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In the framework of local field theory the asymptotic properties of the crossing-odd forward scattering

amplitude F(E) are investigated, E being the laboratory energy. Confronting the analyticity properties of
the logarithm of the amplitude with the Froissart-Martin bound, we obtain a series of sufficient conditions

for a fast asymptotic vanishing of ImF(E)/E and ReF(E)/E in the mean. Analogous conditions for the

vanishing of the total-cross-section difference h, cr(E) follow via the optical theorem. We also find conditions

for the existence of Meiman s generalized high-energy limit of 60(E). Finally, two independent asymptotic

bounds on her(E) are derived. The method is extended to nonforward scattering to give asymptotic bounds

on differential cross sections.

I. INTRODUCTION

Since Pomeranchuk'-proved from dispersion re-
lations and some additional assumptions that the
total cross sections for particle-particle and anti-
particle-particle scattering become equal at infin-
ite energy, considerable progress has been made
in generalizing the theorem and relaxing the as-
sumptions.

It is well known that the asymptotic vanishing of
the total-cross-section difference ao(E) has not
been proved from the principles of local field the-
ory. The ratio ho(E)/o, (E), however, should tend
to zero with E tending to infinity (E being the lab-
oratory energy) if the crossing-even total cross
section cr,(E) rises unboundedly. This was proved
by using unitarity several times in the past, '. 4 by
making assumptions of various degrees of rigor.

On the other hand, defining a generalized high-
energy limit Lims „ho(E) in which a point set of
zero asymptotic density can be omitted, Neiman'
has recently obtained a condition of the existence
and vanishing of this limit. Assuming that ag(E)
does not change sign indefinitely and that the real
part of the crossing-odd forward scattering ampli-
tude E(E) does not grow too fast,

ReE(E) =o(E lnE),

Neiman has shownthat Lims „Lo(E)exists and is
equal to zero. This is a generalization of earlier
results obtained by other authors. "'

Experimental data strongly suggest that Ao(E)
does tend to zero with increasing energy. More-
over, the data indicate that a rather fast asymptot-
ic vanishing of ao(E) t+es place; It is therefore
worthwhile to search for sufficient conditions of a
fast vanishing of wg(E). The present paper is de-
voted to problems related to this subject.

Z„s(E)= Jt ao(E')E'"(InE')sdE' (1.2)

(E)=, E'&(lm') dE', (1.3)
~0

with E~ being a positive constant. The asymptotic
behavior of F(E) can conveniently be investigated

by considering the convergence properties of

Z„s(E) and R„~(E)with E -~. The highest values
of n, P and y, 5 for which lims „Z 8(E) and

lims Rr s(E) are finite indicate how fast ao(E)
and ReE(E)/ Erespectively, tend to zero. We find

the general form of constraints to be imposed on

the phase of E(E) in order to ensure the conver
gence of the limits lims „Z„a(E)and

lims „Rr s(E) for given n, P and y, 5, respective-
ly. Moreover, the same constraints are shown to
imply that E(E) obeys certain sum rules [see, e.g. ,
(3.2) and (3.9)].

Among the cases considered, the integral

Starting from the basic results of axiomatic field
theory as usually adopted in the S-matrix frame-
work, we obtain high-energy asymptotic correla-
tions for the crossing-odd forward scattering am-
plitude F(E) (Sec. II, theorem 1). Then we estab-
lish necessary and sufficient conditions of the un-

bounded ri,se, of the boundedness and of the asymp-
totic vanishing of ho(E) (Sec. II). (These results
are nothing but a slight generalization of Theorem
8 and Corollary 2 of Ref. 8.) Then, in Sec. 111,
Theorem 1 is used for finding various sufficient
conditions of a fast asymptotic vanishing of the
total-cross-section difference ao(E) and of the
whole crossing-odd forward scattering amplitude
E(E). To this end, we introduce the integrals
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Z, ,(E) is of particular interest. We obtain in
theorem 2 a new sufficient condition of its conver-
gence with E -~. Then, in the Appendix, we prove
two theorems which demonstrate that the conver-
gence properties of this integral with E tending to
infinity are relevant for the existence of Meiman s
generalized limit Lim z „Ao(E) mentioned above.

The reader who is interested mainly in applica-
tions of Sec. III can focus on Sec. IV, where the re-
sults obtained are discussed under simplifying as-
sumptions related to the existence of certain high-
energy limits. It turns out, for example, that if
the value of lims „lnEImF(E)/ReF(E) lies outside
the narrow interval (-w, -w/2) then
lim infs „~b,v(E)) always equals zero. Reversing
this statement we infer that if the Pomeranchuk
theorem were violated [in the sense that
limz „r»o(E) g0], then $(E) =ImF(E)/ReF(E)
should obey severe restrictions in the asymptotic
region, being confined, at least on an infinite
sequence of energies, between the curves —v/InE and
-v/(2 lnE). Thus, the assumption that limE „gg(E)
is not zero has very restrictive consequences for the
asymptotic behavior of the phase, even without as-
suming any specific high-energy model.

In Sec. V, several consequences are drawn from
the results obtained. It is shown, in particular,
that ao(E) is asymptotically bounded either by
(5.1) or by (5.3). Besides this, ao(E) must satisfy
either (5.5) or (5.6). This means that each of these
two pairs of bounds amounts to one unconditional
bound on ao(E). Similar pairs of bounds are also
obtained for nonforward scattering [see relations
(5.9), (5.10) and (5.11), (5.12)j.

Ao(E) =ImF(E)/E. (2 1)

Unless otherwise stated, E is supposed to be real
and positive.

Definition. Using the principal branch of tan
we shall denote by arctan, x the function defined by
the following relations:

arctan, x=tan 'x for x&-cot(vc/2)

arctan, x= tan 'x+w for x&-cot(mc/2)

for positive c,

arctan, x=tan 'x for x&-cot(vc/2)

arctan, x= tan 'x- v for x&;cot(mc/2)

(2.2)

(2 3)

for negative c and arctan, x=tan 'x for all real x.
The function arctan, x satisfies the following in-
equality for

~
c

~
& 2:

1——,+ c/2 & —arctan, x &-, +c/2,1

jr
(2.4)

Note that a dependence of c on x is not excluded by
this definition. We shall work with x= g(E) and c
= a+5/lnE, where a and 5 are arbitrary real num-
bers (a being subject to the constraint —1 & a & 1).

Further, for the sake of brevity, we introduce
the symbol f(E) for the function

for large enough energies.
The connection of these assumptions with the

general properties of axiomatic quantum field the-
ory is discussed, for instance, in Refs. 7 and 8.

The amplitude F(E) is normalized in such a way
that the optical theorem has asymptotically the fol-
lowing form:

II ~ ASYMPTOTIC PHASE-MODULUS CORRELATIONS f(E)=i(-iE)' [1n(-iE)]'F(E) (2.5)

We shall assume the following general properties
of the crossing-odd forward scattering amplitude
F(E):

(A1) F(E) is an analytic function of complex E in
the region D„= (E; ImE &0, ~E ~

&r, r &0} and is
continuous on the closure of D„.

(A2) For every EeD„we have F(E)=-F*(-E*).
(A3) F(E) is bounded by a polynomial of degree

N in E for large ~E ( (N being independent of the
direction).

(A4) F(E) satisfies the Froissart-Martin bound
on the real axis

F(E) ',&const

lim F(E) ln'E E' ' = 0,
E~~

Imf(E) does not change sign,

(2.6)

(2 7)
QO dEImf (E) —diverges . (2.8)
0

Then there exists an infinite sequence (E»}of
points, lim~ „E~=~, on which

defined for every E ~ D„, r &1.
The subsequent Theorem 1 represents a simple

generalization of Theorem 2 of Ref. 8.
Theorem 2. Assume that F(E) possesses proper-

ties (A1) to (A4) and that the following conditions
are satisfied for large enough energies and for
some real a and 5, ~a~ & 1:

I

2 2 E dFD,E, exp —— arctan, g(E) —&
~ F(E»)~ & D,E» exp —— arctan, )(E)— (2.9)

7T

where D» D, are constants independent of E, and c Remark 1. Theorem 1 remains unchanged if con-
= a + b/InE. dition (2.8) is replaced by the weaker condition
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Imf (E) & —,
'

r) Ref(Eoe '")dy, Eo &r2

ll
arctan

(2.10)

2 dE'
7,(E) =— arctan, t(E ')

7T E0

+-,'in[1+ $ '(E)] (2.11)

with c= 1 +b/lnE, then a necessary and sufficient
condition for

lim (so(E)(=+~,
E +ao

0 & lim ( err(E) (
&+~, (2.12)

lim Ao(E) =0

1s

lim v', (E)= -~,
E-+ oo

-oo & lim To(E) &++&,

lim 7,(E)=+~,
E-+ oo

(2.13)

respectively.
It is perhaps useful to illustrate the conditions

(2.13) by considering some special asymptotic be-
havior of $(E). If, for instance, $(E) tends to any
nonvanishing limit then, in view of (2.2) (see Fig.
1), 7,(E) tends to plus infinity and, consequently,
lims „acr(E) necessarily vanishes. If g(E) be-
haves so that lim s „$(E)lnE is in the interval
( rr, -rr/2), then

~
-oo(E)

~
tends to infinity.

where g equals 1 or -1, the sign being determined
by the requirement r) lmf(E) & 0 at sufficiently high
energies. This result follows immediately from
Theorem A of Ref. 8. It is easy to express the
conditions (2.8) and (2.10) in terms of the ampli-
tude F(E) by using relation (2.5). It will be shown
below that the condition (2.10) leads to a sum rule
for F(E) which, however, can be of practical use
only if some information on the amplitude for com-
plex E is available allowing us to evaluate the
right-hand side of (2.10).

The following Corollary 1 yields necessary and
sufficient conditions for the various asymptotic be-
haviors of ao(E).

Corollary 2. Let F(E) satisfy (Al)-(A4) and let
Imf (E)= ImF(E) —brr ReF(E)/2 lnE not change sign
for some & &-2, beyond some energy. If

lim Z, o(E)- —R, o,(E)
bm

E-+ oo

and the limits lims „arr(E), lims „v,(E) exist,
7,(E) being defined as

- cot (rc/2J ~

FIG. 1. Plot of the function arctancx for a value of c
bebveen 0 and 1. The discontinuity occurs at the point
x= —cot m c/2.

III. SUFFICIENT CONDITONS FOR A FAST VANISHING

OF THE TOTAL-CROSS-SECTION DIFFERENCE AND OF
THE REAL PART

The asymptotic behavior of the total-cross-sec-
tion difference arf(E) as well as of the real part
ReF(E) can be analyzed by considering the conver-
gence properties of the integrals Z 8(E) and

R& ~(E) defined by relations (1.2) and (1.3).
The integral Z, o(E) was investigated by a num-

ber of authors and useful criteria of its conver-
gence were found. Recently, Meiman' has found a
condition for the convergence of Z, ,(E) too.

In this section we present theorems giving suf-
ficient conditions for the convergence of Z„B(E)
and R„ t, (E) in the following cases:

(i) o. =-l, p=0;
(ii) a=0, P=-1 —c, y=0, 6=0;
(iii) n is any nonzero real number between -1

and 1, p = 0, y = n, 6 = 0.

Oo cK[arctan, t'(E) + w/lnE] —=-~

then Z, ,(E) converges for E -~, and, moreover,
the following sum rule holds:

(3.1)

oo

rl acr(E) —& —,
'

rl [ReF(Eoe'o) cosy2

+I Fm( eE'o)soin(p ]
dp

0

(3.2)

The convergence is proved by showing that the di-
vergence would contradict the Froissart-Martin
bound.

Theorem Z. Assume that F(E) fulfills (Al)-(A4),
and that ao(E) does not change sign for large
enough energies, E &E0. If



JAN FISCHER, RUDOLF SALY, AND IVO VRKOC 18

where Eo &r and ]I = signa, o(E).
Proof. Setting a =-1, b = 0 we see that assump-

tions (2.6) and (2.7) of theorem 1 are obviously
fulfilled. Suppose that limx „Z, ,(E) diverges.
Then (2.8) holds and, combining (2.9) with the
Froissart-Martin bound, we get a contradiction
with (3.1):

2 dE
exp —— arctan, E +w lnE ~const.

W

(3.3)

Thus, Z, 0(E) cannot diverge as E -~.
The sum rule (3.2) follows from relation (2.10)

of remark 1.
Remark 2. Let us point out two cases in which

condition (3.1) is satisified:
(i) The signs of ag(E) and ReE(E) are asymptot-

ically equal;
(ii) ((E) & -v(I + e)/InE, for some e &0, and all

E &E,.
In case (i), the real part ReE(E) can be shown,

by using the relation (2.9), to obey the asymptotic
bound

lated to the existence and the vanishing of the gen-
eralized high-energy limit Limz „Av(E), which
was introduced by Meiman. ' We recall its defin-
ition in the beginning of the Appendix. Then we
show (see Theorem A) that if Z, o(E) converges
for E-~ and ~0 has a fixed sign above some ener-
gy, then the generalized limit Lim~ „Eo(E)exists
and is equal to zero. This implies, in particular,
that Limx „acr(E)equals zero under the assump-
tions of theorem 2.

Being a sufficient condition for the vanishing of
Meiman's limit, the convergence of Z, ,(E) with
E -~ is not a necessary one, but is not far from
being so, as shown in Theorem B of the Appendix.
This theorem states that the convergence of (3.5)
does not imply that limx „ao(E)l(E)= 0, however
slow the unbounded rise of the function l(E) may be.

It is interesting to discuss the relation between
Meiman's condition (1.1) and our condition (3.1).
Both of them are sufficient conditions for the
vanishing of Lim~ „Ao'(E), but are very different
in form and by no means equivalent. It is not dif-
ficult to find amplitudes satisfying (1.1) and
violating (3.1); one example is

(ReF(E»)/E»
~

~ const. (3.4)

C)0 dE
lim Z, 0(E) = ~g(E)

is convergent and satisfies the inequality (3.2).
Now the convergence of the integral (3.5) means
that Ao(E) must vanish sufficiently quickly in the
mean. If, for instance, b,g(E) does not oscillate
too much it must satisfy the inequality

(3 5)

(3.6)
~

aa.(E)
~

~K/(lnE ln lnE ~ ~ ln ~ ~ ~ lnE)

for all E above some Eo, for some positive con-
stant K and for any finite number of factors indi-
cated in the denominator. The convergence prop-
erties of the integral (3.5) have been used since
1960 by various authors'8' to characterize the
vanishing rate of Ao(E) and a number of different
sufficient conditions of its convergence have been
derived. Theorem 2 gives a new one.

We would like to stress in this connection that
the convergence of the integral (3.5) is closely re-

[Cf. an analogous relation' for the crossing-even
amplitude F,(E), which shows that the unbounded
rise of o,(E) is incompatible with the negative sign
of ReE,(E)]. In case (ii), (3.4) holds too, but,
moreover, it can be proved that the integral Ao, (E)
is convergent. This is stated below in Theorem 3.

Theorem 2 and its consequences deserve a closer
discussion. It is well known that the Pomeranchuk
theorem does not tell the rate by which Ao(E)
should approach zero with E -~. On the other
hand, Theorem 2 establishes conditions under
which the integral

E(E) =E[ln(-zE)]" (3.7)

with Q. & I and E ~ D„. On the other hand, functions
obeying (3.1) but disobeying (1.1) are not so trivial
to construct. One example is

2g„b„ln(b„)'„~ [)-(a(»- b)][)-(a(»+(.)] I
(3.8)

with a„=1000exp(n') and b„=e px(n'). lt can be
proved by a rather lengthy reasoning that this func-
tion satisfies both the requirements (Al) to (A4)»d
the conditions of Theorem 2, but violates (1.1). We
shall be glad to supply interested readers with the
proof.

This result indicates, on the other hand, that
there is only a very narrow class of functions by
which our theorem 2 extends the class of ampli-
tudes defined by Meiman's general condition (1.1).
It is worth mentioning in this connection that ac-
cording to (3.4) and Theorem 3 (see below) every
nonoscillating amplitude satisfying (3.1) satisfies
(1.1) too.

Let us mention that the integral (3.5) has a very
simple geometrical interpretation. Denoting by

o, (E) and o (E) the particle-particle and the anti-
particle-particle total cross section, respectively,
we can easily see that (3.5) represents the area
between these two cross sections plotted in loga-
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and

lim sup [g(E) lnE] &-w
g-+ ~

lim inf((E) &-cot(-,' wo. )

(3.10)

with 0 &a &1, or

lim inf)(E) &-cot(—,'we) (3.11)

with -1 & o. &0, then the integrals Z, (E) and

R„,(E) converge for E-~.
The theorem can be proved analogously as Theo-

rems 2 and 3 by using Theorem 1 and setting a = e
and 5=0. Note that the symbols "inf" and "sup"
can be omitted if the corresponding limits exist.

There are two regions for which the fast vanish-
ing of do(E) was not proved. The first one is de-
fined by the requirement that $(E) is negative for
large enough energies and satisfies the inequality

lim inf[t'(E} lnE] &-w/2; (3.12)

rithmic scale. Thus, to illustrate Theorem 2 by
an example, we conclude that if the signs of ho(E)
and ReF(E) are asymptotically equal [see point (i)
of Remark 2], then o, (E) and o (E) must approach
each other so quickly that the area confined by
them is finite in logarithmic scale. Apart from
this example, the general statement is that the
area is always finite when the conditions of theo-
rem 2 are satisfied.

The following Theorems 3 and 4 point out suf-
ficient conditions of the convergence of
lime „Z„1I(E)and lime „R„~(E)with (o., p)
21(-1,0}. While Z, 0(E) is interpreted as the area
between the two total cross sections in logarithmic
scale, Z 8(E) for some other values of o1 and p
represents the area weighted by some weight func-
tion in the integrand.

Theorem 3. Let F(E) satisfy (Al)-(A4) and let
ReF(E} and ImF(E) have fixed opposite signs above
some E,. If (3.1) holds then both Zo, , (E) and
R«(E) converge for E-~ and any e &0. Moreover,

n

" ReF(E)
dE &-— ImF(E2e'~)dy,

2 o

(3.9)

where 1}=signReF(E) for E &ED&r.
The proof is entirely analogous to that of Theo-

rem 2. The convergence of lime „R,,(E) and re-
lation (3.9) are proved by setting a=0 and b =0,
whereas the convergence of lime „Zo, ,(E) fol-
low's from the case g =0, b =-&.

Theorem 4. Let F(E) possess the properties (Al)
to (A4) and let ao(E) not change its sign above some
energy If $(E) .satisfies one of the following con-
straints:

the second one is defined by

lim sup[)(E) InE] & -w/2,

lim inf[$(E) lnE] & —w.
(3.13)

If ](E) satisfies (3.12), bo(E) can be shown to tend
to zero but the rate may be extraordinarily slow.
This is shown in the subsequent Theorem 5 and
Remark 4; The second case (3.13), in which
Iims „ao(E) may even be nonvanishing, is dis-
cussed in Sec. IV.

Theorem 5. Let F(E}fulfill (Al) to (A4). If $(E)
is negative for every finite, sufficiently high ener-
gy and

lim inf[$(E) lnE) &-w/2, (3.14)

then

lim inf(&o(E) )=0. (3.15)

IV. DISCUSSION

To give a better insight into the results obtained,
we shall discuss several special cases after mak-
ing some simplifying assumptions, which are spec-
ified below. The general properties (Al) to (A4) of
the amplitude F(E) are assumed throughout.

Theorems 1 to 5 indicate that there are the fol-
lowing important "lines of demarcation" in the

Proof. We set a = -1, b = 0 in Theorem 1; then
Imf(E}=-So(E). If b, o(E) changes sign indefinitely
then (3.15) follows. Thus we can assume that
d,o(E) does not change sign above some energy and
therefore condition (2.7) is satisfied. Further, if
Z, 0(E) converges then (3.15) follows. Thus, we
can assume that (2.8) is satisfied and according to
(2.9) we have

D, exp [-(2/w) J~„"arctan, t'(E)dE/E]
I 2 ~

[I + g 2(E)]1/2

(3.16)

Since arctan, ((E) =tan '$(E)- g(E) the theorem
follows now by using relation (3.14).

Remark 3. To give an example of a slowly van-
ishing ao(E} let us consider the function of E E.: D„,

F(E) =E(lnE —iw/2)' ',
with 0 &e &1. Since

lim [((E)lnE] =-—(1 —e),
Q~ oo 2

we obtain an agreement with (3.12) and, besides,
go(E) behaves like —(w/2)(1- e)(lnE) ' .

Details about the correlation between ao(E) and
$(E) follow from relation (3.16).
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](E) asymptotic energy dependence:

(i) &(E)=C,

(ii) ((E)=-w/I~,

(iii) ](E)=-w/(2lnE),

(4.1)

and

ag(E) = const &E ~, (4.2)

C being a constant (negative, positive, or zero).
It is interesting to see which energy dependence

of g(E) is preferred by the existing high-energy
data. ' Both hadron-hadron total-cross-secti. on
measurements and K ~ regeneration experiments
point toward a negative-power-like decrease of
ag(E),

K)il rj.i r// r j j j
i lr j' j / j i j j r' / //j j i' j l l j'/ij'i j/j j'j j jl/l jri I'jr' I' ll/

Eo ~
j/ 'j'i rj/'rj'I

r j l r' r /j r /j l// //. ,I l j .j lj ll / /ill'j/// / // jjj jj jar r j j /l /// //
r'/ j'l // j' / / //j/r'jjj'j'll l / l//// /jr' ji' j j'j j'r j r' j j' /r' j'i

lr' ll/ j'l j' j' j' j j ji l j' j'
/j jll jl j/l j j j ji" jlj l jj j / r' / j l j' j'r / i%g/t/)E//l /j j jjlj j/ jl j

/' J / j'/ j j' j' / j' j j j I r r I j Jj j

-)t/2 InE~

FIG. 2. The assumption that limz „„60.(E) & 0 im-
plies that $ (E) should, at least on an infinite sequence
of energies, fall between the two curves shown in the
figure. Experimental data give $ (E) nearly constant
with the value around 1.

g(E) tending to a positive constant, (4 3) then the integral

where ~ is a constant close to 2. If this is assumed
to be valid up to infinite energy we conclude that
the measured ](E) lies above the lines (ii) and (iii)
of (4.1), the position with respect to the line (i) de-
pending on the value of C.

Theorems 1 to 5 derived in the preceding sec-
tions lead to the following consequences:

(1) If lims „((E)lnE (finite or infinite) exists and
lies outside the interval (-w/2, -w) (see Fig. 2),
then

lim in', g(E) =0.

This is a consequence of theorems 2 and 5. Let
us remark that this asymptotic behavior is sup-
ported by experimental data.

(2) If lims „g(E)lnE is between -w/2 and -w,
then either dg(E) does not tend to zero or both in-
tegrals g, ,(E) and R. . . must converge with E
-~ for every b&-2.

This follows from corollary 1. Conversely, if
Iimw „hg(E) x0 then ((E) is asymptotically con-
fined between -w/(2lnE) and -w/lnE. Thus, the
narrow strip in Fig. 2 represents the only possible
(nonoscillating) behavior of ](E)which is compatible
with limw „hg(E) t0. Experimental evidence
points toward a very different kind of asymptotic
behavior of ((E). In accordance with this, hg(E)
should approach zero asymptotically.

(3) If ~g(E} does not change its sign above some
energy and if, in addition, one of the following con-
ditions is satisfied:

f zv()()
&

~o
(4.V)

J ~o(z)E'uz and f Rem(z)z" 'm
~o g

with n —:(-1,0) it is sufficient to require

$(E}& (1 —e) cot wl~l
2

(4.8)

(4 8)

(see Theorem 4). Experimental data on Kow regen-
eration" show that ((E) is nearly constant between
& = 10 and g = 50 GeV, the measured value being
1.1g0.2. If we suppose that these data determine
asymptotic behavior, we can infer that the in-
tegrals (4.8) converge for all o((u„(wo being
equal to -0.47 y0.06.

(5) If

g(E) -w(1 + e)/InE,

then the integrals

(4.10)

converges and, moreover, the sum rule (3.2) must
be satisfied [see Theorem 2 for the cases (4.4) and

(4.5) and Theorem 1 for the case (4.6)]. Conse-
quently, Limw „ag(E}=0in the sense of Meiman. '
Let us mention that high-energy data give equal
signs for Eg(E) and ReE(E} in accordance with re
lation (4.4) and also indicate that relation (4.6) is
satisfied. It should be pointed out that condition
(4.6) was not explicitly shown here to be sufficient
for the convergence of (4.V}. The reason is that a
more general statement has been proved already
by Grunberg and Truong [see Ref. 2, relation (V4)j.

(4} For the convergence of the integrals

signing(E} = sign ReE(E) for E &E, ,

g(E) (-w(1+a)/InE for E &ED,

lim ((E) exists and ~ReE(E)/E(

is bounded by a constant for E &Eo,

(4 4)

(4.5)

(4.6)

00 dE OO dE
dg(E) 1+, and ReE(E) (4.11)

w
0

converge and, moreover, the sum rule (3.9) holds
(see theorem 3).

(6) Finally, for the convergence of the integrals
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haEE dE and ReEE~ 'dE
E E

0

with n E (0, 1), it is sufficient to require

—v(1+ e)/InE ~ ](E)~ -(1+e) cot(-,'wo!)

(4.12)

(4.13)

V. CONCLUDING REMARKS

It is well known that the possibility of an asymp-
totically nonvanishing or even diverging total-
cross-section difference ao(E) has. not been dis-
proved when using the principles of local field the-
ory. In order to prove that ho(E) should asymp-
totically vanish, additional assumptions have to be
imposed either ori the real part or on the phase of
the antisymmetric forward scattering amplitude
(see, e.g. , Refs. 1, 2, 5-9, and 12-16). Our for-
malism has been based on the analyticity of the
logarithm of the scattering amplitude. The addi-
tional assumptions have the form of asymptotic re-
strictions on $(E) and, by this, also on the phase.

Our approach can give a number of new, physi-
cally interesting asymptotic theorems and general-
ize results which were obtained by some authors
earlier. The use of the phase language is advan-
tageous, for instance, in the kaon-nucleon scatter-
ing, in which case the phase of the antisymmetric
amplitude is directly measured in the E ~ regener-
ation experiments and is, consequently, experi-
mentally better known than the real part, which is
obtained by subtracting two real parts measured
with great errors.

The phase formalism has allowed us to derive a

number- of new sufficient conditions of a fast as-
ymptotic vanishing of du(E). Our results also shed
light on the main problem of the Pomeranchuk the-
orem, by showing what would happen if ao(E) had

a nonvanishing high-energy limit. We show in Sec.
IV (see also Fig. 2) that ((E) is severely restricted
in such a case: Iteither oscillates atinfinity or is
asymptotically confined in a narrow strip.

A number of interesting consequences can be de-
rived from the theorems obtained. For illustra-
tion, let us present here several new high-energy
bounds.

Considering Theorem 2 of Sec. III, we see that

(see theorem 4).
Let us discuss the last two correlations in con-

nection with the existing experimental data. As-
sume that the power law (4.2} is valid up to infinite
energies. Then, inserting (4.2) into the relevant in-
tegrals in (4.11) and (4.12), we immediately see
tPat they are divergent. Consequently, the inequal-
ities (4.10) and (4.13} should not be supported by
experimental data on ](E). This is really the case,
as is seen if the fit (4.3) is extrapolated toward in-
finite energies.

This produces the following bound on ~o'

leo(Ep)l ~(1+~)vlReF(Ea)l/(EalnEa) i (5 3)

the signs of ag(E~) and ReF(E~) are necessarily
opposite. If ao(E) does change sign above every
energy, i.e., the assumption of Theorem 2 is not
satisfied, relation (5.3) follows trivially from the
continuity of ho(E).

We conclude that the total-cross-section differ-
ence ho(E~) is asymptotically bounded either by
(5.1) or by (5.3). Being complementary, these two
bounds can be looked upon as one unconditional
[that is, based on assumptions (Al) to (A4) only]
asymptotic bound on bo(E~). Comparing this re-
sult with the bound of Roy and Singh, "

lim
l b,o (E)/lnE l

= const (5.4)

[which holds if Acr(E)E is monotonic for sufficiently
large E], we see that the bound (5.1) and (5.3)
represents an improvement of (5.4) in all cases in
which ReF(E') does not saturate the Froissart-
Ma, rtin bound.

An analogous pair of complementary bounds can
be derived by combining theorem 2 and theorem 5.
It follows that either

lim infl~o(E)
l
=0 (5.5)

or

«I- &}IReF(E }I
l ( )l

m(1+ ~) l ReF(E,) l

E~ lnE~
(5.6)

the signs of b,o(E) and ReF(E) again being neces-
sarily opposite. Note that the first inequality in
(5.6) follows only if the sign of ho(E) remains fixed
above some energy.

A wide spectrum of further physical applications
of the formalism developed is obtained by consid-

there are two asymptotic upper bounds on the en-
ergy average of ha(E)

~o(E) E
dE (5.1)

Eo

l [arctan, )(E)+v/lnE] & —~ . (5.2)
dE

EO

Theorem 2 states that either (5.1) or (5.2) must
hold. The bound (5.1) implies that ho(E) has to ap-
proach zero for 1-~ at least on some sequence
and, moreover, that Meiman's limit I.im~ „bo(E)
exists and equals zero. Relation (5.2), on the other
hand, implies that a sequence (E, ) of energies with
the property lim~ „E,=~ must exist such that

-(I+&)&/I~ &~(E,) ~0.
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ering nonforward scattering. A trivial generaliza-
tion would mean to introduce the t dependence into
each expression such as F(E), t'(E), etc. contained
in the present paper. It is more interesting, how-
ever, to apply the method to the function

g(E, t)=iEln ' ', END„, -t, ~t&0F, (E, t)
~e

(5.V)

which will now play the role of F(E) in the formal
ism, t being considered as a fixed parameter. To
avoid additional singularities, we have to make an
extra assumption that F, (E, t) and F (E, t) have no
zeros in the closure of jD„ for some r. Then the
results of the present paper can be transferred to
g(E, t) by formally substituting d,o(E) and ReF(E}/
E with

F, (E, t)
F (E, t)

and arg(F (E, t)/F, (E, t)), respectively
Consider Remark 2, (i), for illustration. If for

sufficiently high energies lF+(E, t) l & lF (E, t). l and

argF (E, t) & argF+ (E, t), then

It is interesting to compare these relations with
those obtained in Refs. 13, 14, and 5.

The results of the present paper prove the meth-
od to be powerful for obtaining asymptotic corre-
lations for forward and elastic scattering. It is to
be hoped that the use of averaged quantities similar
to those introduced in Ref. 4 and applied in Refs.
2 and 14 could lead to some improvement of the in-
equalities such as (5.3), (5.6), (5.10), and (5.12).
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APPEND&X

In Theorem A of this Appendix we find sufficient
conditions for the existence of Neiman's limit'
Lime „,h(E) of a real function h(E).

Let us introduce first the concept of Neiman's
limit. Let M denote a subset of the real axis and

E0 a given point of the real axis. The set M will be
called full with respect to E0 if

F, (E, t) dE
(E t)

converges and, accordingly,

Iim lF, (E, t)/F (E, t)l=l

(5.8)
~ 1

, 0. v u [(E-Eo}'+y'].
Similarly, the set is called right full or left full
with respect to E0 if the set M is a subset of
(Eo, ~) (or, respectively, a subset of (-~,EO)) and

or

lnlF, (E, t)/F (E, t)l
I

(5 9)

(»lF, (E„t)/F (E„,t) l(

Iarg(F (E, t)/F (E„., t)) I . (5.10)

In analogy with (5.5) and (5.6) it also follows that
either

lim inf( In
l F+ (E, t)/F (E, t) l (

= 0 (5.11)

l»g(F, (E„t)/F (E„t)) l

-(»lF, (E„t)IF (E., t)l(

x, larg(F, (E„t)/F (E„t)) l .
(5.12)

in Neiman's sense.
Moreover, we obtain an unconditional asymptotic

bound on the logarithm ln(F, /F l
in complete anal-

ogy with relations (5.1) and (5.3). Indeed, the log-
arithm must obey one of the following relations:
either

1
w [(E-E )'+ '] (A2)

The set M will be called a null set with respect to
E0 if

1 y»m —
[( }, ,

)
dE = 0 . (A3)

If, in addition to (A3), M is a subset of (Eo, ~) [or
a subset of (-~,E,)), then M will be called right-
null set (or left-null set respectively}.

Let the function h(E) be defined in some neighbor-
hood of Eo. Denote by h„(E) the restriction of h to
M, i.e., h„(E) is defined only on M and h„(E)=h(E)
for- E ~M.

Definition. The function h(E} has Neiman's limit
Lime e h(E) [Lime s,h(E)or Lime s h(E)] if
there exists a set M which is full with respect to E,
(right-full or left-full with respect to Eo) such that
lime e h„(E) [limz s,h„(E) and lims s h(E}, re-
spectively) exists. The value of Neiman's limit is
given by

Lim h(E) = limh„(E),
Q-+Q g~Q0

[Lim h(E) = »m h„(E)]
'+~+0 $ ' g~g

If the point E, is 0, then the full sets, null sets,
right-full, right-null sets, etc. with respect to 0
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will shortly be called full sets, null sets, right-full,
right-null sets, etc. , respectively.

Theorem A. Let a function h(E) be defined on an
inte rv al (E0, E, + 0), 5 & 0. If

S +5
as Z-E, ~& (A4)

~o

then Limz z,h(E) =0.
Proof. Without loss of generality we can assume

EO=O and 5=1. The proof is split into several
lcm mas.
Iemma 1. Let sets M, and M, be subsets of

(0, 1) such that M, U M, =(0, 1) and M, &l M, = jj. Then
the set M, is right-full if and only if M~ is a right-
null set.

Proof. We have

r

cK +
v .~ (E'+y') « ~„, (E'+y')

~=—tan ' —.(E'+y') n y
'

Since the right-hand side converges to —,
' for y-0+

the lemma is proved.
Let n be a positive integer. Define

A„=(E: [h(E)(&1/n),

B„=fE: lh(E)I=I/n).

I,emma 2. Let the assumptions of Theorem A be
fulfilled with E,=O, 5=1, then B„are right-null
sets for every n&0.

Proof. Because of the definition of B„we have

lim, 2 gE =0.
@~0+ 3 3

Lemma 2 is proved.
Choose numbers 5„~0 such that

gE & —for 0(y&Q
1

1=1 8) n

1
5 & —and ~ ~ ~ &5 &5 & ~ ~ ~ .tt a+1

(AS)

Such numbers exist because af lemma 2. Denote

B= U B, n (S„,', S,') .
$-1

(AS)

Certainly B is a subset of (0, 1).
Iejjgma g. B is a right-null set.
Proof. Let y be a positive number, y &5,. Rela-

tion (AS} implies that (5„) is a decreasing se-
quence, lim„„5„=0. It follows that there exists
an index n such that 5~y ~ p &5 Ne have

(

)ATE

~n 8

hE E dE.+ AE E aE
A ~t

h E E cK&.
0

It follows that f~ E 'dE is convergent for every n
&0, Since Ey/(E +y~) & 2 and lim„oy/(E +y ) =0
(E &0) we apply the Lebesgue theorem [the major-
antof y/(E'+y ) is 1/(2E) f» E=-B„]. The Lebes-
gue theorem iinplies

f

8 (E +y } = 8, &6, ,2 ~ 6,'& (E +y } &=+1 8$ &6„2,6, » (E +y }
2„~+,, „gE~ —+tan- " —+tan- 6„„.

The last two inequalities follow from (AS) and from
5~, &y &5„&1/n. The expression obtained is
smaller than 1/n+1/(n+1). This proves Lemma 3.

DenoteA =(0, 5,')-B. By Lemma 1 and Lemma 3
the set A is right-full. By (AS) the set A can be
rewritten

A= U A, fl (5„, , 5&).
j=1

(A7)

We shall prove that lime, +h„(E)=0. Let a number
e &0 be given. Choose n such that I/n & e and 5
= S„'. lf 0 & E & S = S„'and E cA then E cA„by (A7}
where' ~ n, and by the definition of A we obtain

]h(E)(= (h„(E)f& —& —«1 1

for every ERA A (0, 5}. This means lime „h„(E)
=0 and since A. is a right-full set Theorem A is
proved.

The notion of Neiman's limit can be modified for
the cases Lim~s~ h(E), Lims, h(E), and

Lims h(E}. Leta set M be given. The set M is
called full at infinity (right-full or left-full at infin-
ity) if

lim —
~ 2 ~=11 y

(1+E'y')

(lim„o, (1/w) f„[y/(I+E y }}dE=-,' and Mc:(0,~}
and Mc (-~, 0), respectively) . Neiman's limit
Lim~s~ h(E) (Limz, h(E) and Lime h(E), re-
spectively} exists if there exists a set M full at in-
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AE E dE&~, (AB)

then

Limb{E) =0.

Coming back to Theorem 2 and the subsequent
discussion, we notice that if g, o(E) is bounded

for E-~, then Limtz~ Acr(E) =0. [Note tha, t the

crossing-symmetry property (A2) allows LimK
to be replacedby LimK „.]

Certainly the integral conditions (A4) and (AB) are
not necessary conditions. But the following Theo-
rem B shows that they are "not far from being"
necessary.

Theorem B. Let a function l(E) be defined on

(R, ~) and let limK „~l(E)(=~, then there exists a
function b(E} defined on (R, ~), fulfilling (AB} and

such that the Neiman limit Lims, b(E)l(E) does

finity (right-full or left-full at infinity) such that
lim~z~ „h„(E){limz „,b„(E) or limK „b„(E))
exists. If the limit exists, the value of Neiman's
limit is defined by this limit.

Let a set M(-(0, ~) be given. Denote N= (-1/E:
E HM }.The set M is right-full at infinity if and

only if N is left-full. On the other hand let h(E) be
a function defined for E &R &0. Denote g(E)
=b(-1/E); then g is a function defined on the inter-
val (-1/R, 0). Certainly

It(EI/E IPP = f Itt(nt/E I
dn

- i/a

These two statements together with Theorem A

imply the following:
Corollary A. . Let a function h(E) be defined on

(R, ). lf

not exist.
Proof. Let a, be such a number that [f(E)

~

& 1 for
E ~ a, &0 and a, &B. If an, is given let a„be a
number fulfilling

( l(E) (
& n' for E & a„, a„& 3a„,. (A 9)

Denote 5„=2a„. Certainly 5„&a„„for every n,
i.e. , the intervals (a„, b„) are disjoint for different
8 p

Define the sets

K= U (a„,b„),
n= I

AI E jv

Q(t/e'I I "dn/P
n= 1 a

=(ln2} g1/pg' = o' vm ln2.
n= 1

The inequality holds because of (A9).
Second, we shall prove that K is not a right-null

set at infinity, i.e. , that

lim sup»} dE &0.
tt~0+ K y

We have

I.= U (b„, u„„)U(R,a, )
n= 1

and the function h(E), h(E) =1/l(E) for EHK and

h(E) =0 for EHI. . The function h(E) is defined on

(R, ~ ) since K L( L = (R,™) and K A I = P.
First, we shall prove that condition (AB) is sat-

isfied. We have

im sup» dE= lim supp(tan 'b„y —tan 'a„y)= lim sup +tan '~ y
y~o+ K y p(~0+ n= 1 jf O+ n i k 1+an~nX

= lim sup +tan '
y o+ n i ~+2an& )

o-tan '(-,') &0.

The last but one inequality holds because tan '[a„y/(1+2a„'y')] =tan '(-,') for y = 1/a„.
Similarly we can prove that I is not a right-null set at infinity. We have

ce

y~o+

—lim sup+tan '( "", )
an+ iS

y~o+ n 1 5 an+i ~

&tan '(-', ) &0.

The second inequality follows from b„2a~„/3+
[see (A9)], whereas the third one follows, again,
from the fact that

tan '[ya„„/(3+2a„„'y')] =tan '(—,')

for y = 1/g„„.
Suppose that Lims „+b(E) l(E) exists. Then there

exists a set M which is right-full at infinity and
such that either
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(i) MAX= Qandlims h„(E)l„(E)=0, or
(ii) Mrl r, =g and lim „,g„(E}l„(E)=1.

Assume (i). We have XC (R, ~)-M where (R, ~)
-M is not a right-null set at infinity and, by lemma
I, the set M cannot be right-full at infinity. Sim-
ilarly, I.Z (R, ~) -M in case (ii) and, by the same

argument, ere obtain again that M cannot be right-
full at infinity. This contradiction proves the the-
orem.

Although h is not continuous, it is evident that a
smooth function satisfying our conditions can be
constructed from it.
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