
PHYSICAL REVIEW D VOLUME 18, NUMBER 11

Four-hadron isobar model

1 DECEMBER 1978

Sadhan K. Adhikari
Departarnento de Fisica, Universidade Federal de Pernambuco, 50.000 Recife, Pernambuco, Brazil

(Received 26 September 1977)

The constraints of unitarity and analyticity on four-body final states are studied. The danger of
implementing unitarity, without analyticity, on four-body final states is stressed. We develop a set of
relativistic integral equations that incorporate unitarity and analyticity. The subenergy dependence predicted
by these equations should find an important application in the phenomenological analysis of four-hadron final
states. We work in terms of quasi-two-body states in the isobar model and the equations we obtain are in
one vector variable and in principle will be easy to solve after partial-wave analysis.

I. INTRODUCTION

Over the la,st few years an enormous amount of
intermediate-energy data has accumulated in few-
hadron systems such as en', nmN, mmK, n~NN,
mmmN, etc. Most of the three-hadron final-state
phenomenologies' depended heavily on the isobar
model. ". A word of caution on the reliability of
these calculations was first sounded by Aaron and
Amado. ' The usual phenomenology treated the
isobar amplitudes as slowly varying and indepen-
dent functions over the three-body phase space.
They pointed out that this failed to satisfy unitar-
ity —especially pair -subenergy unitarity —which
is considered important for isobar phenomenology.
As a consequence this also fails to satisfy full
three-body unitarity. Recently there have been
some calculations which tried to incorporate exact
or approximate unitarity4 in the three-body isobar
model. The unitarity corrections were found to
be very large in many cases and the corrected
results were even worse than the uncorrected re-
sults. Aitchison and Golding' pointed out that some
of the la,rge, rapidly varying corrections that had
been obtained were, in fact, spurious effects.
These spurious singularities were present because
of the failure to include analyticity while imple-
menting subenergy unitarity. Recently Aaron and
Amado' showed that the origin of this spurious
singularity in the case of a resonant final-state
intera. ction can be traced back to the singularity
on the "wrong" sheet —known in the literature
as Peierls' singularity. " In order to eliminate
the spurious singularities from the theory one
must add analyticity to unitarity. Aaron and
Amado' developed the isobar model for three
hadrons consistent with unitarity and analyticity.
The better phenomenology yielded a set of rela-
tivistic three-body equations similar to the Blank-
enbecler-Sugar equations —the solution of which
does not contain spurious singularities. Recently

Aitchison" also gave a three-body relativistic
theory consistent with unitarity and analyticity.
This method is the same in spirit as the recent
method of Ref. 6, but differs from the latter in
technical detail.

Here we turn to a similar analysis of four-body
final states consistent with unitarity and analyti-
city using the isobar model. The idea. of the pres-
ent analysis is borrowed from a similar analysis
of nonrelativistic four-body final states by the
present author. " A formally correct theory" of
four-body final states using the quasiparticle or
isobar model and incorporating unitarity and ana-
lyticity exists. But its complexity is great be-
cause it involves solving an integral equation in
two-vector variables. Here we formulate the
four-body isobar model in terms of quasi-two-body
states, apply unitarity on these amplitudes, and
derive important unitarity constraints on them.
%e then implement these constraints of unitarity
with analyticity and arrive at a set of dynamical
equations for the quasi-two-body amplitudes. The
dynamical equations we get are integral equations
in one-vector variables and are easy to solve in
principle after partial-wave decomposition. They
are also the simplest four-body relativistic equa-
tions consistent with unitarity and analyticity.
Similar equations" have been derived in the non-
relativistic four -body problem.

We consider the amplitude T, , for a, reaction
going from a two-body to a four-body state. We
postulate a simple form for T, 4. This is sug-
gested by the sequential decay or quasipa, rticle
model of nuclear physics and the isobar model
of particle physics. The isobar model we use
is a straightforward generalization of the one
used in Refs. 6 and 12 and is essentially the same
as the one used in Ref. 11. In this model we have
for the reaction a(p) + b(p') —c(p, ) + d(p, ) + e(p, )
+ f(p, ) in the four-body center-of-mass frame
with center-of-mass energy 8':
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Here we have suppressed all internal quantum
numbers and have assumed that each pair or three-
particle cluster is dominated by a single isobar.
The quasi-two-body amplitude (p, p'~ E,, „,(W)
x ~p,. +p,.) denotes the production from the initial
state of the (i,j) and (k, f) isobars. The factors
of v/D multiplying E describe the subsequent
propagation of the isobars and their decay into
particles of energy-momentum p, , p&, P„and p, .
The quasi-two-body amplitude &P,P '~ G, ,»(W)

~ P,)
denotes the production of particle i and the (j, )'2, I)
isobar. The factors of w/D' and v/D multiplying
G denote the subsequent propagation of the (j, )'3, l)
isobar and its decay into particle l and isobar
(j,0) which subsequently propagates and decays
into particles j and k. Equation (l) is diagrama
tieally represented in Fig. 1. The factors of —,

'
and 2 in front of the two terms account for the

able particles. Consequently there are three
terms of the first type and twelve terms of the
second type in Eq. (I). Here M's are the rela-
tive three-momentum between the decay products
in the center-of-mass frame and are discussed in
Ref. 6 and will again be discussed to the present
context in Sec. II. Here the total center-of-mass
energy W is defined by W2=(P +P')', while o,.
= (P -p,.)', o,, = (P -P» -p, )' with P =p +p '. g,.
and o „are squares of (j,k, I) and (i,j) isobar
masses. In any application of the isobar model
it is assumed that two- or three-body interactions
are usually dominated by a few (resonant) partial
waves. Then the amplitudes E and G. are expanded
in terms of partial-wave amplitudes

F)

FIG. 1. Schematic representation of isobar production
and decay corresponding to Eq. (1).

J is the total angular momentum and l and l' are
partial waves for the initial and final channels.
Now the usual isobar assumption borrowed from
three-body isobar phenomenology is that E,, »
and G, ,n, are slowly varying functions of
and 0,, respectively, and hence can be approxi-
mated by constants. We shall show that in general
the constraints of unitarity prohibit us from making
such assumptions. As in the three-body problem, '
if the isobar resonances are very narrow the as-
sumption of constant isobar amplitudes is a rea-
sonable one. But in case of overlapping wide
resonance bands the isobar amplitudes E,, » and
G, ,» will have strong singular dependence on g,, ,
v», and 0,, respectively. The purpose of this
paper is to develop a better phenomenology to
include these ideas.

Let us point out in brief, following Refs. 5, 6, .

what goes wrong in taking the isobar amplitudes
to be constants. We shall show that the constraints
of unitarity force the amplitudes E and G to have
physical branch cuts in the subenergies. In the
ease of G, it is a branch eut in 0, Then we take
(suppressing the indices j, k, and l)

G, (o,) = DispG, .(o,.) + i AbsG, .(o,),
where AbsG, .(o,.) is the discontinuity of G,. required
by this particular branch cut. The constraints of
unitarity can be written schematically as

AbsG, .(o,.) = QK(o, , o, )G, (o, ) .

In Ref. 6 it has been pointed out that in case of
resonant final-state interactions, AbsG, . acquires
via Eq. (3) rapid variations that come from the
singularities on the unphysical sheet of 0, In
fact DispG, . contains a rapidly varying part which
cancels the rapid variations of AbsG, However,
if a simple input guess, e. g., a constant, is used
for DispG, . and if no attention is paid to analyticity
this spurious rapid variation of AbsG, . will propa-
gate into the physical amplitude. The same con-
clusion is true for the amplitude F.

Here we apply unitarity to these quasi-two-body
states E and G, focusing particularly on a spe-
cial type of two-body "subenergy" unitarity-
"independent-pair two-body unitarity" (see Sec.
III for detail), where there is no interaction be-
tween two independent pairs in four-body final
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states —and on three-body subenergy unitarity.
Constraints of unitarity on F are derived by a
consideration of independent-pair two-body upi-
tarity, and those on G are derived by considering
three-body subenergy unitarity. As in other si~i-
lar few-body problems, '" "we find that unitarity
forces the amplitudes to vary over their phase
spaces, be singular on their edges, and be co-
herent and interrelated. The unitarity relation
itself can be used to determine the numerical im-
portance of these effects in any problem. From
the preceeding discussion it is clear that if they
are important they must be implemented by con-
sidering analyticity as well. Since we are taking
into account a part of the full four-body unitarity,
the implementation of unitarity is ambiguous. Out
of these various ambiguous ways we choose the
one that preserves total energy analyticity as well,
in view of the various problems one faces upon
neglecting it. " In this way we get a set of rela-
tivistic dynamical equations for the isobar ampli-
tudes E and G. In Sec. II we define two- and
three-body t matrices to be used in subsequent
sections. We also develop the unitarity relations

for independent-pair four-body unitarity and three-
body subenergy unitarity in four-body final states.
In Sec. III we derive the unitarity constraints for
the four-body amplitudes E and G. In Sec. IV we
discuss their implementation, stressing the im-
portance of the "arbitrary" choices that are made
there. In Sec. V we summarize our results, dis-
cuss possible applications, and make some con-
cluding remarks.

S= 1+(2v)4i6~(P)T, (4)

so that in the case of the elastic scattering of two
spinless particles of masses rn, and m, the uni-
tarity relation becomes

II. UNITARITY

A. Two-body unitarity

Before applying unitarity to the four-body sys-
tem, we review some of the conventions and defi-
nitions for two-body unitarity (for a complete re-
view see Ref. 6).

The S and T matrices are related by

2Im(q„lT(W) lq, , & =, d p,-d'p,-6 (P--I "»'(P"'-~ ')6'(P'"-I:)&q,.lT'(W) lq" &&q'. IT(W) lq'. &,
1

(5)

where P,~=p, +p, P,2 = 8', 2q~~=p~ —p2, etc.
Here we have suppressed all internal quantum
numbers. In Eq. (5) P» P„P,', p2 are on their
mass shells, but the amplitudes are off the energy
shells in the sense that q», q,'» and W'are con-
sidered independent.

In general in the case of n-body intermediate
states we have

x Y, (M,',). (8)

Here M» is a speci'al vector and is a function of
p y and p2 and is in fact the relative momentum of
the two particles in the center-of-mass frame.
Then the partial-wave unitarity relation gives

=i ~ TW' npn n T~ S'

=i (y T 8' npn n T 8', 6

where p(n) the n-body phase space is given by

We assume that the two-body interaction pro-
ceeds through coupling to a definite isobar in a
particular partial wave only. To make the algebra
simple we will assume from now on that all the
particles concerned are spjnless and two- and
three-body isobars occur always in relative S
waves only. We make a separable representation
of. the two-body interaction that leads to the for-
mation of the isobar. The interaction can be
written as

where E=0 for bosons and F= 1 for fermions.
Decomposition into partial waves of the two-

body t matrix gives

(p l v(w) lq) =v(P') w, ,v(q'),
1

where m~ is the bare mass of the isobar and the
two factors of v are the form factors for the pro-
duction and decay of isobars. We solve the two-
body Blankenbecler-Sugar' equation with this po-
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tential to obtain the t matrix, dominated by the
presence of the isobar:

2 1

=&t3+&3.+3(Pt+P3) ' (P3+P.) (14)

and refers to the four-body system; o„and 034
refer to the two independent pairs (1,3) and (3, 4).

Here s = W' and D(s) =s -m~3, where m~ is the
dressed mass of the isobar and can be found from
an actual solution of the Blankenbecler-Sugar
equation. Consequently, the unitarity relation
(9) takes the form

IIl„l v'(M„')
D(s) 32m'~e ID(s) I'

lt is important to recall that D(s) has a zero at
the isobar mass, carries the scattering phase,
and has the unitarity cut, whereas N (=e3) has the
left-hand cut;

In the four-body amplitude there is a term which
involves no interaction between two independent
pairs and hence is disconnected. The unitarity
relation for this disconnected piece of amplitude
is just a manipulation of two-body unitarity and
can be written for four particles of equal mass as

tl l

D„(a,3)D,.(a„) (32~')'(a„a„)'"
„„'(M„')„'(M„')

ID,.(a,.)D.,(a„)I' '

where

s = W'=(p, +p, +p, +p,)'

FIG. 2. Schematic representation for "independent-
pair two-body unitarity". This is a disconnected
part of four-body unitarity —where each of the
disconnected pieces involve a two-body t matrix.

Unitarity relation (13) is represented schematical-
ly in Fig. 2.

In this article we shall be considering four dis-
tinguishable-spinless bosons of equal mass m.
%e also neglect isospin and other internal quan-
tum numbers. These restrictions keep the alge-
bra simple, but otherwise have no effect on the
result. If needed, these restrictions can be re-
moved in principle without too much trouble.

B. Three-body unitarity

To proceed to the four-body problem with no
further approximation would lead to the numerical
difficulties inherent in multivariable integral
equations; to keep the algebra managable we as-
sume that the three-body interaction proceeds
through coupling to a three-body isobar in a par-
ticular partial wave. This is a prelude to the in-
troduction of a separable three-body interaction,
which keeps the four-body problem managable.
Por simplicity we assume that all the two- and
three-body isobars appear in the partial wave l = 0.
The t-matrix 7, , for the 3 3 process can be
writteii as"

3 3 2 2

(pltp3tp3 I 3,3( ) I qlt 9 tl33) 3 ~ 3 D f 4 cb, c( ab, c ) Dtl I ~dc, f( de, f

In this model, as shown in Fig. 3, in the initial
state, two particles a and b in a relative momen-
tum state M,3 form the isobar (a, 5) which then
interacts with particle c, in relative momentum
state M„, with respect to isobar (a, ft)t and forms
a three-body correlated state or isobar. The
three-body correlated state then propagates and
decays first to a free particle f and isobar (d, e)
which subsequently decays to particles d and e.
Here se„, is the vertex function for the interaction
between c and the correlated state (a, ft) in the S
wave; and M„, is the relative momentum between
particle c and isobar (a, ff). D'(a) is the three-
body denominator function at energy W (=a'f').
v and D are the corresponding quantities for the
two-body system and have already been introduced
in the last subsection. An expression for D'(a)

can be ea,sily found by summing the series of self-
energy bubbles. It has been discussed in deta, il
elsewhere" for the nonrelativistic case. The
generalization to the relativistic case is straight-
forward and we shall not consider it here. Another

FIG. 3. Schematic representation of the three-body
t matrix. The internal isobar lines are fully dressed.
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way to calculate it is to approximate the Born term
of the three-body Blankenbecler-Sugar equation'
by a simple separable term of the form given by
Eq. (10) with the v's replaced by tv's and then to
solve the three-body relativistic equation with this
approximate Born term. Then the solution is of
the form of Eq. (11) with v and D replaced by bv

and D', respectively, and hence we get an expres-
sion for D'. The fa,ctors of 2 in front of the sum-
mations in Eq. (9) are there to take care of sym-
metries such as v„=vb„ze,b, =zeb, „etc., for
distinguishable particles.

The connected three-body unitarity relation for
the amplitude (15) has the form'""

Vb(M„') 1,Vd(Md )
2 2 ~ b

D ( ) ab, c(Mab, c )Dr ( )~derf(Mderf ) D ( )a, b, c d, e, f eb ~ab jkl ~f '
de ~de

l. 1 ~ Vab(Mab ) ~
2 1 ~ r2 Vat(Mat') 4 4

2 g 2 g 2 ~ D (& )
abrc™abrc ) Dr (& )

st a(Mrst u) Dr(&r )
(2+) 6 (Pi ~i)

8bt I Cb ab jul $ St st

r r2 2 r 2 tk( rk ) 2 da™da-m)Wf» t f, , D (, ) Drs( ) „f( „,f) D ( )
~

jk +jk jkf + f . de +de

(16)

This unitarity relation is shown diagramatically" in Fig. 4. Equation (16) represents the discontinuity
across the three-body cut. For the two-body D-function we have used the identity D=D* across the
three-body cut, because D is contiriuous across the three-body cut we are interested in. Here M„„refers
to the re}ative momentum between particle M and the correlated state (s, t). Cancelling common factors
from both sides of Eq. (16) we get

3
v M''

raat p
k

1
&& 6'(P" -m')6'(P„" -I')6'(P," m') -d P,

'
lwfk t(Mf'k t') (,), ( )

.
1=1

'
fk (fr k f»i

(1V)

Using these conventions and definitions for two-
and three-body unitarity we turn to the problem
of four-body unitarity.

intermediate states are energetically allowed,
the unitarity relation for T, 4 can be written as" "
follows:

[II. FOUR-BODY UNITARITY

We shall study the problem of four-body unitarity
in the isobar model introduced in Sec. I. The uni-
ta,rity relation for T, 4, which has been discussed
in detail elsewhere, 1' contains many terms. (T„„
in general represents the t matrix for going frpm
an m-body initial state to an n-body final state. )
Assuming that only two-, three-, and four-body

FIG. 4. Schematic representation of commeted
three-body unitarity in four-body space.

ImT2 4 T2 22 p 2 1'2, ~ + T2 3e p 3 T 32 4

+ &2, 4 p O' T'c,' (18)

A contribution to the special type of four-body dis-
continuity we are interested in will come from the
disconnected parts of the unitarity relation. Hence
we decompose the amplitude in Eq. (18) into dis-
connected and totally connected parts. Equation
(18) and this decomposition are shown in Fig. 5.
Each term in unitarity implies a singularity at
the threshold of that term and in the variable with
that threshold. Strictly speaking, each term in
the unitarity relation contributes to the discontinu-
ity across the singularity beginning at that parti-
cular threshold. '" We are interested in exploit-
ing (18) to obtain the dependence of T, 4 on the
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FIG. 5. Schematic representation of the unitari, ty
relation in Eq. (18). The second line shows the
amplitudes decomposed into fully connected (represented
by a C) and disconnected parts.

three-body subenergy and the two pair subener-
gies. The only terms in unitarity having these
thresholds will be related to these physical sub-
energy singularities. We are interested in finding
the constraints of unitarity on the amplitudes E
and G defined by Eg. (1). Because the two terms
in Eq. (1) have distinct singularity structures Eq.
(18) will be satisfied by the two terms in Eq. (1).

A. Unitarity constraints on F

First let us consider constraints of unitarity on
E. This is a quasi-two-body amplitude where two
independent pairs exist iii the form of two isobars
in the final state. The information about the in-
dependent pair interaction in the fina, l state or, in
other words, about the two pair-subenergy depen-
dences of the amplitude E at a fixed total energy

2 Abs T2 4
—— T2 4, p 4 T2. 2T2. 2, (19)

where the two T, ,'s refer to the two two-body t
matrices in the last but one term in Fig. 5. We
now substitute the first term of Eq. (1) in Eq. (19)
to obtain

will be contained in the last but one term in Fig. 5.
In this term a given pair threshold depends on the
energy of the other pair. " As this involves only
two-particle interaction, the last term in Fig. 5
also appears to contribute to this singularity. But
we can neglect this term because it has a different
threshold —the simple pair subenergy threshold—
which was considered in detail in a previous
work, "where we concentrated on this term to
analyze the problem of four-body final states.
Hence to find unitarity comstraints on E me shall
be limited to the consideration of the peculiar
term —where two independent pairs interact
among themselves in the final state —of four-
body unitarity. " So the last but one term in Fig.
5 does, iri fact, contain the entire physical sub-
energy discontinuity we are interested in. This
term alone will give the constraints of unita, rity
on E. Keeping this term alone, we no loriger have
ImT, 4, but only the discontinuity across this sub-
energy cut, where a given pair threshold depends
on the energy of the other pair. This will be called
the absorptive part of T, 4 (AbsT2 2) to stress the
fact that, following Refs. 6, 12, we are dividing
the amplitude into absorptive and dispersive parts,
each of which can be complex (the absorptive part
contains the physical discontinuity).

If we keep only this term in four-body unitarity
(18), schematically we have the following for the
discontinuity across this cut:

4
v M e M

a~, a) ps+pal D (o ) 'D (~ )
( ~/ (~)

~
)

(M ) (M

&,g, k, l ar ar J

x g+I l2 2%8+/ t2 2%g+i t2 2% d Pi ~kI(M2l ). %1(M27 ) ~$9(Mjf)~tJ(M» )

x (1+[8'(P,"—~') ] ](g„8»+ g„8„+8„8» + g„8»)j (20)

The last factor in curly bracket puts all the four particles on their mass shell when ab=ij or ab=kl. In
other words, it accounts for the fact that in the unitary relation in Fig. 2 relative energies of the two in-
dependent pairs are separately conserved. The extra factor of 8 on the right-hand side comes from the
symmetry under interchange of the pairs ij and kl as well as ab and cd. Using

Abs D D
=EAbs +D~De AbsE

1 I 1

k f 2J jJ 2I I I+Phl
(21)
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as in the nonrelativistic case" and noting that Abs[l/(D, /D„)]= 1m[1/(D, /D„)] and using Eq. (13) for
1m[1/(D, /D2, )], we find that 1m[1/(D, /D»)] terms on the left-hand side of Eq. (20) just cancel the terms on
the right-hand side with ah=a, ed=@i, ah= M, and cd=ij and permutations. Equating appropriate coef-
ficients, taking account of symmetries, and cancelling common factors, then gives

2 Abs(ql&1;, 21(w) lp1 + p/&

4,
=

() (p f&P/) P (P g , +Ps P& P')P'-(P, -+P, P,' P')-& (PJ
-' —m'')5'(p, '* —m')I!'(p,'* -m )

"'(;(M& )1/2&(M2(') Z &ql&22, cu(w)lp2+p2} D ('/') D'/ /") ~

6 Pb, c Pd=l ab +eb cd~+cd
ab, cd&ij, kl

(22)

This result, that the E 1m[1/(D&,.D»)] term must cancel with a corresponding term on the right-hand side
by independent-pair two-body unitarity (13), is generally valid in all such calculations, identical particle
or not, relativistic or not, and serves as a useful check on these calculations. This result is a very
general result and holds for three-body and other similar problems. ' Now it is clear that the last term
in curly brackets in Eq. (20) must be there for this cancellation to be done, and the four-body intermediate .

state in Eq. (20) breaks into two independent two-body intermediate states as it should. When the term in
small curly brackets in Eq. (20) does not contribute we can easily perform one of the energy-momentum
integrations and effectively obtain a three-body intermediate state. It is easy to perform two of the en-
ergy-momentum integrations with two of the four-momentum conserving 5 functions and two more of the
energy integrations with two of the 6' functions. Then Eq. (22) becomes

2 Abs( q le„„,(w) lp( +.p,.) = —
(

„p// ", 6'(p(2 m')e2—, (M,',2)v(/(M, '/')

ab, cd &kj,kl

where 2()„'2= p„"+P)22, and it is understood that the right-hand side of Eq. (23) has to be evaluated at the
zeros of the arguments of the 5 functions that have been integrated over. Next we make a transformation
of integration variables in Eq. (23) to k and t defined by p,'= —', (p+k+t), p/ =—', (p —k -t), p„'=-, (-p+k —t),
and p,'= —', (-p —k+t). Then we have p,. +p,.= —(p2+p, ) =p/ and in these variables the conditions of the
zeros of the arguments of the 5 functions can be easily implemented on the right-hand side of Eq. (23),
which takes the elegant form in the special case of identical particles each of mass m as follows:

GT AGPt
2Abs(q le(w) lp) = „,, 5'(p,"-m')v(M, .';)~(M,",)

x (gled(w) lk),'"," +(gled(w) lt}
D(o',,) D(c,', ) D(o,'. ,) D(o,'„).(24)

Here we have

2(),"= m' + p,"= m 2+ —,'(- p + k —t)'

2(),
"= m' +p,

"= m'+ —,'(p —k —t)'
/ 22212+2(2212 +p/2)1 /2(PP12+p /2)1 / 22p/ p/ et (26)

where the p&'s have been already defined in terms of p, k, and t. In order that Eq. (24) has a compact and
simple form it is written in terms of old and new variables, but if needed all the quantities can be written
in terms of new variables with help of Eqs. (25) and (26). It is easy to see that the two terms in the square
bracket in Eq. (24) go into each other under the change }'2 t. Hence the two terms under the integral in
Eq. (24) are equal and Eq. (24) becomes

2Abs(qlZ(W)lp) =, d'a(qle(W)lk), , 5'(p,"-~')~(M,'. .')v(M,',')™,"
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B. Unitarity constraints on 6

Next we would like to find the constraints of
unitarity on G. This forms a quasi-two-body state,
where one of the four particles is free and the
three others appear in a correlated isobar state.
Here we are interested in exploiting Eq. {18)to
obtain the dependence of G on three-body subenergy
at a fixed total energy. We are particularly inter-
ested in its physical-region singularities. Only
terms in the unitarity relation having three-body
subenergy threshold will be related to this sub-
energy singularity. This subenergy dependence
of the amplitude G at a fixed total energy will be
contained in the last but two terms in the unitarity
relation in Fig. 5, because this term has the ap-
propriate threshold. This term contributes to
the three-body-subenergy unitarity cut which will

2 AbsT, 4
—— T, 4, p 4' T32 3 j (28)

where T3 3 is the connected three-body amplitude
and 5 refers to the particle which does not inter-
act. Equation (28) has contributions correspond-
ing only to the last but two terms in Fig. 5. We
now substitute the second term of Eq. (1) into Eq.
(28) to obtain

give the correct unitarity constraint on G." As
before- in the last subsection, keeping this term
alone in Eq. (18) we no longer have ImT, „but
only the discontinuity across this three-body sub-
energy cut. We again call this AbsT, , as in Sec.
IIIA.

If we keep only this term in four-body unitarity
(18), schematically we have the following for dis-
continuity across this cut:

4
w M ' v M2Abs {q

~

G (g(') ~p ) ~ik, l(MJk, l ) ~lk™2 )

X f+(P/2 ~2)g+{pi2 ~2)g+(pl2 m2) ij k ~ ~ ~ (2ll)'
f',= 1

lM 2 "ik(M&k') I lM 2 "gk(Myk')
Jk, l& jk, l) D (+g ) Dgg(o ) lk, l™Jkl

) D (+ )
(29)

Here as in Eq. (16), we have used D= D* across the three-body cut, because the two-body D function is
continuous across this cut. Now using Abs(G/D') = GAbs(1/D') + (1/D'*) AbsG as before and using Eq. (17)'
we find that the Abs(1/D') term on the left-hand side of Eq. (29) cancels the term on the right-hand side
with a= i. Equating appropriate coefficients and cancelling common factors then gives

2Abs(t(IG, „,(w)(2)= z (2 I, d'(')(('(P, P')5'(k, +P, +P, -P,'-P-,' P )& (PI'- )-'I'
j=l

&& a (p" m')S (p" m') '"-" w (M' ')v. {M' ')
k (ot ) A, l gk, l

jk jk

(30)

In the special case of identical bosons it is easy to see that the contributions of terms with a=j are exact-
ly the same as those with u=k. . Also, in the case of a=l, the contributions of terms with d=k are the
same as those with d=j. In the case of identical particles only the distinct terms in Eq. (30) will contri-
bute, because the unitary relation for identical particles will contain only the distinct terms. Hence the
nine terms in the summation in Eq. (30) will reduce to five terms only because four of the terms are re-
peated twice. Then for identical spinless bosons after the change of variable p,'=p, p&

——t, and p,'=k, Eq.
(30) becomes (see Appendix for details)
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2Abs(ql G(W) Ip&

2 d'0 (ql G(W) Ik&

(2m)' 2w, D'(o,')

w(M,', ,')v(M,'.
,') w(M,', ,')v(M, '.

,') w(M,', ,')v(M,', ')
(31)

Here g,'&'s are defined by Eq. (26) with p defined
just before Eq. (31) and w, ' =k'+ m', w, ' = t '+ m',
and c,'= (~ -p,')'=s + m' —2v s (m'+ k')'~'. Before
we go to actual implementation of these constraints
of unitarity, we give a brief discussion concern-
ing their physical significance.

problem. A similar demonstration is possible in
the case of the four-body problem and will be an
interesting future project. But the simple test to
determine the importance of the constraints of
unitarity holds good even in cases where Abs E
or Abs G have large rapid spurious variations.

C. Discussions

As in other similar few-body problems" in nu-
clear"" and particle physics, constraints of
unitarity (27) and (31) show that constraints of
quantum mechanics introduce coherence and
variation on amplitudes usually taken as indepen-
dent and constant in isobar phenomenology. In
particular this forces F and G to have compli-
cated branch points in the pair and three-body
subenergies at the edge of the phase spaces.
These correspond to "independent pair" and
three-body thresholds. In the nonrelativistic
case" E has two square-root branch points in
the subenergies of the two independent pairs.
The term G has a singularity that corresponds
to a simple three-body threshold and in the non-
relativistic case" this corresponds to the e'ln( —e)

singularity, where e is the three-body subenergy.
The positions of these branch points make them
particularly important in cases such as threshold
enhancements in nuclear physics and resonant
final-state interactions in nuclear and particle
physics. A test of the importance of the unitarity
constraints in a partic4lar problem is easily
made with unitarity constraints (27) and (31).
themselves. The F's and G's are assumed to
be constants and the right-hand sides of Eqs. (27)
and (31) are calculated. If they generate small
AbsE or Abs G (measured against the assumed
scale of F or G, respectively) the assumption
of constant F or G is a good approximation. If
AbsE or Abs G are large by the scale of F or G,
the constraints of unitarity are important and must
be implemented. It is true that if there is a reso-
nant final-state interaction this simple way of cal-
culating Abs F or Abs G will violate analyticity and
will introduce spurious rapid variations in Abs F
or Abs G. This has been pointed out numerically'
and analytically in the case of the three-body

IV. IMPLEMENTATION
f

In the last subsection we saw unitarity forces E
and G to be singular with the discontinuities across
the singularities given by Eqs. (27) and (31), re-
spectively. When we turn to the implementation of
these constraints, we find two cases of practical
interest. The first is final-state two-body and
three-body threshold enhancements such as we
encounter in nuclear physics. We hope from our
experience in the three-body problem' that a sim-
ple input guess for Disp G in Eq. (2) can serve as
an excellent phenomenology which deals with the
subenergy dependence at a fixed total energy. In
the case of the three-body problem it has been
demonstrated that subenergy unitarity can repre-
sent the shape of the amplitude and can serve as
a basis for phenomenology. " The most interest-
ing case in particle physics is the one with two-
and three-body resonant final-state interactions.
As in the three-body case' a simple input guess
for Disp G (or Disp E) in Eq. (2) can be disasta-
rous. Here unitaritj must be implemented with
analyticity.

In order to be able to implement the constraints
of unitarity (to make the algebra simple) we shall
be limited to the consideration of four identical
spinless bosons each of mass ~. The correct
method of implementation is to write a dispersion
relation for the amplitudes E and G in terms of
their discontinuities given by Eqs. (27) and (31),
respectively. From experience in three-body'
and four-body" problems we find that the best
way to implement unitarity constraints (27) and
(31), in order that they give us information about
the subenergy discontinuities, without introducing
other spurious singularities is to disperse in total
energy. Because the essential feature of the dis-
continuities (27) and (31) is a simple 5 function in
s = W' (as we shall see later) it is then trivial to
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A(s) = R(s) +—,AbsA(s '),1 ds'
S —S

(32)

where R(s) is a term that does not have the dis-
continuity. Now before dispersing the singulari-
ties in Eqs. (27) and (31) we note that the 5 func-
tion occurring there can be written as

5'(p,"-m') =5'((P -p,'-p,'. -p„')' -m')

= 6'((W —w,'. —w,'. —w,')' —w", )

disperse in s and maintain total energy analyticity.
The functions F and G have other singularities that
arise from thresholds corresponding to other
terms in the unitary relation in Fig. 5. This
method of implementation will not interfere with
other singularities of the functions F and G.

We write the dispersion relation for F(s) or
G(s) in schematic partial-wave form. Let us
call the function A(s ) and assume that A(s) goes
to zero sufficiently rapidly as s- ~. Then we
can write the dispersion relation for partial wave
A(s) as"

AbsA(s') =8(s')5(s' —s,),
apart from multiplying kinematic factors and
phase-space integrals. Substituting (34) into (32)
we get

( ) R() 1 g(s,)+a(s, s,)

So —S (35)

A(s) =R(s)+—1 e(s)
g so-s (36)

In general if in Eq. (34) we have

where a(so, so) =0 and hence does not contribute to
the discontinuity of A(s) because of the 5 function
in Eq. (34). Function a is arbitrary except for
this condition and could be included in R(s), but
it is more convenient to keep it explicitly. This
is because, as we shall see later, by choosing
function a cleverly it is easy to maintain total en-
ergy analyticity with subenergy unitarity and ana-
lyticity. For example, if we take a(s, s,) = 8(s)
—e(s,), Eq. (35) becomes

, 5(W-w, '. -w,'. -w,'-w,')
C(s') =@,(s')@,(s')@,(s'). . . &t„(s') (37)

+ 'N + Ã~ + SO)
I

28)

x5(s —(w,.'+ w,'. +w„'+ w,')'), (33)

where w. =m +p. , etc. p, =-p. -p. -p and p"s
used in Eqs. (27) and (31) are defined in terms of
p, k, and t in Subsecs. IIIA and III 8, respective-
ly. Hence the essential feature of the discontinui-
ties given by the constraints of unitarity is a sim-
ple 5 function in s. Schematically the discontinu-
ity is represented by

then after implementation with proper choices of
a(s, s,) we can have s as an argument in some of the
factors and g as an argument in the rest of the
factors of 8 in Eq. (37). The way to achieve this
has been demonstrated in Ref. 12. The disper-
sion integral essentially puts the argument of the
5 function in the denominator and in the multiply-
ing factors we may or may not implement the con-
straint of the 5 function (i.e., write in terms of
s&) or s).

From this discussion it is clear that if we dis-
perse the discontinuity of Eq. (27) in s by a dis-
persion relation, we get

d3I;
&il+&~)li&=&t)l)) &~)15&+ ~. fd )'&4l)"&~)l"&'

,
)

v(M;f~ ) v(M~))
ij o l)) I)( I

) D( i
)

(38)

where

o,', = (P —p,'. -p,')'=s+o,'.
, —2P (p,'. +p', )

=s+2m'+2(m'+p". )' '(m'+p")' ' —2p' p' —2WS[(m'+p". )' '+(m'+p")' '] etc.

w„"= (m'+ p„"), n=i, j, k, I,

(39)

(40)

and where p "s are defined in Sec. IIIA in terms of p, k, and t.
Similarly dispersing the discontinuity of Eq. (31) in s, we get
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&qlo(w) lp) =&qlR. (w) lp&

2 d'0 &qlG(W)ik) d't w, +I, +m, +w,'

(27T) 2%y D ((T~) 2Kt K~)(%~+K)+Kp+WI) —W ]
~(MI, )~(M,'. ,') g)(M,', ,)v(M!,.'

w(M,.', q')n(M, '.

,') ~gv(Mq, ,')v(Mq~')

(41)

where o,'. „etc., are defined as in Eq. (39) with

p,'. =p, p,'. =t, p,'=k, and p,'=-p -t-k and where
~~ 2 ~2+k2 ~ 2 ~2+t2 ~ 2 ~2+p2 and ~IS

t
= m'+ (k+ t+ p)'.

This particular method of implementation in
Eqs. (38) and (41) is motivated by the fact that in
the final integral equations we wish to get F and
G as functions of W, while v's and zv's should not
depend on TV. In other words, in the language of
Eq. (37) we have taken v's and so's as functions of
relative momenta and F, and G as functions of 8'
and that is what is physically expected of them.
This has the added advantage that the left-hand
cuts of v's and ze's do not get involved in the mo-
mentum integrations of Eqs. (38) and (41). An-
other motivation for the present choice is that
we get a set of dynamical equations for F and G
and not just an integral representation for them.
It is interesting to note that all these choices are,
of course, equivalent at the zero of the 6 function
so that the discontinuities (27) and (31) are inde-
pendent of these choices. Any way of implemen-
tation of unitarity by dispersion relation satisfies
that particular "subenergy analyticity", but the
present choice also satisfies total energy analyti-
city.

Equations (38) and (41) are the "minimal" im-
plementBtion of unitarity and analyticity, provide
useful solvable phenomenology for F and G without
spurious TV singularities. This simple minimal
implementation of unitarity and analyticity gives
the minimal four-body dynamical scheme with the
specific assumptions we made about the interac-
tion. In Eq. (1), through the functions v's and
sv 's we have introduced the assumption of separ able
interaction in disguise. We chose to make this
assumption because otherwise we will encounter
multivariable integral equations in case of simple
one variable integral Eqs. (38) and (41) without
spurious s singularities. Equations (38) and (41)
are really integral equations in one vector variable
and hence after partial-wave decomposition are
simple equations to solve. Using the appropriate
choices of driving terms R, and R„Eqs. (38) and

( p+k+t j

k~ ~ 2 gP

ia)
P

P

(b)

k

FIG. 6. Schematic representation of (a) Eq. (38),
(b) Eq. (41), and (c) the expansion of a term in Eg. (41)
with (d) the modified form of the first term on the right
in (c).

(41) are the simplest form of four-body relativis-
tic equations. With a simple choice of driving
terms and the functions v and t0, Eqs. (38) and
(41) will serve a useful basis for isobar pheno-
menology. Eqs. (38) and (41) probably will not
give the correct s dependence but will give the
correct subenergy dependence, which is impor-
tant for isobar phenomenology.

Equations (38) and (41) are schematically rep-
resented in Fig. 6. It is easy to see that the dy-
namics shown in Fig. 6 do not contain the full
dynamics and hence do not satisfy the full content
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of unitarity shown in Fig. 5. But this simple mod-
el in Fig. 6 —which we derive from the general
constraints of quantum mechanics —will give us
an idea of the important dynamical aspects of the
problem if subenergy unitarity is important,
whereas the full dynamical scheme is very com-
plicated and hence is difficult to visualize. All
these are a generalization of our analysis of four-
body final states in the nonrelativistic case"—
where we derived useful models for the system of
four nucleons.

In other similar implementations of unitarity
and analyticity '' ', in few-body problems we
find that subenergy unitarity with the associated
analyticity implies the full content of unitarity.
Prom the previous analysis, it is clear that if we
formulate N-body problems in terms of quasi-
(N-1) -body amplitudes, simple implementation of
unitarity and analytieity will give the full dyna. mi-
cal scheme but may not necessarily give simple
equations to solve. The present analysis shows
that other formulations of the problem are possi-
ble —which do not give the full dynamics but give
useful simple equations for making approxima. -
tions. In the three-body problem only one formu-
lation is possible and it gives the full dynamical
scheme —the Faddeev equation with separable
interactions, the Amado model, "or the Blanken-
becler-Sugar equations. '

%'e conclude this section with a brief discussion
about the contents of Eqs. (38) and (41). If we
look at Fig. 6(c) [or at Eq. (41)] we see that in
the first term on the right there is a bubble in the
already dressed two-body propagator. In other
words, this means a repetition of the two-body
E matrices. This is redundant and to do any cal-
culation we should replace this term by a simple
two-body isobar exchange without a bubble. This
is shown in Fig. 6(d). This term appeared in the
present way of implementation of unitarity because
by looking at the last but one and last but two
terms in the unitary relation in Fig. 5 we find
that there must be an intermediate state where
four particles are free. This forced us to have .

this particular term in Fig. 6.

V. SUMMARY AND DISC-USSION

Ne considered the effects of unitarity —inde-
pendent-pair two-body unitarity and three-body-
subenergy unitarity —on four body final states,
derived explicitly the constraints imposed on the
isobar amplitudes by these forms of unitarity pnd
obtained Fredholm integral equations for these
amplitudes which incorporate unitarity and analy-
ticity. From our experience in solving three-body
problems" we can say that the approximate solu-
tions (38) and (41) of the four-body problem will

give a reasonable picture of subenergy dependence
even though they do not describe very well the
total energy behavior. In the framework of iso-
bar, sequential decay, or quasiparticle models,
the four-body states are thought of as being ma, de
of quasi-two-body states, where the quasiparticle
states are either two two-body correlated states or
one three-body correlated state and a free particle.
This model is justified when the two- and three-
body t matrices are dominated by the presence of
resonance poles in nuclear and particle physics, or
bound-state poles in nuclear physics. Though the
amplitudes for forming these quasi-two-body
states —E and G —are usually taken to be con-
stants and independent in phenomenological analy-
sis, we have seen that constraints of quantum
mechanics force them to have physical branch
points and be coherent and interrelated. The
different E amplitudes taken together give us
inf ormation about independent-pair interaction in
four-body final states. The same is true for G
in the case of three-body interactions.

From a practical point of view this work per-.
mits a systematic study of when unitarity effects
are important in a particular case as well as an
implementation of these effects. In the three-
body case we find situations where unitary cor-
rections are crucial, "and'where they are rea-
sonable. ' A similar spectrum of four-body ex-
amples exists and the present work provides a
foundation for future works in that direction. This
type of study will lead to useful approximation
techniques for four-body final state. The present
formalism is a very simplified statement of the
actual state of affairs because it neglects all the
internal quantum numbers (spin, isospin, etc. )
of the particles. But if needed it is not difficult
to generalize the results to include them.

The present analysis should find a very inter-
esting application in reactions such as gN -ggpN.
Because of the presence of various resonances
that overlap strongly in certain regions of phase
space or Dalitz plot we expect that effects of uni-
tarity will be important. These must be imple-
mented with analyticity, otherwise the isobar
amplitudes will pick up spurious singularities. In
other words a simple assumption for Disp G in
Eqs. (3) and (3) —as in done in isobar phenomeno-
logy —will grossly violate the required analytieity
structure of the amplitude G. In this reaction the
present formulation can be used to predict the
isobar amplitudes such as gN-~~, gN- p&, pN
(p~p)N, mN -m(mmN), etc , where (mm) an. d (mwhl)

represent the various resonances in the 3p and2' systems. A classification of the different
states in the 3g system is given in Ref. 10. This
method can be used to analyze other four-body
final states such as zpNN, mph, and possibly
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many other interesting cases. Of these, the ppNN
problem is particularly interesting where the pres-
ent formalism can be used to predict the isobar
amplitudes such as gD-b4, pD-&D, zD- pD,
etc. In special problems various approximation
schemes may emerge in the future, but at present
we have the integral equations if unitarity effects
are important.
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In Eq. (30} it is easy to perform two of the four-
momentum integrations with two of the four-di-
mensional 5 functions as well as two of the energy
integrals with two of the remaining 6' functions.
After performing these integrations Eq. (30) can
be written as

d' 'd' ' ~ ~M''~
2Abs(q~G, ,a, (W) ~,.)=, ~ a 3'( Ia —ma) &a' Ja 'w (Q' '}

4w~wa

&q~ Gg, a)&( ) ~ps) at, (( a), a'}va)(Ma('} ~ (),a( &(, a'}v&i(M))'}

&„(u,', ) D„(o,', )

w,.„,(M,.', ,')v„(M,'.,') ),

(qiG, „.(W)ip,') ~&, ,(M'„,')v „(M' ') w, „(M,'. )v,. (M,' ')

w, , ,(M,.', ,')v, ,(M,.',') )(
D(a«la)

(Al)

where [k j] denotes the terms in the first large
square bracket with k and j interchanged. So the
two sets of terms, whose coefficients are G,. „„.
and G»„, when taken together are symmetric
with respect to the 0 j interchange. Similarly
the last two terms, whose coefficient is G, ,»,
are symmetric with respect to the k j inter-

change. But p~ and p„' are integration variables.
For identical particles the distinct terms in Eq.
(A1) will contribute. That is what has been con-
sidered in Eq. (31) after a change of integration
variables in last two terms. In case of nonidenti-
cal particles all nine terms in Eq. (A1) are sup-
posed to be considered.
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