function of a hadronic state lb) ex-
pressed in terms of the states lm, A)'s is well
defined and free of ultraviolet divergences. This
follows from the formula

~a&=~z„(~., ~&+p~, A&& ' '"&)
m h m

ln A)+g l~ A)(~ Alii" ln A)
h t y g g g g A g g A y ~

m h m m h m h

(S.la)

(3.1b)

Here
l
n, A) is any state whose quantum numbers

and energy are the same as those of the parent
hadron, and the prime in the summation symbols
implies that states which have the same energy
as the parent hadron are to be excluded from the
sum. The constant Zh is the renormalization con-
stant which can be computed by comparing the
normalization of both sides of Eq. (3.1). Now the
usual ultraviolet divergences arise from the in-
termediate state sums in Eq. (S.lb). However,
the sums cannot give rise to divergences in the
present ease because the matrix elements
appearing in Eq. (3.lb) vanish outside the finite
regions of phase space specified by Eq. (2.11).
Notice that as Jh approaches infinity, the region
of the relevant phase space extends to the whole
space and the terms in Eq. (S.lb) will in general
blow up. This is precisely the usual ultraviolet
divergence appearing in field theories. In the
present approach, things are arranged so that
all the divergences are contained in the definition
of the states ln, A), so that the rest of the dynamics
evolve in a finite way. It is perhaps worthwhile
to emphasize the importance of the finiteness of

the wave functions in connection with the parton
interpretation of deep-inelastic processes. If the
hadronic mave functions in terms of partons con-
tained divergences, then it would be meaningless
to talk about the probability of finding the partons,
etc. In fact, the elaborate definition of the parton
state

l
n, A) introduced in the preceeding section

is tailored to satisfy the requirement that the
hadronic wave functions should be finite. [Notice
that the above argument also implies that the
expansion (3.1b) is free of divergences in the q
integration because q cannot be zero. ]

Finally, it should be remarked that only those
states with energy 8 s A'/2qo appear in the ex-
pansion of Eq. (3.1). This follows from Eq. (2.12),
and will be relevant in the derivation of the
scaling-violation equations later in this paper.

IV. IMPULSE APPROXIMATION

In this section the states ln, A) introduced in
Sec. II will be used to clarify the impulse approxi-
mation in deep-inelastic processes. For this
purpose, one must first define the meaning of the
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impulse approximation. Qualitatively, the im-
pulse approximation is applicable if nothing much
happens during a short time interval. Quantum
mechanically, the evolution of a physical system
in time is described by the U matrix. This sug-
gests that the impulse approximation should be
identified with the approximation U(r', r) - 1 when v'

—7'is small. Throughout this paper, the impulse
approximation will be understood in this sense. -

In this regard, recall that approximating U(v', r)
by t. was one of the most crucial steps in the
original derivation of the parton model from cut-
off field theory by Drell et al."

Now the U matrix will be constructed in the
representation introduced in Sec. II. To do this,
consider a Heisenberg operator O~ which de-
velops in time as follows:

O~ which may be called the operator in the 4
picture as follows:

O (g) —e iJcg TO e- ixiiT
S (4.2)

O„(7') = U~'(7, 0)O~(7) U~(~, 0) . (4.3)

Here U~ is the time evolution matrix in the A

picture, and given by

(g g )
—eixgYy -eia&T iT )2ei~ ivi2

A 2t 1

'2
=T exp -i S'~ v dv

1

Here T is the r-ordering symbol and

(4.4)

Here 3C~ is the parton Hamiltonian defined by
Eq. (2.10). The Heisenberg picture and the A pic-
ture are connected by the formula

O„(r) = e'x'O, e (4 1) W~(r) = e~~'W~e ni'ii'. (4.5)

where O, =Oz(0) is the corresponding operator
in the Schrodinger picture. Introduce the operator

Consider now the matrix element of U~ between
the states ln, A). It has the expansion

(n, wlU, (~, 0) lm, »=5„. d7 e"e e " (n, Al W lm, il)

+ ( i)& Q d~ i(e$„- &e~ rig

+ higher orders.

Suppose now ~«2ii, /A . Then since the matrix element of W~ is limited by Eq. (2.11), it follows that
l(h„—h )rl «1. Therefore one has

(4.6)

&n &IU~(~, o) lm»') 5...-&&&n ills lm ~)+(-«)'g &n illW~II ~)(I ~l W~lm ~)+' ''
~ (4 7)

In view of Eq. (2.15), one has

7'(n, A.
l W~ l m, » ~ ",' g(A') I',2/0 (4.8)

l

The variable g appearing in the above can be made
as small as possible so that the quantity l(S„
—h, ) ~ r

l
can always be made larger than one,

however small v may be.
where I' is some finite quantity independent of A

as A-~. From Eqs. (4.7) and (4.8), it is then
clear that U(r, 0) can be approximated by 1 if v'

«2', /A' and if g(A') does not blow up like A' as
A-~. The latter condition is certainly satisfied
in QCD where g(A') vanishes logarithmically.
Ther efore, if the kinematics of the system are
such that only small 7. is relevant, one can always
make the impulse approximation by suitably
choosing the quantity A.

Notice that the above arguments do not go through
if one introduces parton states which are invariant
under longitudinal boosts as described in the
second paragraph of the preceding section. In
this case, the energy differences appearing in
Eq. (4.6) are restricted as follows:

(4.9)

V. APPLICATION TO DEEP-INELASTIC PROCESSES

In this section, the ideas developed so far will
be applied to deep-inelastic electron scattering and
the Drell- Yan process, ' and obtain the parton-mo-
del expressions with scaling-violation effects in-
corporated.

A. Deep-inelastic electron scattering

The kinematics of this process are shown in Fig.
2. The cross section can be computed from the
following well known tensor:

W""(q,Z, ) dx e"'"(I
l

Z'(xM" (0)
l

I ), (5.1)

where lb) is the physical hadronic state with mo-
mentum P„and J is the electromagnetic current
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A'= A„'=Q'/x. (5.9)

P)

However, the analysis of the Hamiltonian renor-
malization group has only been carried out in the
truncated momentum space defined by (2.12), in
which the variation of the longitudinal variable x
is negligible. 'Therefore, to the accuracy that Eq.
(2.15) was obtained, it is consistent to approximate
(5.9) by

FIG. 2. Deep-inelastic electron scattering. 2 Q2 (5.10)

in the Heisenberg picture. Choose the coordinate
frame so that

q = (o, Q„V!n.),
P(= (()„0,(4),

(5 2)

where 2), = M2/0 2, v = q P(, and q
' = -Q, ' =--Q'. In

this frame, one has

q
' X = V7'/'go —Q2 'X2 . (5.3)

A'- Q'/x, (5.5)

then the impulse approximation becomes valid.
Can A' be arbitrarily small? To answer this ques-
tion, let us undress the Heisenberg operator J" in-
to the A picture as follows:

In the Bjorken limit v -~ and Q2 -~ with Q'/2v
=—x held fixed, the & integration in Eq. (5.1) is ap-
preciable only in the range

(5.4)

In view of the discussions in the previous sections,
it follows that if one uses the parton states

~
n, A)

with the restriction

It thus follows that the relevant partons measured
in the deep-inelastic scattering with given Q' are
the Q partons.

At this point, the reader must have noticed that
the present derivation parallels closely the deriv-
ation of Drell et al." 'The only difference is that
they have used the interaction picture in a cutoff
field theory, while the present derivation uses the

Q picture in a full theory. 'The ideas of undressing
the Heisenberg current and of approximating the
U matrix by 1 originated in their papers. The rest
of the steps are then clear: One sandwiches the
identity

between the hadronic state
~

I() and the opera, tor J~&

in Eq. (5.8), and uses the constraint of momentum
conservation. The resulting expression is espec-
ially simple if one considers the quantity 8'" be-
cause the charge density J'(x) is simply given by
Eq. (A14a). In this way, one finds that vW, (x, Q')
=F(x, Q') is the probability of finding a Q parton of
longitudinal fraction x: In equations, this means

J"(x) = U~ '(7, 0)J~~(-x)U~(&, 0), (5.6) F(x, Q')= g [(I ~(24x, P, ), (2, Q)~'. (5.11)

where J~~ is the current in the A picture, whose
time development is given by

J ~~ (v, x„3) = e (~~'J
~ (0, x2, j )e (~~'. (5.7)

From Eq. (5.4) and the discussions in Sec. IV, the
matrix U~(w, 0) appearing in Eq. (5.6) can be ap-
proximated by 1, the correction terms being of or-
der m'/A' where m is some finite, dimensionful
parameter. Eq. (5.1) can then be approximated as
follows:

This function changes as Q changes because the
state

~

n, Q) changes, giving rise to the scaling vio-
lations. The effects of scaling violation will be
studied in detail in Sec. VI. Notice that the func-
tion F depends only on the ratio 2)/r/0 =x because
of invariance under longitudinal boosts. Of course,
the parton states change as remarked in Sec. III,
but the existence of the unitary operator which con-'

nects the state
~

(2), P, ), A, rl,) to
~
(X(I, P2), A, A(7,)

is sufficient for the boost invariance of I".

W"" dxe""(k~J (x)J" (0)~h)+O(m'/A'). (5.8)

Now, J~ approaches the free current as A-~.
Hence A should be chosen as large as possible in
order that Eq. (5.8) may be useful. In view of the

inequality (5.5), the optimum choice of A' for the
electron-scattering (ES) case is

B. Drell-Yan process

Now consider the process hadron a+ hadron b- (u + l(. '+ anything as shown in Fig. 3(a). In the
parton model, "this process goes via, the annihi-
lation of parton-antiparton pair into massive pho-
tons, as shown in Fig. 3(b). Perturbative calcu-
lations" show that bremsstrahlung gives a correc-
tion of order I g(Q2)]' to the annihilation term. In
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X

(a)

% z

P, a

(b)

q = (n„q., (Q'+ q.')/2n, ),
where

r), = —,
" v'S/2, S = (P + P' )' .

(5.13c)

(5.14)
)/4
I
I

P, b
I
I

P, b

From (5.13c) one obtains

q x = r (Q'+ q, ')/2r}, + q, 8 —q, ' x, . (5.15)

FIG. 3. Drell- Yan process.

this paper, only the annihilation diagrams as shown
in Fig. 3(b) will be considered. The main purpose
here is to investigate the modification of the naive
parton-model result coming from the scaling-vio-
lation effect.

Fig. 3(a) also specified the coordinate system
adopted in the present derivation. Notice that the
longitudinal direction, the z direction, is chosen
to be perpendicular to the collision axis. This is
necessary if one would like to treat the two incom-
ing hadrons on the same footing. If one chooses the
collision axis to be the z direction, then it is nec-
essary to consider two IMF's, one associated with
the hadron moving along the +z direction, the other
associated with the hadron moving along the -z
direction. The coordinate system shown in Fig.
3(a) was proposed by Drell and Yan' in their orig-
inal derivation of the cross section in the cutoff
field theory.

The production cross section is proportional to
the quantity

W= dxe "'"(P,P'~ „(x)Z'(x)~,P'), (5. )

Now it will be shown that the partons measured
in the the process described by Fig. 3 are the Q
partons. For this purpose, let

P, =(q„P„)and P, =(q„P„) (5.16)

be the momenta of the annihilating partons. One
can write

g~ —gDX~& 0~ X~~ 1 o (5.17)

It is convenient to express P~ (P~,) in terms of P,',
(P,',,), which is the transverse momentum of the
parton 1 (parton 2) in the frame where the momen-
tum of the hadron a (hadron 5) is purely longitud-
inal. This can be achieved by performing a Gali-
lean boost" with the boost parameter V, = (wVT, 0).
The results are as follows:

Pj, =Pj', +Mr},x,e„

(5.18)

P~, =P~, —M2qox, e„,
where -e„ is the unit vector along x direction. From
these, one obtains

g, = rI, (x, + x, )

and
where ~P, P') is the physical state of two incom-
ing hadrons. In the present coordinate system, the
vectors P, P', and q have the following IMF compo-
nents:

q, =P,'+ Wr), (x, -x,)e„,
where I have defined

&i =Pi~+&i2.

(5.19)

(5.20)
P = (~., M2 n. , 0, ~.),
P =(rl„, M2rlo, 0, rlo),

(5.13a)

(5.13b)
The coefficient of & in Eq. (5.15) can now be com-
puted. It is

Q'+ q,
' Q'+ 2q, '(x, —x,)'+P,"+2M'+,'(x, —x, )

2q, 2r},(x, +x, )

Following exactly analogous steps leading to Eg. (5.9), one sees that the optimum choice for A' in the pres-
ent case is

Q'+ 2r),'(x, —x,)'+P,"+2v 2 7)Q„'(x, —x, )
(x, +x, )

(5.21)

For applications, the P,'-dependent terms in (5.21) are cumbersome to deal with. Fortunately, however,
such terms can be neglected without causing a large error. This is because the average transverse mo-
mentum of the A partons inside a purely longitudinal hadron is of the order g(A')A«A for an asymptotic-
ally free theory under the consideration. This follows from the discussion in Sec. VII. In the following,
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Eq. (5.21) will therefore be approximated by

An„' = [q'+ 2r},'(x, —x,)']/(x, + x,) .

To the accuracy that Eq. (2.15) was obtained, (5.22) can further be approximated by

Anr'-g'=Q'+2q, '(x, —x,)'.

(s.22)

(5.23)

From (5.23), one sees that if x, =x„ i.e., y =0, the Drell-Yan process at a given Q' measures again the Q

partons.
There is one complication to be dealt with in obtaining the cross section. In the case of vW„ it was only

necessary to consider the charge density J' which is simple. In the present case, one is dealing with the
product

J„J"=2J J' —J~J~. (5.24)

From Eq. (A14), one sees that the currents Z and Z~ involve the covariant derivative D~ = &, +igA, . In the
present derivation, the terms involving the gluori fields A~ s will be dropped without a detailed justification.
They could contribute correction terms of order g'(Q').

With these remarks, it is now straightforward to compute the cross section. One obtains

do 4m&'
' dydee' 3

e)'E~(P, P„Q2)Er~ (P', P„q') —,6(Q' —S„)&u,s'(q P, —P—,)dx,dx,d'P~, d'P~, .

(s.2s)

Here v, and q are the energy and momentum components of q, respectively, in the ordinary reference
frame, S»=(P, +P,)'. 6~" appearing in the above is the 5 function in the ordinary reference frame, i.e. ,

5" (q P, —P,—) = 5(q, —P„P„)5(q„--P»—P»)5(q„P,„P»-) . - (5.26)

Finally Ez(P, P„g') is the probability of finding a
Q parton of quantum number i inside the hadron a
whose momeritum is P, i.e.,

(5.2&)

(5.28)

where P,' is related to P~ by Eq. (5.18). Similarly
one has

By a. simple Galilean boost, this quantity can be
related to the probability E~(x,p~', g') of finding a
Q parton of momentum (xt4, P~) in the hadron of
momentum (g„0) as follows:

Fi, (» P„Q') =&g(x„Pg,', P), 5(Q' —S„)-
S

5(Q'/S —x,x, )
1

(5.30)

and

I

a and b. At present, however, nothing much is
known about these soft interactions, which are be-
lieved to be responsible for the Regge behavior,
co@finement, etc. Here, I have simply assumed
that the soft interactions somehow factorize so
that Eq. (5.25} follows.

Now consider the 5 functions appearing in the in-
tegrarid of (5.25). From (5.1V), taking into account
the fa.ct that the P,', 's are small, one has

j'@(P',P„q') = F~ (x„P,',', Q') . (5.29) s(q, —P,„—P,„)- 2 2qg
il

' —x, +x,)) . (5.31)

Notice that the functions E~ depend only on the
longitudinal fraction x as discussed in the last
paragraph of Sec. VA. Also, the furiction depends
on P~ only through P,' by rotational invariance.

In obtaining Eq. (5.25), I have assumed the ab-
sence of initial-state interactions of the two incom-
ing hadrons a arid b. This is plausible since a

hard" partori inside the hadron a (5) cannot inter-
act with any partons inside the other hadron b (a}.
The reason for this is that such interactions have
to involve large energy transfers, which is not pos-
sible since the partons interact via the soft oper-
ator S'~. This argument does not rule out the in-
teractions between the soft partons in the hadrons

Next, consider the z component. One has

(5.32)

From (5.32), (5.18), it follows

P, --P',„and P -P'„.
Therefore

(5.33)

5(q, -P„P„)- 5(q, +P,'„——P,'„). (5.34)

Putting these results back into Eq. (5.25), one ob-
tains
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4 n2
(o, 2

= Q e( E@(x„P»',Q )E~q(x„P~, Q )(1/Q')6(Q /S —x,x2)6(q +P, —Pz„)

x 6(q„-P,„-.P~)(2~,/M)6(2qx/M- x, + x,)dx,dx,d'P»d'P~. (5.35)

'The above formula is somewhat peculiar in that the z direction and the x direction appear mixed in the 5
function. This can be cured by the following observation: First notice that P,„and P,„appear as integration
variables, so one may call them -P„and P„, respectively. Under this substitution, the quantity
F„(x„P»',Q') becomes Fz(x„P»'+ P„',Q'), which can be interpreted as the probability of finding a Q par-
ton of longitudinal fraction x, and the transverse momentum (P,„,P„) inside the hadron a moving along the
x direction. The same can be repeated for E~~( x„P,', Q'). Finally, one obtains

4 a'
(o, , = Q e)'F n(x„P»', g')Egg(x„P~', Q')(1/Q')6(Q'/S -x,x, )6~"(q~ —P» —P~)

x (2~,/v 2 )6(2q„/M- x, +x, )dx,dx,d'P»d'P~ . (5.36)

Eq. (5.36) is the same as the one conjectured by Kogut'"" and also by Hinchliffe and Llewellyn Smith, " if
one replaces Q' = Q'+ 2g, '(x, —x,)' by Q'.

f'„(P,Q') =g (&
~

(P, '), n, Q& [', (6.1)

p=(rI~, P, ). (6.2)

As is clear from Eq. (6.1), E„(P,Q') is the prob-
ability of finding a Q parton of momentum P a,nd

quantum number i inside the hadron with momen-
tum (go, 0) and the quantum number a. Given
P„(I&,Q'}, let us compute F„(P,Q'2) where

Qz2 gll+ 1Q 2 q 2 gkq 2 y )) (6.3)

For this purpose, it is necessary to compute the
quantity &a~ P, n, Q') ~' for arbitrary n. By sand-
wiching the complete set of states

~

m, Q), one ob-
tains

(6.4)

Therefore the problem reduces to computing the
matrix element &mQ ~P, n, Q'). To do this, consid-
er the following expansion:

~

T; z, q &
= I(z,'z„'&'I'

~

7, z, q&

VI. SCALING VIOLATIONS

In this section, the variation of the quantities E„
appearing in the cross sections of the deep-inelas-
tic electron scattering and the Drell- Yan processes
will be discussed. 'They are defined by

&,Q~, q&=&, q (,Q'&.

From Eq. (6.5), one obtains

& mq~T, nq)

(g~g~), 1, &mq 1 &W I P, n, Q')
g$m

(6.6)

(6.7)

The matrix element (m, Q
~

& W
~
P, n, Q') can be

computed from Eq. (2.15). To order g(Q'), only
the one-particle processes is shown in Fig. 4 need
to be considered. As discussed in Eq. (2.12}, the
matrix element is nonvanishing only in the region

Q'/2~. &
~
~&„~&Q"/2n, (6.8)

From Eq. (6.8) and from the discussions in the
last paragraph of Sec. III, it follows that the dia-
gram shown in Fig. 4(b} does not contribute, since
the state ~m, q) does not have enough energy. For
a given configuration n, the configurations m that
contribute to Fig. 4(a) and the one contributing to
Fig. 4(c) are distinct. For Fig. 4(a), one has

&,Q(&w(P, n, q'&=&P', Q~&W~P, q, q')

+ o(g'(Q')) ~ (6.9)

where

~V= tV~, —W~ and ~&"r=&', -&p-
The sum over f in (6.5} excludes the states which
have the same energy with the state

~
P, n, Q').

Z 's in the above are the wave-function-reriormal-
ization constants which can be computed from the
normalizatiori condition

&1, Q I n WIP, n, Q')

(6.5)

And for Fig. 4(c), one has

, Q)~w)p, , q')=&, Q)n.w( ) 0( (q')).

(6.10)
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A

)
(+)

&(~o (y-.},p.—p. ~

. (OL)w(~yp)

(b)

FIG. 5. A diagram contributing to f;~. The dotted
line can either be a gluon or a quark.

E,q(x, Pi', Q'+ &Q') = Z,E,)(x, Pi', Q')

d'P,'d'P, fgq(P, P')

FIG. 4. Lowest-order diagrams contributing to the
matrix element (m, Q!AW~p, s, iI)'l . b indicates the
action of AR" vertex.

Now substitute the results (6.7), (6.9), and (6.10)
into Eq. (6.4). Considering the incoherence, one
obtains

&& E,g(y, P",Q'),

(6.15)

where f,&(P, P') is the probability of a Q parton of
moments, P' = (rj, y, P~) going into a Q' parton of mo-
menta P = (i}~,P~) via the action of the nW vertex,
as shown in Fig. 5. Notice that, by longitudinal
and Galilean boost invariance, the function

f,&(P, P') depends only on the combination x/y and

E(~ Q")=Zz;z:I& P', Q&l' P~ = P~ - (x/y )P~ . (6.16)

pl( IP, Q) I, (P', Ql&w}P, q, Q'&

Z I& I
" Q&l,

&n, Q vw}n', Q'&,
Ns tt where

u(Q') &Q'-
Q2 (6.17)

It is convenient to rewrite Eq. (6.15) in terms of
the following quantities:

+ o(r'(Q')).
Now up to order g'(Q'), one has

(6.11) nQ2 QI2 Q2 (6.18)

~n
z, —1= 1 —Z„+O(g~(Q'))

(n, Q I &Wln', Q') ' (,(,))
n'

(6.12)

By means of Eq. (6.12), it is easy to show that the
last and the first terms to Eq. (6.11) combine to
yield the final result

E(P Q")=Z'E(P Q')

~I
fly vQ

(6.13)

E(P, Q') =E, )(x, P, , Q'), (6.14)

Eq. (6.13) can be written in the following form:

Equation (6.13) is the desired relation describing
the scaling-violation effects. Restoring the quan-
tum-number indices and writing

~(Q')
f~g(Pi P )=

2 2 p 2 fo( /yx) ~

Here

(Q, )
a'(Q')

4m

(6.19)

(6.20)

The factorization implied by Eq. (6.19) holds in
lowest order. Eq. (6.15) now becomes

E,(x, P~', Q'+ &Q') E,(x, P, ', Q'—)

~(Q') - &Q'-Z), E((x, P~', Q')
2r

(6.21)x Eg(y, P~, Q )

Here and in the following, the hadronic quantum
number a will be suppressed. Let us now work
out the restriction of phase space implied by Eq.
(2.15). For this purpose it is only necessary to
compute the energy difference &h between the in-
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itial and the final states of the diagram shown in
Fig. 5. It is

~b= 1 —,y
2qo x (y —x)

' (6.22)

From this and Eq. (2.15), one finds

—(y -x)Q'- &&'- —(y -x)(Q'+ &Q'), (6.23)

where P~ is defined by Eq, (6.16). The inequality
(6.23) must be imposed in the second term in the
right-hand side of Eq. (6.21). The restriction of
the phase-space integral on the wave function re-
normalization constant Z,. is already taken into ac-
count by Eq. (6.17).

It remains to compute the quantities Z& and f &&'s.

In the lowest order, they can be computed from
the knowledge of the bare vertices shown in Fig.
l(a) and Fig. 1(b), the corresponding matrix ele-

ments being specified by Eqs. (A12) and (A13) in
the Appendix. The calculation is straightforward
and already reported elsewhere, "and need not be
repeated here. To write down the result, let us
first discuss the indexing of the quantum numbers.
In @CD, there appear color and flavor indices.
Since the color group is an exact symmetry, the
probabilities .of finding. a given parton and the prob-
ability of finding another parton which differs from
the first one only in its color index must be iden-
tical. This- implies that one need only consider the
transition probabilities f which a,re averaged over
the initial colors and summed over the final colors.
It is not hard to see that these quantities then be-
come independent of the flavor indices. The dis-
tribution functions F, however, still depend on the
flavor indices. Let E„and E» be the color summed
probability distributions of finding a quark of flavor
i and a gluon, respectively. Equation (6.21} can
then be rewritten as follows:

'
dy d'P'

fqe — F,g(y &i" 0')
7T

+
2~ f„( )&,(x&l'0-')

I (6, .24R, )

(6.24b)

where

f„(x)= [C2/(1 —x) —(1+x)],

f„(x)=f„(I-x),

f, (x) =2TJ(1 —x)'+x'],

f = C [2/(I —x) + 2/x —4+ 2x(1 —x)],
alld

Z, = C„(2I„—2 ) and Z = 2I„C —b .

(6.25)

(6.26)

j.
I„= dx 1 —x . (6.2V)

N appearing in Eq. (6.25) is the number of the
quark fields. 'The flavor index i runs from 1 to
2N to include antiflavors. The quantity X„appear-
ing in Eq. (6.26} is an infinite constant defined by

However, the infinities in Z's are canceled by the
integral terms in Eq. (6.24), which diverge be-
cause the functions f are singular at x = 1. Equa-
tions (6.24)-(6.26), together with the inequality
(6.23), constitute the main results of this section.
Equations of the same general structure were
first proposed by Kogut and Susskind, "and Kogut. "

If one integrates both sides of Eq. (6.24) with re-
spect to the transverse variable P~, then one ob-
tains a simpler set of equations which me will call
the longitudinal equations. The longitudinal equa-
tions were first written down by Parisi. " He ob-
tained them by taking the inverse Mellin transform
of results obtained from the operator-product ex-
pansion and the renormalization-. group equations.
A derivation of the longitudinal equations in a
spirit closer to the present paper was given by
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Altarelli and Parisi, '4 and also independently by
Kim and Schilcher. 2

For actual calculation, it is convenient to ex-
press Eq. (6.24} in a slightly different form. Define

Also, let 6 be the set (q„q&), and define

(6.29)

(6.28)
Equation (6.24) can then be reduced to the following
set of equations:

d'I, d'P,'-
&, ' f„(xfy )F2(y, P",Q'),

F2 (X,P2', Q'+ AQ') Fn(X,—P2', Q')
(6.30a)

~(Q') —Z, 2 F (x, P2', Q') &, ' f„—~F,(y, Pi', Q')+f„—F,(,Pi", Q'}

(6.30b)

F (x, P22, Q'+ &Q2) —Fn(x, P22, Q')

~(Q') &Q'
F2(x, P) 2, Q') E,I'j, + — I y Pi,

(6.30c)

VII. SOLUTION OF SCALING-VIOLATION EQUATIONS AND PARTON TRANSVERSE-MOM~TUN DISTRIBUTIONS

A. General introduction

Let us first consider the general form of the equation given by Eq. (6.21). In order to impose the phase-
space cut given by the inequality (6.23), it is convenient to consider the transverse moments F',"' defined
as follows:

F'."'(x Q') = (P ')"F(x P ' Q')d'P . (V.l)

Multiplying both sides of Eq. (6.21) by (P, ) and integrating over P, keeping the inequality (6.23) in mind,
one obtains the following differential equation:

1 d + 2nr + r
g F(n)(» q2) ~ Q q2r & 1 f(g X yrF(n-r)(~ q2) (V 2)

The quantities Z( s diverge as shown in Eq. (6.26}. However, it is easy to see from the explicit forms of
the f's given in Eq. (6.25) that these divergences cancel the divergences arising from the r = 0 term in
the integrals appearing in the above equation. Therefore the function F'"'(x, Q')'s must be finite if they
were finite for some given value of Q2. One expects also that the large-n behavior of the F'"'(x, Q')
dictates the large-P, ' behavior of F,(x, P,', Q'). This point should be investigated further. For any given
n, Eq. (V.2) csn be solved numerically. This is presently under investigation.

Equation (V.2) can be simplified further in terms of the following Mellin-transformed quantity:

~(n)(Q2)

One obtains

j.
dxxn 'F (»(x, q') . -

(V.3)

Q q,
' =

2
-&(~",(Q )+Q Q"

(( )t
m (n, 2.),PI,.„" ~, (V.4)

where
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'd
m (n, r), = —y " "(1-y)'f;,(y)

0
(7 5)

Eq. (7.4) is considerably simpler than Eq. (7.2). Still it is sufficiently complicated so that an an»ytic»
solution does not seem feasible at the present time.

B. Average transverse-momentum squared of partons

To give an explicit example of the solution of
equations derived in Sec. VIIA, let us now com-
pute the partons average momentum squared
(P,2), —= T,.(Q'). In terms of the M's defined in Eq.
(7.3), it is

r(Q') =~(Q)/~'=(/((r~, )x(0 /Q)) .

The solutions of (7.8) and (7.9) are

N&(Q') = N5[y(Q') ]'1

(7.16)

(7.17)

(7.6)

N;(Q') =M,' '(Q') .
The N's and T's satisfy the following coupled set
of equations:

(7.7)

T.(Q') -=M,", ,'(Q').

It is also necessary to know the partons' average
longitudinal momentum (x), —= N,.(Q'), which is

N, =K —[y(Q2) ]"(X—1+N ) (7.19)

t

dx'Ir(x') ]' '
I

.

(V.18)

Eq. (7.10) has the following solutions:

(Q')
b

sinQ2 2v

ST, c((Q2)
b (-b,T, + Q2C, N, ) 1

(7.8)

(7.9)

(7.10)

N, = I-Z+ [y(Q') ]'(SC- I + N', ) . (7.20)

Here A. is the nonvanishing eigenvalue of the matrix
A and is given by

y= —f2C„+ T„+[(2C„—T„)'+8C„T„]'/'), (7.21)
1

3+2 CI"
(slnQ'i, T j 2v T/ 4 j

(7.11)

In the above b is given by Eq. (2.14), and a„b„
and c, are the (1, 1) elements of the matrices A,
B, and C, respectively. These matrices are
given as follows:

(7.12)

K= TJ(T„+2C„) . (7.22)

Equations (V.17), (7.19), and (7.20) describe
the Q' variation of the average longitudinal mo-
mentum of the partons, and are well known from
the usual method employing the operator-product
expansion and the renormalization-group equa-
tions. Their explicit form i,s necessary to solve
Eq. (7.11). To solve the latter equation, let us
introduce the following eigenmodes of the matrix
B:

B — 1 2
i

— 12 r 15 r (7.13)

T,(Q') = $,T,(Q') + T,(Q'),

where

(7.23)

C=B -A= (7.14)

((b, —bQ) + [(b, —b,)'+4b2b2]'/'). (7.24)
1

The corresponding eigenvalues are

It is straightforward to solve Eqs. (7.8)-(V.11).
One writes

~'= ~(Q.'), N;(Q. ') =N';, ~d T;(Q.') = T';.

(7.15)

Also, it is convenient to define the function

X, = 2Ob, + b Q) + [(b, —b4)2+ 4b,b, ]'/')

The solutions are

T,(Q') = [y(Q')]"
n' 2

x T+— dp, yp.
0

x(x, r, ( (X')I')I,

(7.25)

(7.26)
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where

u, =t)Q,C, + CQ+E[g,(C, -C,)+ Cs —CQ)]] (7.27)

to the first (second) term of Eq. (7.18}or (7.26).
At Q' near Q,', one has the behavior

~, (Q') - [~(Q')]" (V.36a)

v, =f [g,(C, —C,)+C, -C,][If-1+@',].
From T„one recovers

(7.28)
B,(Q') (Q'-Q. '), (V.36b)

T,(Q') = [T,(Q') —T (Q') ]/(&, —$ ) (7.29)
where a, is a positive constant. As Q' becomes
large, one has

4,.(Q') -1/(lnQ')' (V.3Va)

T,(Q') = [&,T (Q') —
& T,(Q')]/(&, —

& ). (7.3o)

Equations (7.19), (V.29), and (V.30) describe the
Q' variation of the parton's average transverse-
momentum squared. To analyze these results nu-
merically, consider QCD with color SU(3) (8) flavor
SU(4) in which case

C = 3, C„=&, and T„=2 . (7.31)

Also, it will be assumed that the parton distri-
butions inside the nucleon can be divided into a
valence contribution, an SU(3)-symmetric sea of
quarks and antiquarks, and a charmed sea. For
an isospin zero target, one has

Fy =F,) F~=F„Fg=F, y
and Fy,=F, . (7.32)

The notations in the above are self-explanatory:
+, %, &, and &' denote the proton-type, the
neutron-type, the strange, and the charmed quarks,
respectively, while the barred ones denote the
antiquarks. From Eq. (7.32), it is clear that the
quantities T„=T~ —T, and T,= T, —T,= T, —T~
belong to T,. Thus their Q' development can be
determined if the initial values T'„, T' „N'„,
and N', are known. Also the Q' development of
T, and T, are determined if the inital values T'„
T', and N =1-N', are known. Furthermore, it
follows from (7.32) that

B;(Q') -Q'/(»Q')', (V.37b)

where b,. is another positive constant. From
Eqs. (7.35)-(V.37), one sees that the function
T,(Q') behaves roughly as follows: At Q' near
Q,', it is mainly governed by A,.(Q') which de-
creases as Q' increases. At large Q', on the other
hand, it is mainly governed by the function B(Q')
whose behavior is given by (V.371). Furthermore,
the coefficient of B(Q') involves only the initial
values 1P, as shown in Eq. (7.35}. Therefore, the
behavior of the partons' transverse momentum
at large Q' is determined if the initial values of
the partons' average longitudinal momentum are
known.

Consider now Eq. (V.26) in the ultrahigh-Q'
region. Integrating by parts, one obtains

Q2

Q 2

= Q'r'(Q') —Q.' v'(Q. ') f-
Qo

= QV(Q') + o(Q'r'(Q')/»(Q'/Qo') } (7 38)

If In(Q'/Q, ')» 1, one may retain only the first
term in Eq. (V.38). In the same limit, the term
involving v, in the integral in (7.26) may also be
neglected, one gets

2N

T, = Q T, = T„+2T, + 6T, ,
I+L

2g

N, = N,. = V„+2N, +6N, .
f, =1.

(V.33)

(7.34)

n'
T (Q') Q)'-"- U QQ

2m

From (V.39), (7.29), and (V.30), one obtains

&(Q') = T,(Q')/T, (Q')

Therefore, if one knows the Q' development of
T„, T „and T„ then one can determine the
behavior of T, and T, separately.

Before going into a detailed numerical analysis,
let us first discuss some general properties of the
function T,.(Q'). Schematically it can be written as
follows:

oQ„= Q'„= 23TJ(56C + 15T„). (V.40)

However, the approach to x„should be very slow,
the correction terms being logarithmic.

For numerical evaluation, it is necessary to
specify the initial values n', N"s, and T"s at
Q' = Q,

' = 1 GeV'. I use

T;(Q') = C;(T')4;(Q')+D;(&)B;(Q') . (7.35)

n' = 0.5,
N„=0.46, PP, =O, N, =O.Oi, N =0.48,

(V.41)

(7.42)
I

The first (second) term in the above corresponds T'=O.V5 Gey' T'=0, T'=0.25 GeV' (7.43)
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TABLE I. Q dependence of T;(Q ) =&P~); (all units in
Ge+2)

&&i'&v 0'i'&c &&i'&s &&i')g

1.1
1.4
2.6
4.6
7 4

15.4
26.6
41 ~ 0
70.0

120.0

0.738
0.712
0.667
0.653
0.662
0.727
0.832
0.968
1.230
1.657

0
0.002
0.005
0.010
0.017
0.032
0.052
0.076
0.122
0.196

0.245
0.235
0.214
0.202
0.197
0.200
0.213
0.235
0.279
0.357

0.272
0.329
0.504
0.735
1.023
1.763
2.715
3.867
6.065
9.640

2', =0.25 GeV'

In the above, (7.41) and (7.42) are the standard
results that follow from the analysis" of deep-
inelastic lepton scattering data. They are thus
presumably reliable. In writing (7.43), it was
assumed that the average transverse momentum
per quark in the nucleon is 0.5 GeV at Q'=1 GeV'.
Since there are three valence quarks, one obtains
T'„= 3(0.5)' =0.75 GeV'. T', is set to zero since no
charm should be present at low Q'. The choice
T'=0.25 GeV' was made by naively assuming that
the quarks and the gluons have the same transverse
momenta, . The T',. 's given by (7.43) are at most
speculative, and it is conceivable that the present
estimate could be wrong by a factor of two. Ac-
cording to the discussion in the preceding para-
graph, however, the behavior of the function
T, (Q') at larg. e Q' is insensitive to the precise
value of the T',.'s."

Table I presents the result of the calculation
in the Q' range from 1 GeV' to 120 GeV', which
covers most of the present experiments. The
gluonic contribution rises rapidly, while the qua, rk
contribution changes very slowly in the Q' range
investigated. The general trend of the T,.(Q')'s
agree with the qualitative analysis carried out
above. At Q'=120 GeV', x(Q') --, which should
approach ~„=0.232 according to Etl. (7.38). At
Q' = 10' and 10' GeV', x(Q') = 0.276 and 0.265,
respectively. Such a slow approach to x„ is to
be expected.

In interpreting the result shown in Table I, it
should be kept in mind that T„(Q') is the average
transverse-momentum squared summed over
the three valence quarks. Thus the average
transverse-momentum squared of a valence quark
is -0.56 GeP2 at Q'= 120 GeV'. By the same
token, the rapid rise. . of the gluonic transverse
momentum squared may simply mean that the

average number of gluons increases rapidly. The
average transverse momentum of quarks obtained
in this section seems reasonable in view of the
recent experiments. However, more assumptions
are necessary in order to compare the result of
Table I with experiment. This is beyond the scope
of the present paper.

VIII. CONCLUDING REMARKS

In this paper, it mas shown hom to reconcile
the apparently contradictory concepts of field-
theoretic local interactions and the impulse ap-
proximation. It was observed that the i~pulse
approximation requir es the time-development
matrix U to be close to unity during a short time
interval. To accomplish this, the interacting
part of the Hamiltonian was separated into two
parts, one containing only those terms involving
large energy transfer, the other containing the
remaining small-energy-tr ansfer pieces. The
parton states were introduced to be eigenstates
of the large-energy-transfer Hamiltonian. The
evolution of such a state is then governed by the
soft operators with small energy transfer, thus
enabling one to make the impulse approximation.
It was then possible to give a physically tr ans-
parent derivation of the usual formula for the
cross section of the deep-inelastic electron scat-
tering. With some additional assumptions, it
was also possible to confirm the conjecture that
the cross section for the Drell-Yan process can
be obtained from the naive parton-model result
by replacing the naive parton density functions
with Q'-dependent density functions. The variation
of the density functions with Q2 was determined in
terms of coupled integrodifferential equations.
The equations reduce to the usual ones when restric-
ted to the longitudinal distributions only. As for
the transverse distributions, explicit solutions
mere obtained for the simple case of the average
transverse-momentum squared.

There are still many questions left unanswered.
The most important of these is the fact that Eq.
(2.15) was based on the analysis of a crude Ham-
iltonian renormalization-group analysis in the
truncated momentum space defined by Etl. (2.12).
This means, among others, that one is neglecting
the variation of the longitudinal variables com-
pared to that of the transverse variables. For
consistency, therefore, Etl. (5.9) and Eq. (5.22)
were then approximated by Etl. (5.10) and Etl. (5.23),
respectively. If one assumes, without detailed
justification, that an exact analysis yields Eq.
(2.18) without corrections of O(g (A)), then the
effect of the variation in the longitudinal variables
can be computed as follows: First, it is not
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difficult to show that the scaling-violation equation (6.21) becomes

zA'
X( xX, sS sxX ) —X,.(x,0s,S ,)=—(-Z (x), —X, (x P, ,x. )

'd x dP'
(&'s(( /s))/;; —f 0's'. )xi &;(s 0', 0')j.

x l7 J

where

(8 1)

Z,.(x) 3,.(z)n(A'x$(z))dz, (8.2)

with

2 2C,
(z (z) =C„——,

' and s (z) = ' —t)."1-z a ] (8.3)

integral in (8.1) is limited, of course, by the inequality (6.23); In the limit 4A -0, Eq. (8.1) can
be written in the following differentia, l form:

2vn' ' ',"' = —Z, (x)E,(x, P. ,', A.') + —n(A'y&(x/y)) — — d&f („—& ((y, P/ ', A'),
x 0

where

x j./2 '

P~'= — P,'+A' —(y —x) —2 cos8 ~I0r ~& —(y —x)

(8.4)

(8.5)

It now makes sense to use the exact formula, (5.9)
and (5.22). Therefore deep-inelastic electron.
scattering measures the quantity

G, (x, Pi, Qz) =E,(x,Pi, Q /. x), (8.6)

while the Drell-Yan process measures

0's (x, —x,) s/4)

The equations (8.4), (8.6), and (8.7) then determine
completely deep-inelastic electron scattering and

the Drell-Yan process. In a, recent paper, "some
phenomenological consequences of these equations
were studied. Agreement with recent data on
8 =o~/or in deep-inelastic electron scattering and

the average transverse momentum of the Drell-
Yan pairs is found to be very good.

Next, the discussion of the Drell-Yan process
in Sec. V is still incomplete, because the co-
variant derivatives occurring in the electromag-
netic currents were replaced by the usual derivative
without any justification. These are indications
that the. ,results in Sec. V are correct from the
explicit calculations in lowest-order perturbation
theory' and from the calculation" in one-time
one-space dimensions. However, the problem
should be investigated further.

Finally, the scaling-violation equations were
only solved for the simplest case. Extending
the solutions to a more general case is presently
under study. At any rate, the problem here is a
technical one and n}ot one of physics.
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APPENDIX

In this Appendix, the explicit form of the Ham-
iltonian X corresponding to the Lagrangian den-
sity (2.5) will be derived. Since the procedure
is well known, ' '4 it is not necessary to go into the
details of the derivation. For the present purpose,
it is convenient to represent the Dirac matrices
in the ordinary reference frame, jp. , as follows":
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In the IM gauge specified by Eq. (2.7), the inde-
dependent degrees of freedom are the transverse
components A, 's of the gluon fields and the two-
component Pauli spinor y. The latter is related
to the four-component quark field g as follows:

(AS)

given by

D=g+igA T (A5)

In this appendix, the superscript is used to
denote two dimensional transverse vectors. The
fundamental equal-7 commutation relations are

where

JLX(x), X(x'))s, = 6(S —S')6"'(x -x') (A6)

1 1—oo DX.
&2

s' (A4)
[A,'(x), y A~~(x)]s, =- 6,06,~6(S —S')6~2'(x -x') .

Here I/S0 is the inverse of the differential operator
80= S, =S/S S and D is the covariant derivative

These commutation relations can be realized by
introducing the Fourier decomposition

x(x) dpi
(2m)'

(W(s)e "'"b(p, s)+ W(-s)e'~'*dt(p, s)J(2qW2)'i' (A7)

and

fl,.(x) =
0

—fe,.(X)e '~'"a(p, X)+e'~'"&&(X)a (p, X}$.
0

The Hamiltonian can be obtained by the standard procedure, and is given as follows:

K, = dedx, (--,'A.&'A, + X'V' —,y)

(A8)

(A9)

d d, —,— — A
0

(A10)

(All)

Z t ~ «i « ~ ««L
+ X igT A -o —o &-igo'V —T A 'o -g Tg 'o —Tp 'o Xa a So So g0

+df.~a'Age', + ~f.,f.,pjlglg. 'I,
where J', is the color-charge density given by

+a=W~X TaX+fa0+a ' S Aa ~

The matrix element (I iÃ, in) in the momentum space can be obtained from (A. ll), (A.7), and (A.8).
For the purpose of the present paper, it is only necessary to consider the matrix elements shown in Fig.
1(a) and 1(b) and those which can be obtained from them by the substitution rule. The matrix element
corresponding to Fig. 1(a) is

~ = T.i' 2q' )
'

and the one corresponding to Fig. 1(b) is

j
M, =igf„, ~

' ' P„~—(p, -P,),.6~, + cyclic permutations

Finally the electromagnetic current J'"(x) = py"g will be expressed in terms of the independent field
variables X and A, 's. From (A2), (AS), and (A4), it follows,

(A12)

J'=~2x'x,

i
—.o DXi

~

—0o DX i,
1(1 ) 11

~2 is'
&

s'

(A14a)

(A14b)

~= t'o.x+x'o, $. (A14c)
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