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Like three-body amplitudes, four-body amplitudes have subenergy threshold singularities over and above
total-energy singularities. In the four-body problem we encounter a new type of subenergy singularity besides
the usual two- and three-body subenergy threshold singularities. This singularity will be referred to as
“independent-pair threshold singularity” and involves pair-subenergy threshold singularities in each of the
two independent pair subenergies in four-body final states. We also study the particularly interesting case of
resonant two- and three-body interactions in the four-body isobar model and the rapid (singular) dependence
of the isobar amplitudes they generate in the four-body phase space. All these singularities are analyzed in
the multiple-scattering formalism and it is shown that they arise from the ‘“next-to-last” rescattering and
hence may be represented correctly by an approximate amplitude which has that rescattering.

I. INTRODUCTION

Analysis of few-body final states is a very in-
teresting problem because such analysis yields
information about two- and three-body interactions.
Only recently theories consistent with constraints
of quantum mechanics have been developed for
such analysis.!™® Constraints of quantum me-
chanics—unitarity and analyticity—force singu-
larity structure and interdependence of amplitudes
usually assumed to be constant and independent
otherwise. These are the subenergy threshold
singularities of the four-body amplitude. In this
paper we show how these threshold singularities
arise from a consistent analysis of the multiple-
scattering series. We also consider some im-
portant singularities of the four-body amplitude
in the case of resonant final-state interactions.
These singularities lead to rapid variations in the
isobar amplitudes over the four-body phase space,
especially near the physical region.

First we consider the threshold singularities
of four-body amplitudes. We show how the thres-
hold singularities arise from a consistent analysis
of the multiple-scattering series. Apart from the
usual two-body and three-body subenergy singu-
larities there is an important singularity which
arises due to interactions between the particles
in two noninteracting pairs. In the nonrelativistic
case this is a product of square-root singularities
each in the two independent pair subenergies.
These singularities are also at the boundary of
the physical region, like any other threshold singu-
larities and will produce considerable variation
of the amplitudes over that region. From our ex-
perience in three-body final states we expect that
in the four-body problem this particular “inde-
pendent-pair singularity” will be equally important
as other subenergy singularities.

Next we consider the case of resonant final-state
interactions. We consider, in particular, a simple
model of four spinless bosons in the final state
interacting via s-wave two- and three-body re-
sonant interactions. This is the case where the
sequential decay or isobar formalism is intended.
The purpose of the present work is not to find an
exact or even an approximate solution of the prob-
lem in this case but rather to investigate some of
the rapid variations of the isobar amplitudes over
the four-body phase space that the resonant inter-
actions may lead to. In other words, we would
like to test the validity of the usual isobar assump-
tion that the isobar amplitudes are constant and
independent over the phase space. We find that the
resonant interactions may, in fact, lead to rapid
variations of the amplitude. We show that this
will come from the last rescattering. From the
experience in the three-body problem in similar
situations,® we know that this singularity will be
well represented by any approximation that has
the last rescattering, for example, the first term
in the multiple-scattering series. Hence, we
study the first iterate which will contribute to
these rapid (singular) variations of the amplitude.
The actual isobar amplitude has a very complicated
singular structure in this case. But these im-
portant rapid variations will be present in the
amplitude apart from the threshold singularities.
Hence, the usual isobar assumption, that the iso-
bar amplitudes are constant over the phase space,
is a shaky one and has been shown to violate uni-
tarity.2'® Formal theory of four-body final states
implementing unitarity and analyticity has been
developed recently.?*3

In Sec. II we discuss the singularity analysis of
the four-body amplitude necessary to obtain the
various threshold singularities in the multiple-
scattering formalism. In Sec. III we consider the
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four-body multiple-scattering formalism in the
isobar model and calculate analytically and nu-
merically the rapid variation of some of the terms.
Finally in Sec. IV we give a brief discussion and
concluding remarks.

I1.- THRESHOLD SINGULARITIES

In this section we discuss the subenergy thres-
hold singularities of the four-body amplitude,
especially the independent pair threshold singu-
larity, which arises due to interactions among the
particles in two noninteracting pairs. This will
generalize the result obtained from a recent anal-
ysis of constraints of unitarity on four-body final
states.?'3 In this analysis we shall fix the total
energy and look at the subenergy singularities.

In particular we shall look for the singularities that
are in or on the boundary of the physical region,
since that will produce the rapid dependence of the
amplitude.

We consider the weak decay of a particle into
four equal mass spinless bosons that interact
strongly in final state. We shall work in units
Zi=m =1, where m is the mass of any of the four
particles. We shall be using nonrelativistic kine-
matics in our analysis. But the conclusions of the
present and the following section are not limited
to this severely restricted model.

We consider a few nth-order multiple-scattering
diagrams as shown in Fig. 1. We label the mo-
mentum conveniently to serve our purpose. The
nature and position of the singularity do not in any
way depend on the labeling of momentum variables.
First we give a discussion of the simple pair-sub-
energy singularity. In the derivation of this
singularity we shall follow essentially the same
steps as in the three-body case.® Here we give a
brief account of this derivation and refer the in-
terested readers to Ref. 6. Pair-subenergy de-
pendence of the diagrams shown in Fig. 1 will
come from considering the four-body propagator
next to the last rescattering as shown by a dashed
vertical line in Fig. 1 (a). The amplitude associ-
ated with this graph is
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where we have used energy conservation 22 =E

— 1% —42/2 to write the energy denominator of (1)
in the present form. This form demonstrates the
subenergy (k%) dependence of the amplitude we are
interested in. Here (k’[t(#?)|K) is the half-on-
shell two-body ¢ matrix and A(p, d,, k') is every-
thing to the left of the propagator. Since the in-
teresting external-momentum variable 2 does not
penetrate in, our discussion is indepent of what
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FIG. 1. Schematic representation of some multiple-
scattering diagrams. The dashed vertical line(s) repre-
sent the propagator that will contribute to physical re-
gion singularity.

happens to the left of this point. Hence (B, d,, k")
will not contribute to any physical-region sub-
energy singularity. This has been explicitly
demonstrated in the case of three-body amplitudes
in Ref. 6 and the same reasoning applies here.
Also since the kK’ dependence of (k’|t(%?)|k) in-
volves only unphysical-region singularities, the
K’ integral in Eq. (1) will give physical-region
singularity by virtue of the propagator only. This
will contribute to the pair-subenergy singularity
a square-root branch point (£2)172,

If we specialize to a case where the two-body ¢
matrix is dominated by a single partial wave (we
take s wave to simplify the kinematics), we can
write

(K’ [t() [k) =A(k, k") 1(R), (2)

where 7(k?) is the on-shell ¢ matrix and A(%, &)
is the half-shell function and has only potential
or unphysical singularities in 2 and 2’. Then Eq.
(1) becomes
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This is one of the possible isobar decompositions?
of the four-body amplitude. The usual isobar
assumption that the coefficient of 7(#?) is a slowly
varying function without any subenergy singularity
violates this simple analysis and also constraints
of unitarity.? _

Next we consider a slightly more complicated
multiple-scattering graph as shown in Fig. 1(b),
where the final interaction involves two ¢ matrices
in two independent pairs. This graph is new to

J
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four-body problem and gives an interesting phys-
ical-region singularity to the four-body amplitude.
Only recently we have demonstrated its presence
through unitarity.® Here we give a simple deriva-
tion of this singularity by an analysis of the
multiple-scattering graph. The singularity will
arise from a consideration of two four-body propa-
gators next to the last rescatterings. The propa-
gators are shown in Fig. 1(b) by dashed lines. The
amplitude associated with this graph is

(4)
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where as before k% +p?>=E —q,2/2 by energy con-
servation. Here the #'s are the half-on-shell two-
body ¢ matrices of the two independent ‘pairs, and
n(d,, k', p") is everything to the left of the inner-
most of the two propagators and, by arguments
just outlined above and discussed in detail in

Ref. 6, will not contribute to physical-region sub-
energy singularity. As before remembering that
K’ and p’ dependences of the ¢ matrices in Eq. (4)

i)

r
involves only unphysical-region singularities, the
K’ and p’ integrals in (4) will give physical-region
singularities by virtue of the two propagators.
Hence the integral in (4) will give rise to a branch
cut (0,0,)'/2 where o, and 0, are the center-of-mass
energies ofthetwo f{ matrices in (4) and are given
by o, =K =E-0,-q?/2=E—-p?-q2/2.

When as in Eq. (2) the two ¢ matrices are domi-
nated by a single partial wave (s wave) (4) becomes

d3k’ d3pl
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As in (3), it is another possible isobar decomposi-
tion® of the four-body amplitude. The usual isobar
assumption that the quantity in the square brackets
of (5) does not have any physical-region singu-
larity contradicts this simple analysis as well as
unitarity.’

Finally in the four-body case there is an interest-
ing diagram as shown in Fig. 1(c), which will
give rise to three-body subenergy singularity.
Analysis of this diagram is complicated because
there is no interaction with one of the particles
for few last rescatterings and the three-body sub-
energy variable 2 penetrates into the diagram.
Hence the three-body subenergy dependence of the
integral will come from a consideration of all the
propagators shown in Fig. 1(c) by dashed vertical
lines. In fact there is an infinite series of dia-
grams that will contribute to the three-body sub-
energy singularity. It is clear that all these dia-
grams can be schematically summed into a dia-
gram shown in Fig. 1(d), where the big circle
represents a connected three-body ¢ matrix. Now
the three-body subenergy label 2 does not pene-
trate in any further and the three-body subenergy
singularity will come from the propagator shown
by a vertical dashed line in Fig. 1(d). The ampli-
tude associated with this diagram is

I
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where T is the half-on-shell three-body ¢ matrix
and we have used energy conservation E =2%2/3
+2¢%+1? to write the energy argument of 7. Again
h is everything to the left of the propagator shown
by the dashed vertical line in Fig. 1(d). The same
arguments as in the case of pair subenergy singu-
larity show that %~ has no physical-region three-
body subenergy (=3¢2/4 +p?) singularity. Similarly
the half-on-shell three-body ¢ matrix 7 has no
physical region singularity in ¢’ and p’. Hence the
physical-region singularity of (6) will come from
the propagator. Hence the important feature of
the three-body subenergy singularity will come
from
, A qlqu ’p’zdp’
f (E_%kZ)_%qlz_pIZ' (7)

apart from multiplying factors. The cutoff A is
introduced to guarantee convergence at the upper
limit. In (6), %2 and T insure convergence at the
upper limit. With a transformation of variables

(2)'2q"=x'"2cos8, p'=x'"?sing, and E- 2k =¢
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the singular part of this integral is given by
A x2dx :
[ (®)

o €—X

where ¢ is understood to have a small positive
imaginary part. The three-body subenergy singu-
larity of this integral will come when the pole of
the denominator of the integrand pinches the lower
limit and the singular part of the integral has the
form (Ref. 7) €%log(— €), where € is the three-body
subenergy.

We have seen that the amplitude for the decay of
one particle to four has three important threshold
subenergy singularities over and above those of the
two and three-body ¢ matrices. These singularities
come from the propagator(s) just before the last
t matrix. There are no further physical region
two- and three-body subenergy singularities from
inside the multiple-scattering diagrams essentially
because the external two- and three-body sub-
energy variables do not penetrate in beyond the
propagator(s) considered. In the next section we
turn to the problem of the decay of a boson into
four spinless bosons in the isobar model and show
that final-state resonant interactions may lead to
very rapid variations of the isobar amplitudes.

III. RESONANT INTERACTIONS

In this section we consider the decay of a spin-
less boson into four spinless bosons of mass
m =1 (Z=1) interacting in the final state through
s-wave two- and three-body resonant interactions.
We analyze the problem in the isobar model in the
multiple-scattering formalism. The isobar model
we consider is discussed in detail elsewhere® and
is represented diagrammatically in Fig. 2. The
particles in the final state can be created in two
ways. Either they are created as a free particle
and a three-body isobar which subsequently propa-
gates and decays successively into three particles
as shown in Fig. 2. They can also be created as
two two-body isobars which propagate and decay
to four particles.

Let us suppose further that the resonant final-
state interaction produces an s-wave pair re-
sonance at energy E,, with width I'j, and an s-wave
three-body resonance at energy E,, with width I'g,.
Near the respective resonances we parametrize
the two- and the three-body ¢ matrices as Breit-

T o=

FIG. 2. Diagrammatic representation of the isobar
model.

. Wigner resonances, written as

t(B) =g Ly | (©)

—E,+3iL,
and

87°TI,

L) = F g, b i Ty,

(10)
in the narrow-width approximation. Here we are
not interested in solving the four-body problem
even approximately to find the isobar amplitudes.
Rather, we are interested only in some of the rapid
variations of the isobar amplitudes which the
resonant interaction may lead to. For this purpose
we do not need to consider the detailed two-body
dynamics that lead to the two- and the three-body
¢t matrices (9) and (10) but can use these ¢ matrices
directly in the multiple-scattering formalism with-
out consideration of off-shell-effects which, we
know, will not contribute to physical region singu-
larities. Effectively we shall be making separable
approximations for {, and ¢, with unit vertex form
factors. We are motivated to do such a calculation
by the success of representing the rapid dependence
of the three-body isobar amplitude by the first
iterate of the Faddeev equation in the case of re-
sonant pair interactions.®
If we study the multiple-scattering expansion
of the amplitudes shown in Fig. 2, in the multiple-
scattering series among other terms there will
be terms as shown in Fig. 3. Figures 3(a) and
3(b) will contribute to amplitude G and Figs. 3(c)
and 3(d) will contribute to amplitude F. (F and
G are defined in Fig. 2.) From the analysis in
the Sec. II and also that in Ref. 6 it is clear that
the rapid dependences of these amplitudes will
come from the integration of the last loop mo-
mentum (K’) over the propagators. We shall see
that this integration gives rise to important rapid
variations of the amplitudes. It has been well
demonstrated in the three-body problem that this
type of very approximate solution represents
the rapid dependence of the amplitude very well,®
and hence we shall be limited to the study of these
approximate solutions. In the language of the last
section it is justified because the external mo-
mentum label does not penetrate in any further.
The contribution of the diagram in Fig. 3(a) is

dsk’ ) 1
(2m® E-2k2-E,E-3k—3k?-K'K'/2-FE, °’

(11)

where E,=Ey, —3iI'y, and E;,=E -3y, and
n(k') is everything to the left of the dashed vertical
line. Here we have neglected the numerators of
the ¢ matrices (9) and (10) which will contribute
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FIG. 3. Schematic representation of some multiple-
scattering diagrams in the isobar model.

to uninteresting multiplying constants. After
partial-wave projection to s wave (11) becomes

f k'dk’ h(k')
3 (2m? &2 -3(E-E,)
k% +%kk' +k -4+ (E~E,)
k2 —Zkk'+k2~4(E-E,) "

X In (12)

Here 2(k') does not contribute to physical region
rapid dependence of the amplitude. Hence for our
purpose we can take #(k’) =1. The integral in (12)
is readily done by the technique of contour inte-
gration® and the result is

In [xE E)]1/2+ 43(& - E)—2k2]1/2+k/3
47Tk [% E-E )]172 +3[3(E E )_2k2]1/2 k/3 .

(13)

This will contribute to an important variation in
the 2 dependence of the partial-wave amplitude
G(k).

This amplitude will also get an important rapid
variation from the diagram in Fig. 3(b). The con-
tribution of this diagram is

f dsk’ Ak’ 1

(2n® E-K-1k?-kk'-E, E-k?/2-2E, ’
' (14)

where A(K’) has the same meaning as above. As
before putting nE&’)= 1, doing the partial-wave
projection to the s wave and also the integration
gives

i [AE=2E)] 2 13 [N(E-E,) - 28]/ + 3k
an [2(E-2E)'?+%[3(E-FE,) - 2R2[' 2 -2k °
(15)
Next we consider the amplitude of type shown
in Fig. 3(c). This will contribute to the % depen-
dence of the isobar amplitude F. The contribution
of this multiple-scattering diagram is
dsp’ h(k’) 1
@ E-3k”-E, E-k"-3R-K-K -E, *

(16)

where (k') has the same meaning as above. Taking
n(K’) =1, doing the partial-wave projection to the s
wave as well as the integration gives

i [HE- B +5[4(L - 8) - 2]/ +k/2
8k [HE-E)| " +i4(E-E,) -2k 2 _k/3 '
17)

The expressions (13), (15), and (17) will produce
rapid dependence of amplitudes F and G. We are
by no means claiming that we have singled out all
the important variations of these amplitudes.
Certainly there are many more of them. One
particular example is the contribution from the
multiple-scattering diagram shown in Fig. 1(d).
But the corresponding integrations in this and other
cases are complicated and this prohibits us from
obtaining a closed analytic expression. Neverthe-
less we have found out some of the variations over
the final-state phase space.

It is true that the arguments of the logarithms
in (13), (15), and (17) are never near zero or in-
finity in the physical region even if the widths
of the resonances are put equal to zero, and hence
there is no nearby logarithmic singularity. Across
the [3(E - E,) - 2k2]*/2 or [4(E - £,) — 2k*]*/ cut the
arguments of the logarithms are changed to argu-
ments with minus signs in front of these square
roots. These arguments can introduce logarithmic
singularities for physically allowed %, but they
are far away from the physical region. These are
the analog of Peierls’ singularities® to the four-
body problem. These singularities are important
because they may give rise to resonancelike be-
havior near the physical region even though the
individual terms in the multiple-scattering series
do not show this behavior. Thiswouldbe a dynamic
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FIG. 4. Graphical representation of real and imagin-
ary parts of expressions (13), (15), and (17) for physi-
cal values of 2%. The signs of all the real parts have
been changed. The values of the parameters employed
are E=2.0, E4=1.0-0.25¢, E3=1.2 —0.31.

effect and not a kinematic one. This is equivalent
to summing the multiple-scattering series. Though
highly unlikely, the sum of the series may diverge
at these singular energies when the individual
terms are finite. Such dynamical effects have
been studied and looked for in the three-body

- case—not through a general framework but in
particular models—and so far the result is nega-
tive.® More work remains to be done in this di-
rection in the three- and the four-body case. How-
ever, it is easy to calculate the position of these
singularities on the unphysical sheet in a simple
way. We take the arguments of the logarithms in
(13), (15), and (17), go to the unphysical sheet by
changing the sign of the second square root, take
the on-shell value of 2 with all the corelated states
resonating and set the arguments of the logarithms
to zero to find an expression for E in terms of

E, and E,. Relativistically mass and energy are
treated on the same footing and this will make

the present four-body resonance mechanism equiva-
lent in principle to the three-body Peierls mecha-
nism where the exchanged particle could also be a
resonance.

Even though the arguments of the logarithms do
not vanish near the physical region they will give
rise to rapid variations of the amplitude. The
two- and the three-body resonance bands will
sweep across the Dalitz plot as E changes. In (13)
when E =E, the three-body resonance will just
appear at the edge of the Dalitz plot. It is clear
from (11) that for interesting variations we must
also have E > E, for the two-body resonance to be
formed. So (13) is expected to have rapid varia-
tions for E>E, and E>E_,. The same conclusion
is true in (17). But it is clear from (14) that rapid
variations in (15) are expected to appear near
E>2E,. To have an idea of these variations we
plot these functions on a graph, shown in Fig. 4,
which demonstrate the rapid variations beyond
doubt. The actual isobar amplitudes will have
more complicated variations coming from the
threshold singularities and other similar multiple-
scattering diagrams one of which is shown in Fig.
3(d). [It is to be noted that simple expressions
such as (13), (15), and ( 17) do not correctly repre-
sent the threshold singularities discussed in the
last section.] Hence, the usual isobar assumption
that treats these amplitudes as constants is not
justified.

IV. DISCUSSION AND CONCLUSION

Now let us turn to the question of the generality
of our conclusions in view of the rather restrictive
model we considered. Clearly the equality of
masses keeps the algebra simple and has no es-
sential importance. Furthermore, we have never
used the details of the structure of the decay ver-
tex, and hence our results are valid in any pro-
duction or break-up amplitude into four particles.
The detailed form of the interaction is also not
important. We analyzed the decay amplitude in
the multiple-scattering formalism, but our findings
are not dependent on the convergence of the multi-
ple-scattering series. Use of nonrelativistic kine-
matics simplifies the algebra and our conclusions
are true in any relativistic theory as long as the
relativistic theory has a proper nonrelativistic
limit.

Recently we have demonstrated the presence
of the threshold singularities in a more general
way through the consideration of unitarity and have
shown how to develop a theory of four-body final
states that acknowledge the constraints of quantum
mechanics—-unitarity and analyticity. The usual
isobar model does not acknowledge these singu-

- larities; hence the better isobar model should be

used to analyze the four-body final-states problem
in general. The effects of unitarity will in general



4270 SADHAN K. ADHIKARI

be important in two cases. The first is the case
of threshold enhancement as one may encounter

in the four-nucleon problem. The second and more

important case is the case of resonant pair in-
teraction as in 47 or N37 problems, Much work
remains to be done to understand the problem of

18

four-body final states and extract from it infor-
mations about two- and three-body interactions.
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