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We introduce a graphical method for determining the little groups of vacuum expectation values of Higgs
mesons in G X U(1) gauge theories. This method is particularly useful when rank G = 2. A general method
for natural suppression of intramultiplet mixings of equally charged fermions using discrete symmetries is
given. For concreteness we develop these methods using the gauge group Sp(4) &(U(1) and present a
quasivectorlike theory of the weak and electromagnetic interactions based on this group. This theory insures
e-p. and Cabibbo universality, the absence of right-handed currents in neutron, hyperon, and muon decay,
suppression of flavor-changing neutral currents and suppression of untenably large contributions to various
weak processes such as the KzXs mass difference and lepton-number-nonconserving decays. Discrete
symmetries are used to discuss the fermion mass spectrum of this theory and, finally, to predict Cabibbo

type mixing angles in terms of ratios of fermion masses.

I. INTRODUCTION

Unified gauge models of the weak and electro-
magnetic interactions based on the group SU(2)
x U(1) have been rather successful in explaining
various properties of weak decays and charged-
and neutral-current neutrino interactions. How-
ever, the observation of high-energy trimuons
by the Harvard-P ennsylvania-Wisconsin-Fermi-
lab (HPWF) group' raises serious questions about
the validity of such theories. The HPWF group
concludes that the trimuons arise from the pro-
duction and cascade decay of heavy leptons M
and B'. The decay chain is v„+N-M +X, M- p, +E +v&, and finally B —p, +p. '+v&. The
measured rate of trimuon production is R(v&

p, p. ')/R(v„-iI. ) =5x10 '. An analysis of
the invariant-mass distributions in the above se-
quential decay indicates that m& 7 0+1 p GeV
and m~0=3. 5"0 4 GeV. With M very massive
and the branching ratio &(M - p p g') small it
is necessary to have the v„-M transition occur
at nearly full strength to account for the trimuon
production rate. This runs afoul with e —p. and
Cabibbo (quark-lepton) universality in most SU(2)
x U(1) models. Several authors' have constructed
SU(2) x U(1) models in which universality is re-
stored by allowing the electron and light quarks
to undergo the appropriate (large) mixing with a
heavy lepton and heavy quarks, respectively.
These models do not seem to violate any existing
experimental constraints. They are, however,
rather unnatural and contrived and one is led to
ask whether there may not be a simpler and more
believable alternative.

In this spirit we note that it is possible to have
a full-strength v„-M transition if we introduce

nem gauge bosons which couple v& to M . This,
of course, can only be accomplished by enlarging
the gauge group. There have been a number of
attempts' to implement this data using SU(3)
x U(1), SO(4) x U(1), and SU(4) x U(1) as gauge
groups with varying degrees of success. Most of
these models can account for present pheno-
menology, including, of course, trimuon pro-
duction. Their greatest drawback lies in their
complexity. Unless otherwise constrained, these
theories allow prolific mixings among fermions
of equal charge and chirality. These mixings do
violence to the notions of e-p. and Cabibbo uni-
versality, and lead to right-handed currents in
neutron, hyperon, and p. decay. They also allow
flavor-changing neutral currents (including the
unobserved neutral d-s quark current) and un-
tenably large values for the EI.K~ mass difference,
the K~ - p, P rate, and lepton-number-nonconserv-
ing processes such as p. -ey and p, - eee. We
can, of course, set unwanted mixing angles to
zero by fiat, thus circumventing the above prob-
lems. Unfortunately, this procedure is as arti-
ficial as the SU(2) x U(1) models that we are trying
to improve upon. What is needed is a group-
theoretical way to naturally suppress unwanted
mixings. We will examine in Secs. IV and V
methods for suppressing such mixings based on
the liberal use of discrete symmetry groups.
These methods are generally applicable to any
G x U(1) gauge theory but, for concreteness, we
will implement them for the group Sp(4) x U(1). A
second complexity that arises in gauge theories
with enlarged gauge groups is the difficulty of
determining the "little groups" of the vacuum
expectation values (VEV's) of Higgs mesons.
Though a trivial undertaking in most SU(2) x U(1)
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theories, this is a serious problem when dealing
with enlarged gauge groups and Higgs mesons in
representations other than the fundamental one. '
In Sec. III we introduce a graphical method for
determining little groups based on the Cartan
weight diagrams. This method is, in theory, ap-
plicable to any G x U(1) gauge theory, but, in

practice, is most useful when rank 6 =2. Here
again, we illustrate these techniques for the gauge
group Sp(4) x U(1). It is our contention that once
one knows how to find little groups and how to
naturally suppress unwanted mixings, gauge theo-
ries based on enlarged gauge groups become
tractable and are rich in their theoretical im-
plicationss.

The Sp(4) && U(l) gauge model naturally ensures
(with the proviso stated in Sec. V) e-p and Cabibbo
universality, the absence of right-handed currents
in neutron, hyperon, and muon decay, suppression
of flavor-changing neutral currents, and sup-
pression of untenably large contributions to the
EI, K& mass difference, the%~- gP rate, the weak
contributions to the e and p. anomalous magnetic
moments, and lepton-number-nonconserving pro-
cesses. The phenomenological implications of the
model will be fully discussed in a subsequent
paper. We note that our model contains an abso-
lutely stable, neutral heavy lepton with interesting
cosmological implications. ' The existence of a
stable, heavy fermion would appear to be a general
feature of any gauge model based on an extended
gauge group provided that certain intramultiplet
fermion mixings are absolutely suppressed. In
our model such mixings are naturally suppressed
by the RU discrete symmetry. (See Sec. IV. ) The
stable, heavy fermion can be charged or neutral,
lepton or quark depending on the relative magni-
tudes of the fermion masses. In this paper the
acceptance of the leptonic cascade explanation
of trimuon events demands that this fermion be
a neutral lepton. In Sec. VII we modify our model
to show how mixing angles (in particular the
Cabibbo angle) can be predicted in terms of fer-
mion mass ratios by the use of discrete sym-
metries. ' The various properties of the group
Sp(4) necessary in our analysis are derived and

catalogued in Appendixes A, B, and C.
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where F is the generator for U(1). Attempts to
put p, -related leptons into the 5, or 10, representa-
tions either cannot account for trimuon production
(via leptonic cascade), allow for unobserved
"wrong sign" (p, 'p. 'p. ) trimuons at the same rate
as p, p. p,

' trimuons, or introduce exotic doubly
charged leptons. We therefore assign left and

right chiral fermions in the p. family to the funda-
mental 4, representation of Sp(4) x U(1). Con-
siderations of e- p. and Cabibbo universality then
require us to assign all other left and right chiral
fermion families to the 4, representation. The
absence of right-handed currents in neutrino and

hyperon P decay necessitates the introduction of
both left and right chiral quark singlets. Similar-
ly, the purely left-handed chirality of the e and

p. neutrinos implies left-handed lepton singlets.
Fermion assignments are shown in Fig. 1 and

anticipate the results of Sec. IV. The primes in

Fig. 1 indicate possible mixings between equally
charged, same chirality fermions. These mix-
ings can be broken into two categories: (1)
intermultiplet mixings (as between u and c) and

(2) intramultiplet mixings (as between u and I,).

II. FERMION ASSIGNMENTS AND HIGGS MESONS

7 family:

NOI

NOI

COI

Q = T, + TB~ + -,' I', (2.1)

In this section we discuss the fermion assign-
ments and Higgs mesons for a quasivectorlike
theory of the weak and electromagnetic interactions
based on the gauge group Sp(4) x U(1). The charge
operator is chosen to be

FIG. 1. Fermion assignments for a quasivectorlike
gauge model based on Sp(4) &&U(1). The primes indicate
allowed mixings of equally charged, same chirality,
fermions.
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The first type of mixings occurs (as they must
for Cabibbo universality) in the usual SU(2)
x U(1) gauge models. The latter arise only in

theories based on enlarged gauge groups. Intra-
multiplet mixings vastly increase the number of
mixing angles and CP-violating phases in a model.
More importantly, if such mixings are not for-
bidden they lead to flavor-changing transitions in
the neutral current of at Least one (and usually
all) Z~-like vector boson. It is the first task of
any theory that aspires to natural suppression'
of flavor-changing neutral currents to prevent
intramultiplet mixings group theoretically. This
can be done in several ways. In Sec. IV we expand
on one such method and apply it to the Sp(4)
x U(1) gauge group. Our model will incorporate
this group-theoretical suppression. Intermultiplet
mixings still can (and do) occur. We want to for-
bid such mixings between b, and b, and E and M"
in order to suppress large contributions to the
Al, && mass difference, the K~- p.P rate, and
lepton-number-nonconserving processes. This
can be done naturally using discrete symmetry
and will be discussed in Sec. V.

We will consider Higgs mesons in the 4, Y= 1,
5,(5„)Y= 0, and 10,(10„)Y=0 representations only.

'

We want to emphasize the essential differences
between real and complex representations. Real
Higgs mesons are desirable in that they have half
the number of fields as their complex counter-
parts. However, their VEV's are usually too
restrictive to lead to a viable zeroth-order fer-
mion mass spectrum or to allow simplifying
discrete symmetries in the theory. This will be
discussed in detail in Secs. V and VII. In ending
this section we would like to point out that our
model, being quasivectorl, ike, is free of Adler-
Bell- Jackiw triangle anomalies.

III. CONTINUOUS LITTLE GROUPS

We now determine the continuous part of the
little group of selected vacuum expectation values
of Sp(4) x U(1) Higgs mesons. The reason for con-

(h") = v$", . (3.2)

Apply (3.1) to (h"), use part (3) of Appendix C,
and set the result equal to zero. We find that

, (R -R ) g, +c4$, +c,$, +,g4 —0. (3.3)

Since the g", 's are linearly independent, we must
have

c& =c2 =c4= 0.
Therefore, an arbitrary element in the little
algebra of (h") is given by

(3.4)

R(T, +~ Y)+R'T3" +c,E&+c,E &. (3.5)

From (B9) we know that T,",E, z are generators
for the SU(2) subgroup of Sp(4) associated with the

y direction on the root diagram. Using Part 1 of
Appendix C it is easy to show that T, +-,' Y com-
mutes with T~& and E, &. Therefore, the continuous
little group of (3.2) is SU(2) x U(1), where SU(2)
is generated by T~~, E, z, and U(l) is generated by
T", + —,

' Y. Now assume

sidering only certain VEV's mill become clear
in Sec. IV.

Continuous little groups will be found using a
graphical method that exploits the algebraic
structure of Cartan weight diagrams. ' This meth-
od is convenient for any gauge group and leads to
a pictorial representation of the little groups. For
concreteness we develop the method within the
framework of our Sp(4) x U(1) gauge model.

First, note that from Eq. (BB) it follows that any
element of the rea/ Lie algebra of Sp(4) can be
written

RT, +R'T3 +cyE~ +cyE & +c2E8+c2E

+c,E& +c,E &
+c,E& +c~E, +R"', Y, (3—.1)

where R, R', R" are real and c„c„c„c4,are
complex numbers. Let h" be an element of 4„
Y= —1 (see Fig. 2). Let its VEV be

(h") = vg", . (3.6)

(~)

( ~,0)

(~)

(-',o)

'3)~~ (0,--,')
FIG. 2. The weight diagram for the fundamental

representation (4~) of Sp(4).

In precisely the same manner as above, we find
that the continuous little group of (3.6) is SU(2)
x U(1), where SU(2) is generated by T, , E~ and

U(1) is generated by T,"+2Y. Before drawing any
conclusions, let us try one more example. Let

(PA) v(tA+ gA) (3.1)

Proceeding as above, we find the most general
element in the little algebra of (3.7) to be

R (T ", + Tf + 2 Y) +y(E, + E ~ + Y)'
+c,(E„+Es+E~)+c,(E +E 8+E „), (3.8)
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where r =c~ is real. The last two terms in (3.8)
are obviously the raising and lowering operators
for an SU(2) subgroup. Cammuting these two
terms using part 1 of Appendix C, we find that
the thir d generator of this SU(2) subgroup is

2(T, +Tf}—(E, +E,). (3.9)

Expression (3.8) can be rewritten
I

r, [2(T, +T~) —(Z, +Z, )]

r, [2(T, +T3")+(E,+Z, )+2F]

+c,(E„+EB+E&)+c,(z „+E s+E z), (3.10)

where r„r, are, real. Using part i of Appendix
C, it can be shown that 2(T, +Tf}+(E,+E,)+2F
commutes with the other terms in (3.10). There-
fore, the continuous little group of (3.7) is SU(2}
x U(1}, where SU(2) is generated by 2(T, +T,")
—(E, +E,), E, +E, q+E, z, and U(1) is gen-
erated by 2(Tg +T,")+(E,+E,)+2F. From these
results. we extract the following rules

(1) Draw the weight diagram for the Hi'ggs mes-
on of interest. Indicate the VEV on the diagram
by marking the appropriate coefficient next to
each weight vector.

(2) Determine all linear combinations of step
operators that annihilate the VEV.' This can be
done by inspection, using part 3 of Appendix C
and (B34) and (B35}to get the correct signs and
taking account of the coefficients in front of each
weight vector. From these linear combinations
choose orily those that (a) when multiplied by a
phase are Hermitian (b) come in Hermitian-con-
jugate pairs.

(3) Determine the remaining Hermitian opera-
tors that annihilate the VEV by commuting the
Hermitian conjugate pairs of step operators found
in (2). If these do not exhaust all such Hermitian
operators the remaining ones can easily be found
using linear combinations of T, , T, , Y and
Hermitian combinations of step operators.

(4) The generators so fourid span the little alge-
bra of the VEV. The various subalgebras of this
set may not, unfortunately, mutually commute.
It can, therefore, be difficult to decide vihat little
groups they generate. In many cases it i.s easy
to take linear combinations 'and arrive at new,
mutually commuting .subalgebras. Even when this
cannot be done, gerierai algebraic considerations
can usually decide which little group the operators
generate.

(5) The actian of the above generators ori the
weight diagrams gives a pictorial representation
of the continuous little groups.

As an example, we now determine the little
group of a Higgs meson in the 5,, F=Q representa-
tion with VEV

(TAll ) yq AB (3.11)

where V40. It, is clear from the weight diagram
in Fig. 3 that the only linear combinations of step
opei'ators that annihilate (3.11}are E, „,E, z.
Evaluating [E,z „]and [E&, E z] using part 1
of Appendix C, we fi.nd Hermitian generators
T, and T~& respectively. Both T, , T, as well as
F annihilate (3.11). Since T,",E, all commute
with T$, E, z, it i.s clear that the little group of
(3.11) is SU(2) x SU(0) x U(1). One SU(2) subgroup
is generated by T, , E~ the other by T~&, E, &, and
U(l) by F.

For a more complicated example, consider a
Higgs meson in the 10,, Y=O representation with
VEV

(TAB) @~AS + Fat:AB (3.12)

where V, V' are not both zero. From part 3 of
Appendix C arid Eqs. (B35}, we have

~ ' ~

~AS ~AB

~AS
0 4 4

qAB qAB

4

qAB

4

~AS qAB

0 O

qAB + ~AB

(3.13)

(a), z„——z„,1

(b) —z „——,z, ,
1 1

(3.14}

1
(c) Eg + —,E—

By rule 2, (a) and (b) are in the little algebra only
if same multiple of (b) is the Hermitian conjugate

FIG. 3. The weight diagram for the 5~ representation
of Sp(4).

From the weight diagram in Fig. 4 it is obvious
that the only linear combinations of step operators
that annihilate the VEV are multiples of
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The continuous little groups of selected VEV
of 4„10„5„10„,and 5„representations are
tabulated in Table I.

lI (O, i)
IV. RU DISCRETE SYMMETRY

As discussed in Secs. I and II, there is, in
general, undesirable mixing, ceithin the same
multiPlet, of fermions of equal. charge. In this
section we discuss one method of naturally sup-
pressing' such mixings. Again, we will work
with the gauge group Sp(4) x U(1) for concrete-
ness. First, note that in the 4„Y=—1 repre-
sentation, the charge operator (2.1) is given by

]i (0, I)

FIG. 4. The weight diagraln for the 10~ representation
of Sp(4).

Qs = 4"&2s —54"4a,

or, in matrix notation

(4.1)

of (a). This will be true if and only if

I Vl= i V'I. (3.15}
[Q A] (4.2)

Also, by rule 2, (c) is in the little algebra only
if there is a phase e'~ such that e times (c) is
Hermitian. This will also be true if and only if
(3.15) is true. Therefore, for V, V' where
( V ) o j V'(, the little group of (3.12) can only be
U(1) && U(1), where one U(1) is generated by T,
+T~& and the other is generated by K Now con-
sider V, V' where [ V]= ) V')=r. Let V=we '~
and V'=re '~. Then the above generators of the
little algebra can be written (after multiplying with
appropriate factors)

[A "(8)]= exp(- 2 [Q "]8)=

. $e

ce

The one parameter group that Qs generates is
found by exponentiation. That is

(a') e"z —e'~z„,
(b') -"Z „-Z-"Z, ,

&&(4-0)/2z +&-4(4-g)ynz

Commuting (a') with (b'), we get

(3.16)

(4.3}

Since det [As] is not 1, it follows from (86) that
Aa is not in Sp(4) alone. However,

-he /2

2(T", +T~). (3.1'f)
[A,"(8}]= -fe/2 e -f (-e /2)

This Hermitian operator annihilates (3.12). Y
also annihilates (3.12). Operators (c'), (3.17),
and Y exhaust all such Hermitian operators since
the rank of SP(4) x U(l) is three and therefore
the rank of any little group must be &3. Using
part (1) of Appendix C it can be shown that (c')
commutes with all other generators in the little
algebra. Therefore, the little group of (3.12}
is SU(2) & U(1) x U(1), where SU(2) is generated
by T", +T,", e' '~Z, „—e' '@Z, &, one U(1) subgroup
is generated by (c') and the other generated by Y.
The action of this little group on, say, the 4,
representation is evident from the weight diagram
in Fig. 2. It obviously groups $,", g4" and g,", g,

"
into independent doublets under SU(2),

ie /2

~be /2

(4.4)

clearly displays the relation of AB to Sp(4) && U(1).
Any realistic model of the weak and electromag-
netic interactions must have [Ag(8}] [=U(1)] as
the continuous little group of all the VEV's of its
Higgs mesons. However, nothing prevents us
from having a discrete symmetry group [not con-
tained in U(1)] of the VEV's. If such a discrete
symmetry contained Z„and if Z, had as its xna-
trix representation one of the matrices
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that is, only

(4.5)

then the unwanted mixings of equal charge fermions
within the same multiplet would be suppressed.
It is not hard to show that we can restrict Z, to be
a subgroup of Sp(4). Using Eqs. (81) and (822),
we find that only the last two matrices in (4.5),

(4.5)

are in Sp(4). We now examine all possible pat-
terns of symmetry breaking using Higgs mesons
in the 4„1'=—1, 5,(5„) Y=O, 10,(10„) I'40 repre-
sentations. %'e will show that it is impossibJ. e,
within the confines of an Sp(4) x U(1) gauge group
to have such a discrete symmetry. First, con-
sider the 10, K=0 representation. The matrix
representation for this Higgs meson is given in
Eq. (840). For VEV

(Zr AB ) ~g )& (y qAB + V tr) AB)

TABLE I. C ontinuous little groups and their generators tor physically relevant VER' s ot Sp(4) x U(l) Higgs mesons.

Representation $1Egf C ontinuous little group Ciener ltors of the little group

4, Y=—
1

5,, S, Y=O

pA

pA pgA

q
AB

AB y ff'g AB

SU(2) x U(l)

SU(2) x U(l }

SU(2) x U(1)

SU(2) x SU(2) x U(l)
(a)

I vl A
I
v'I: sU(2) x U(l)

(b) IVI =I V'I v= -' v'=

SU(2) x SU(2) x U(l)

t

T3, E+„', Tq" I- —Y

IE+ ~ T3

2(Tg" + T)~ ) —(E~ 6 E ~}, E+ „w E+~ l E+,
2(T," w T,') w(E, eE. ,) t2Y

T3", E+,„, T~~, E+,

T)" & T)~, E+p, Y

T&r W Ty, E ( —"hE+ —( —' tE

I ((, ((&h-r))/2E (, -('(&h-r))/2E ). Y

10,. 10, Y =0 AB+ . AB

I t.f 2 real

(a) i, ~0.12=0:
SU(2) x U(l) x U(1}
(b) I't =O, f 2 %0:

SU(2) x U(I) x U(1)
(c) i

t =f2 AO:

SU(2) x U(1) x U(l }

(d) I t
=-f

2 A0:
SU(2) x U(l) x U(l)

(e);ill other f, , f 2'.

U(1) x U(l) x U(l)

Tj~, E+,T)", Y

T$, E+ „~T3 ~ Y

—T)" + Tj",E~~, T3&r t T3~, Y

T) f T$,E+P Tt + T3 Y

T,'";T~~; Y

y+AB+ y&~ AB

V, V' complex

( )
I
v

I
~ I

v'I: U ( l ) x U ( I )

(b) Ivl =lv'I. v=~&' ' v'=I&' '""

SU(2) x U(l) x U(l)

T3" + Tg~, Y

T&r + Ty (+-'"'E+ —(+-'~;
3 3 ~ +&r

( .—«&h-«)/2E . Y
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we have

(4.10)

(TAB) (4.7)

V
admitsA (but not &) as a symmetry, and that

This VEV admits both A and I.' of (4.6) as sym-
metries for any values of V, V'. However, the
VEV (T,~}=~2(V@~4+ V'qP), that is,

(4.11)

( TAB)

0 V

VI 0

O' Y

(4.8)

V' O

( TAB )

(where V is real for (T,",B)). This VEV admits
both A and S. The little group of (4.9) is listed
in Table I. Note that the intersection of this little
group with any little group of (4.7) must contain
U(1) x U(1) x U(l) generated by T, , Tf, and Y.

Therefore, in order to break the symmetry down

to U(l), we must introduce 4„Y=—1 Higgs
mesons. Now it is clear that

does not admit either A or & as symmetries (V, V'
are not both zero). Since all other VEV's that
have (4.4) as a little group are linear combinations
of (4.7) and (4.8), it is clear that to have the above
discrete symmetry, (T~~o,) must be of the form
(4.7). From the discussion in Sec. Ill it follows
that for any values of V, V' the little group of
(4.7) contains U(1) x U(1) x U(1) generated by

T3 T3 Y. A similar discussion goes through for
the 10„, Y=0 representation. In this case, V and
V' are real in (4.7) and V' = V in (4.8). The little
groups of (4.7) are given in Table L They too
contain U(l) x U(1) x U(1) generated by T, ; TI; Y.

For the 5,(5„) Y=O representation, we deter-
mine, in precisely the same way, that the only
VEV that admits the above discrete symmetry is
(T„)= 2 Vg, , that is,

admits & (but not A. ) as a symmetry. Any linear
combination of (4.10) and (4.11) admits neither
A, nor S. However, if we use 4, Higgs mesons
with VEV (4.10) only, the little group must con-
tain U(1) x U(1) generated by Tf and T,"+—,Y.
Similarly, if we use 4, Higgs mesons with VEV
(4.11), only the little group contains U(1) x U(1)
generated by T3, T~&+-,'Y. Since we must break
the symmetry down to U(1), we must use 4, Higgs
mesons, the sum of whose VEV's is a linear
combination of (4.10) and (4.11). The continuous
little group of these VEV's is indeed U(1) (gen-
erated by Q) but they admit neither of the dis-
crete symmetries A nor 8 above. This difficulty
cannot be avoided by using Y=+1 4, Higgs mesons.
Therefore, within our Sp(4) x U(l) gauge theory
it is not possible to have such a discrete symmetry
prevent fermion mixings.

The simplest way to overcome this difficulty
is to extend the gauge group to Sp(4) x U(l) x R,
where R is a discrete group isomorphie to Z, . As
we will show shortly, it is now possible to have a
discrete symmetry of the type (4.6) in the little
group of a realistic theory. We would like to
emphasize that a discrete symmetry such as R
appended to the continuous gauge group is very
useful in limiting the number of couplings in the
Lagrangian. These proliferate .rapidly in theories
involving enlarged gauge groups and a discrete
symmetry such as R would have to be applied sim-
ply 'to make such theories tractable. In this sense,
the introduction of the discrete symmetry R is a
simPlification of the gauge theory In this .paper
we pick. the fermions representations in such a
way as to forbid 4,4, type "bare" (non-Higgs) mass
couplings. We let all 4, left chiral fermions
transform as —1 under R, and all 4, right chiral
fermions transform as +1 under R. Therefore,
any 10, (10„)or 5, (5„) Higgs multiplet that has
mass couplings with fermions must transform as
-1 under R. In this paper we assume that all
Higgs mesons have mass eouplings with fermions.
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%e now return to the possibility of having a dis-
crete symmetry such as (4.6) in the little group
of a realistic theory. Again, ignoring the U(1)
part of the final. little group, we have, in place
of (4.6), four possible discrete symmetries which
would prevent fermion mixings. These are

(A, 1), (A, -1), (B,1), (B, —1), (4.12)

where A, B are as in (4.6) and 1, —leR. Returning
to 10„F=0Higgs mesons, it is easy to see that
(4.V) admits (A, 1) and (B, 1) as symmetries, but
not (A, —1) and (B, —1), On the other hand, (4.8)
admits (A, —1) and (B, —1) as symmetries. Any
linear combination of (4.V) and (4.8) has no such
discrete symmetry. Similarly, the 5„F=0Higgs
meson with VEV (4.9), admits (A, 1), (B, 1) as
symmetries VE. V (Tso ) =~2(Vp, + V'g» ), that
is

(A, —1) [(B, -1)] if R acts on h'" as -1 (+1).
Clearly, by choosing (4.10)-type Higgs mesons
as R =+1 (-1) representations and (4.11)-type
Higgs mesons as R = —1 (+1) representations, the
final little group will, contain (A, —1) [(B,—1)].
Both choices lead to the same physics. In this
paper we will take the second alternative. This
immediately tells us that R acts as —1 on all
fermion singlets since we want these to contribute
to the mass matrix. The continuous l.ittle group
is U(1) and the discrete little group, denoted RU,
is given by

(4.14)

RU is isomorphic to Z, . The matrix expression
for (B, —1) on left chiral fermions is

0 V'

—V 0
(4.13}

admits (A, —1) (B, —1) as symmetries. Again,
any linear combination of (4.9) and (4.13) has no
such discrete symmetry. Exactly similar argu-
ments hold for the 10„and 5„representations. For
5„, Y'= —V in (4.13). Therefore, we have two
possibilities. First, consider theories in which
the VEV's of 10, (10„}and 5, (5„) Higgs mesons are
like (4.V) and (4.9), respectively. These both have
(A, 1) and (B, 1) as discrete symmetries. We know

, from the previous discussion that the continuous
little group of these VEV's contains U(1) x U(1}
x U(1}. We must therefore consider 4„Y=—1

Higgs mesons. The VEV (4.10) admits only (A, 1)
as a symmetry independently of how h" transforms
under R. Similarly, VEV (4.11) has only (B, 1)
symmetry independently of how h'" transforms
under R. Any linear combination of these two
VEV's has no discrete symmetry. However, in
order to have final little group U(1) it is necessary
to have such a linear combination, This model, ,
therefore, has no discrete symmetry of type
(4.12) to prevent fermion mixings. Now consider
the second possibility. Let the VEV's of the
10, (10„) and 5, (5„) Higgs mesons be (4.8) and
(4.13), respectively. These have both (A, —1)
and (B, -1) as symmetries. From Table I we see
that the l.ittle groups of such VEV's always con-
tain U(1) x U(1) generated by T,"+T~& and Y. There-
fore, we-must introduce 4„F=—1 Higgs mesons.
The VEV (4.10) admits (A, -1) [(B, —1)] if R acts
on h" as +1 (-1). Similarly, VEV (4.11) admits

For right chiral fermions, (B, —1) acts as

(4.15)

(4.16)

To summarize, we have shown that if (1) the
gauge group is enlarged to Sp(4) x U(1) x R(=Z, )
acts as —1 (+1) on left (right) chiral 4, fermions,
(2) all Higgs mesons couple to some fermions,
there is a &clique pattern of symmetry breaking
which admits a discrete symmetry of type (4. 12).
In this model all 10,~„~ an& 5,~„~ Higgs mesons
transform as —1 under R and have VEV's (4.8)
and (4.13), respectively. There must be at least
one 4, Higgs meson. The 4, mesons with VEV
(4.10) (4.11) transform as —1 (+1) under R. All
fermion singlets transform as —1 under R. The
little group of this model is U(l) x RU, where
U(1) is generated by Q and RU is given in (4.14).
The RU symmetry forbids intramultiplet mixings
of equal charge fermions in the Eeroth-order mass
matrix. This model will be used exclusively
throughout the remainder of this paper.

We note that in any G x U(1) gauge theory, the
continuous little group generated by Q [call it
U, (1)] is not, as a rule, identical to U(1). Rather,
it is a mixture of G and U(l), of which the Wein-
berg angle is a measure. In exactl. y the same
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way, RU is not identical to 8 but instead is a
nontrivial mixture of R with Sp(4). In the above
theories, R i s spontaneously broken but RU is
not. It is to be emphasized that the mere addition
of R to the gauge group does not guarantee that RU
will be in the little group. The Higgs potential
must be chosen so that this is the case.

V. STRUCTURE OF THE MODEL

We now construct an explicit model for the weak
and electromagnetic interactions based on the
gauge group Sp(4) x U(1) and the fermion assign-
ments in Fig. 1. Using the results of Sec. IV we
expand the gauge group to Sp(4) x U(1) x R and

assume that the parameters in the Higgs potential
are such that RU is in the little group.

First, we determine the minimal number of
Higgs mesons necessary to give a realistic zeroth-
order fermion mass spectrum. Let us denote
left and right chiral fermions in the 4, representa-
tion by ««L and «j"„, respectively. Let T" be any
traceless tensor. Then we can form precisely
two Yukawa couplings

««L «jj« I gc~ 8«««'«' (5.1)

««~L «jj« ~"Jxjf~j«C (5.2)

.8 CD
««L «jj«~ gjj~ ~aC (5.4}

Using the symmetry (antisymmetry) of T and

Eq. (A8), it follows that (5.2) is equal to 1 (- 1)
times expression (5.1). Since we restrict tensor
Higgs mesons to 10, and 5, representations, we
need only consider (5.1). For 10, Higgs mesons
with VEV (4.8}, the mass coupling takes the form

I «il «jj«+ P ««L«jj«+I «jL«jjV«+««1«jRI

(5.5)

(where V'= V for 10, representations). Similarly,
for 5, Higgs mesons with VEV (4.13), the mass
coupling is

V'«L «jz —V ««L «j'j« —V'««'L «j'j«+ V««'L «j'z

In general, these two expressions are independent.
However, when T~ is in 10„or 5, this is no longer
the case. Assuming that T~ is in 10, (5,), we
know from Appendix 8 that

+CD +CD+ e JDF (5.3)

is a symmetric (antisymmetric) tensor. Inverting
Eq. (5.3), substituting for T in Eq. (5.2), . and

using Eq. (A9), we find that (5.2) becomes

TABLE II. The action ot Z~ on fermion families ot' the

Sp(4) x U(1) gauge model.

Ferm ion tarn ily

f including singlets) +l
Action of Z&

+,«vr/4 +I

mesons with R = —1 (+1) and VEV (4.10) (4.11)
are denoted by I«" (h'"). Their Yukawa couplings
are obvious. Using expressions (5.5) and (5.6)
it is not hard to show that the simplest theory with
a realistic mass spectrum (all fermion mass with
the exception of neutrinos nonzero} requires one
10, and one 5, Higgs meson and both h" and h'".
In this case, nonzero fermion masses are arbi-
trary. At this point we note that cross couplings
between the d and s quark families and e and p,

lepton families induce mixings of &, with b, and
E with M . These mixings lead to intolerably
large contributions to the AI. K& mass difference,
the EJ.- p, P rate and lepton-number-violating
decays. The mixings can be naturally suppressed
by introducing yet another discrete symmetry.
Let Z, be the discrete group of eight elements
generated by e"/'. Its action on the various
fermion families is shown in Table II. By allow-
ing Z, to act trivially on the above four Higgs
mesons we naturally suppress the unwanted mix-
ing angles but, unhappily, also suppress the
phenomenologically necessary Cabibbo angle and
possible p, - ey, p, - eee events. This can be
easily remedied by introducing two new 4, Y= —1
Higgs mesons h" and h' . These transform as
—1 and +1, respectively, under R and are as-
sumed to have VEV's (4. 10) and (4.11) so that RU
remains in the little group. They transform the
same way as the s and p fermion families under
Z, . This restores mixing between u, X, c, and Y
quarks and between v„A', v„, and B', but
naturally suppresses all other mixings. Our
standard model will. have as its invariance group
Sp(4) x U(1) x R x Z, and will allow only the above
six Higgs mesons T,«, T5, , h", h'", h", and
h'". The fermion assignments of the standard
model indicating the allowed mixings are given
in Fig. 5. From Table I we see that for

~
V'I

C
~ V~ the continuous little group of the 5, VEV

is SU(2) x U(1), where SU(2) is generated by
T, + T,j, E, ««and U(1) by Y. It is clear from the
fermion assignments in Fig. 5 that this little
group is the SU(2) x U(1) group for a quasivector-
like Weinberg-Salam model. ' In the limit

I &I(I &'I)» l V'l(l Vl) and all. other VEV's, the
results of our model reduce to those of Weinberg

(V'= V for 5„representations). The 4, Higgs

(5.8)
l

1

+] + . , jar/4
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d family:

s family:

e family:

b)

X„'

G

b2

YL
I

U~

t2

E'

bl

b2

d

I

UR

t2

S

I

GR

E'

X'

Y'

p. family'.

E

A'
L
I

~u

M'

T family:

8 '

L

N N
C'

N

C"
L

FIG. 5. Fermion assignments for the standard Sp(4)
&&U(1) gauge model. The primes indicate the allowed
fermion mixings after the application of both RU and

Z8 discrete symmetries.

pating this result, we set the mixing of v„v„with
A, B to be strictly zero. Since v„v„are mass-
less they can always be defined to equal v,' and

v&, respectively. This restores e- p, universality.
A and & can mix arbitrarily, Similarly, in the
quark sector, absence of charm-changing neutral
currents evidenced by the small branching ratio
&(g(3772)- e'e )= (1.3+0.2) x 10 ' in the 3.772-
GeV g resonance" essentially decouples u, c from
X, Y. Anticipating this result, we set the mixing
of u, c with X, Y to be strictly zero. This restores
Cabibbo universality, suppresses the right-handed
u-d current, and leads to a realistic prediction
of the A~K& mass difference and the Kl, - p.P.
rate Th. erefore, with the Proviso that fermion
singlets be prevented by fiat from mixing with 4c
fermions (with good experimental justification),
our model naturally ensures all the desirable
properties listed in Sec. I. We would like to point
out that similar models based on SU(3) x U(1)
automatically prevent singlets from mixing with

4, fermions and thus are free of our slightly un-

satisfying proviso. Assuming that E' is less
massive than any other heavy lepton (with the
possible exception of A' and &'), it is easy to see
that E' is absolutely stable.

We now turn to the determination of the mass-
eigenstate vector bosons and their mass spectrum.
The gauge-covariant derivative in our Sp(4)
x U(1) model is given by

and Salam. It is important to note that h and
h'" actually restore more mixing than is desirable.
The arbitrary mixing of v„A, v&, and B does
not account for e- p, universality, and leads to
disastrously large branching ratios for the pro-
cesses p, —ey and p, - eee. Similarly, the arbi-
trary mixing of u, X, c, and Y does not account
for Cabibbo universality, leads to large contribu-
tions to the KI, E~ mass difference, induces a
right-handed u-d current, and, since X' and Y'

are singlets, does not naturally suppress charm-
changing neutral currents. Though it mould be
desirable to naturally suppress all these mixings
with the exception of the Cabibbo angle, we find
the discrete symmetries that must be invoked to
do so both aritifical and overly complicated. We
therefore take the point of view that the above
mixings must be determined experimentally. Con-
sider the leptons first. It is not hard to show
that the upper bound on the branching ratio for
the p.'- e'y decay

[I'(p'- y)/eI'(p, '-e'v, v„) &3.6x 10 ' (Ref. 11)]

essentially decouples v„v„ from A', &'. Antici-

a'=~"-zg T"N"+V'N"+ "m" + "W"
vY

v'2

where N', N"„, and B~ are real fields and W'",

h'" are given by (4.8), (4.13), (4 10), and (4.11),
respectively. The VEV's of Q 2nd P' are

(I A) (5.9)

+ ' w~ + '"m~ -ig' —a~g E, Y

(5.8)

We now turn to the determination of the mass
eigenstate vector bosons and their mass spectrum.
The gauge-covariant derivative in our Sp(4) x U(1)
model is given by
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and

(I /A)

0

(5.10)

where
I

&2[1+q"—(1+q")' ']' ' (5.16)

vv'- vv'= Ivv'-vv'Ie*" .

Note that

(5.17)

We can now solve for the mass-eigenstate vector
bosons and their masses This is best done graph-
ically using Eg. (5.8) and the properties of the
modified Cartan basis. Let

A= IvI'+ v'I', a= vI'+ Iv'I',
1'= v '+ vI', s= Iv'I'+ Iv'I'

lim
cosf = 1

qt O

lim cosf =~
q ~00

(5.18)

8 y+s
P=~~ q= ~
, 2lv'v+vv'I,

A.

P —8q=~

,, 2lv'v-vv'I
A.

(5.11)
In the Weinberg-Salam limit we find that

2 p 2
SPY +(&) 1 mP+q

(5.19)

g' +2g

Note that in the Weinberg-Salam (WS) limit

(3). W~„W,"2 (charge zero):

1+p+ q~5 (5.20)

P && q, q', 6, 5', so .2l V I IV'I
(5.12)

We find the physical vector bosons and their mass-
es to be as follows.

(1} W,"2 (charge +):

m22 = 2g'A(1+ q). (5.13)
I

(2) W,'", W,'„" (charge +, +):

w"
vY

e

e'
&2

where

vv'+ v'v+
I
vv'+ v'v

I
e'~ .

(5.21)

(5.22)

1 +p ~ q (q2+ 5t2}1/2
Pl ~(y ) 1+q

2Slg p

~W'"
I ~cosa since'"~ -I W" I

CR —
]

/

Ot

W„'" sine cosine' 8","

(5.14)

(5.15)

In the WS limit we find that

2~ p 2
m~~«2) 1+q ~~ ~

(4) Z1~, Z2", A" (charge zero):

(5.23)

+P+ 2q
' 1+p ]+ + 2

mz, (z2) =
2(1+q) g

m~-0,
(5.24)

where we have used the approximation z«y in deriving nzz, «, )'. We will use this approximation for the
remainder of the paper Also,

Z"
2

where

Ix, y,

X2 g2 Z~ N„

vw Vu (1-2)'~2 a"
(5.25)
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1+p-1 2 q

2(1+P+ &(,))(1+P+2q)+ (1 —eu)r(, )' 4(1+2m)
1 —228 (1 —2so)' ~

&i(a) = (5.26)

and which is the familiar SU(2) && U(1) expression. Also

(v) mzg(z2) ~g

Note that in the WS limit

(5.27)

1+ (5.28)

so that the masses of all vector bosons with the
exception of the %8 bosons 8',~ and Z," approach
each other and become infinitely large in the QlS
limit. We also find that expression (5.24) becomes

Z~
2

1 —2' 1 —2' N"
y (5.29)

v'1 —2' - B"

in this limit. From the coupling of the photon to
the electromagnetic current, we find that where

e =gWao (5.30)

where e is the electron charge. From the coupling
of TV "z to its charged current, we determine that

metry. In this section we determine the simplest
such symmetry. The most general diagonal ele-
ment of Sp(4) is given by

(6.1}
g G~

16mg' (5.31)

Combining these two equations, we have, finally

&I- ~R ~U DISCRETE SYMMETRY

(5.32}
where a, & are complex numbers of unit modulus.
The triplet (C, e', + 1) is in Sp(4)XU(1)&& & (we
ignore Z, since it acts trivially on the 10, and 5,
Higgs mesons). The action of this triplet on VEV
(4, 8) yields

Notice that in our standard model, the &, 4, s,
and c quarks and e, p, and 7 leptons are the
"light" fermions. In fact, they would be massless
if V' vanished in (4.8) V vanished in (4.13), and all

c'~ mass couplings were disallowed. If these
conditions could be guaranteed by a symmetry of
the Lagrangian, then the relatively small masses
of the above fermions might have a theoretical ex-
planatiori in terms of soft breaking of this sym

0

0

V(ab) '
& (~1) . (6.2)

V'(a5)-'

We demand that a~=+ 1. This, however, implies
that ab = al, so that a (C, e', + 1) discrete sym-
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metry in the little group of an Sp(4) x U(1) && R
theory cannot guarantee that V'=0. Vfe reach the
same conclusion for VEV (4.13). It is clear that
we get the desired result if we have +i in (6.2).
We therefore introduce a new discrete symmetry
v R, where v& is isomorphic to Z». The WR

group acts as{1,-1, i, i}-({1,1, 1,1}}on all left
(right) chiral fermions. On Higgs mesons, MR

acts as {1,-1, i, -i} on the 10, and 5, represen-
tations, and as {1,-1, -i,i } ({1,1, -1,-1})on
4, R =—1 (+1) representations T.his immediately
forbids @11&&~ c~ couplings. For simplicity we
ignore the U(1) and R parts of the gauge group and
concentrate on Sp(4)x WR. The doublet (C, {+I,
+i })is in Sp (4) XWR and acts on VEV (4.8) as

y'ab 0

V(ag) I ( 7
x(+1 +i )

V'(a&) ' 0
(6 3)

If (6.3}is to be invariant under (C, {al,+i}), we
must have a& = +i, respectively. Choosing phases
for C such that the VEV's of the 4, Higgs meson
are invariant under (C, {+I, +i }),we find that
a =1, -1, i, -i and & =1,1, -1, -1 respectively.
For a5=wi we have V'ah=+i V'. It is clear that
(6.3) will be invariant under (C, +i ) if and only if
V'=0. The set (C, {+1,ai}), where

(6.4}

for +1 and +i, respectively, forms a discrete
group isomorphic to Z» which we denote KR v U

for obvious reasons. In precisely the same manner
as above, it is not hard to show that 5, VEV (4.13)
is invariant and under v R v U if and only if V =0.
Thus we have shown that if we (1) enlarge the gauge
group to Sp(4)&&U(1)&&R&&Z && v R, where WR acts
as {1,-1, i, -i } ({I, I, 1, 1 ) on left (right) chiral
fermions, (2) let WB act as {1,-1, i, —i on 10,
and 5, Higgs mesons and as {1,-1, i, i }-({1,1,
-1,-1})on 4 R =-1 (+1) Higgs mesons, (3) re-
quire that MR 0 U be in the little group, then the
masses of the &, d, s, c quarks and e, p. , & leptons
(but no other fermions except neutrinos) vanish.
Note that if vR v U is in the little group then so is
RU. The addition of WR to the gauge group does
not guarantee that ~B MU is in the little group.
The Higgs potential must be chosen so that this is
the case.

VII PREDIC'rING CABIBBO ANGLES

In the standard model, defined in Sec. V, mixing
occurs between & and c, X and ~ quarks and be-
tweenA and B, &„and C leptons. Mixings be-
tween&, c andX, ~ quarks and between &, , &„
and A, B leytons are suppressed by fiat with
strong experimental justification. All other mix-
ings are suppressed naturally using RU and Z,
discrete symmetry. No attempt is made to pre-
dict the magnitudes of the allowed mixing angles.
In this section we will modify the standard model
in such a way as to specify all mixing angles in the
quark sector (including the d-s Cabibbo angle) in
terms of quark mass ratios. The absence of right
chiral neutrino singlets precludes a similar re-
sult in the lepton sector. For simplicity wt„will
ignore leptons in this section. To begin, we lift
the restriction of Zs symmetry. This obviates the
need for the k" and k'" Higgs mesons (we now dis-
card them) and, while retaining the above quark
mixings, introduces new mixings between d and ,
&, and &, and, finally ti and t,. 8'e continue to
suppress &y fiat u, c mixings with &, I'. If we
denote the 10, and 5, Higgs mesons by H,~ and H„
respectively, then the most general Yukawa cou-
plings consistent with Sp(4) & R are

G,L,H R, + G L,H, R»- G,L H,R, + G»L,H,R2 + Q,L,HMR, + B~L,H,p, + Q,L,H,p, »- B,L H,p2

g, L, , gm L, ~+g3&zh R, +g&~h R +gL, /z uz+gL k u~

++7Lj@ cQ + -QSL3 @ cQ + Hermiti@n conjugate (7.1)

Terms such as X~&~ are forbidden by fiat. There
are 16 coupling constants and only 12 fields into
which to absorb their complez phases. Therefore,
12 coupling constants can be chosen to be real

f

whereas four must remain co~plex. We choose
these four to be G„G„g„and g4. Note that com-
plex phases in the VEV's of any Higgs meson can
no longer be defined away. We now demand that
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the Lagrangian be invariant under the following
discrete exchange operatibns.

L, R» L2 -i R»

X~ -iu~,
II -sII

5 5

lg ih' .
H ~—i'10 IOP

(V.2)

G, =G4=8, =84 =g, =g, =g, =g, =0,

S 2& S 2& gl g5& g4 gs '
(V.S)

Applying these operations in (V.1), remembering
that all coupling constants with the exception. of
G„83,g„and g4 are real, we find that

where A =G2V+92V'. It is easy to show that this
mass matrix implies that m~ =m, . Similarly, this
theory predicts m, = m, and m, =m, . Therefore,

1 2 . 1 2
the theory, as it stands, is untenable. We find it
necessary to add two new Higgs meson H10 and

H5 to the model. They transform as -1 under 8
and we continue to assume that HU is in the little
group. H,', and H5 have Yukawa couplings identical
to those in (7.1) (put primes on the new coupling
constants), However, there are now only two fields
to absorb all eight phases. Therefore, all cou-
plings constants are complex with the exception
of.two which we choose to be G,' and 8,'. We de-
mand that when all previous fields transform as

, (V.2), II,', and II,' transform as
Therefore, the most general Yukawa couplings
become H5 ~H5 y H 1{} +QO ~ (v.6)

G2L,H5 Rm+ G2LQ, R, + 92L~H, OR2+ 92LQ,DR,

+g~X~htR, +g,L,h'u„+ g4Y~htR2+ g4LP'c„

+ Hermitian conjugate, (7.4)

where all coupling constants are real. Using Fig.
1 and Eqs. (5.5) and (5.6), we compute the d'-s'
mass couplings

(0 Al(d)
(d', s')z~

~
~

~

+ Hermitian conjugate,
0) 'E"i„

(v.5)

Demanding that the Lagrangian be invariant under
(7.2) and (V.6), we find that

G~ —aG2, Ss =192,

G4=&4, 84=84

The new Yukawa couplings become

G,'L,B',R2+iV2II +5R, +G4L+5R,

92L,II,', R2+ i92I @for 1+94LjZ,'OR, + Her mitian conjugate,

where only G4 and 84 are real. Computing the d'-s' mass matrix, we find

(0 A)

(A' Bj
(7.9)

where

A =G2V+92P+G2IVO+92Vt, A'=GIV+92V'+ jG~PO+i82Vt, 8 =G4VO+94VO, (v. lo)

and the subscript 0 implies an element in the VEV of H5 or H,'o. Since A' is not equal to A, there are three
parameters in the mass matrix which are to be determined by two mass eigenvalues m~ and m, . There-
fore, the mixing angle will not be completely specified by a ratio of quark masses. To overcome this dif-
ficulty, we introduce yet another discrete symmetry which we denote by R'. B' acts as -1 on L„R„X~,
e„, H5, H,'„k, and h', and as +1 on everything else. Demanding that the Lagrangian be invariant under
B', we find that

(v.11)

Then A, A' in (V.10). We will shortly show that such a mass matrix leads to the correct d-s Cabibbo
angle. The remaining mass couplings are given by
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( o G, r" +s,v) «;&,—,, ( o

+ u, c ii I+(glV 0 l ~44 ) (7, Y~) gaga~

( 0 g,1p'j (c' j„

G,v +Q,v) (b,')
G-4Yo+8'l'Oj b2 jB

0 X'
~

+ Hermitian conjugate . (7.12)
g4l'j ( Y' j

(7.13)

where U» is unitary and d, s a're mass eigen-
states. Then

(v.14)

Note that all quark masses are independent and
arbitrary due to fortuitous minus signs and the
fact that Higgs messons are all in comples repre-
sentations. How consider the d'-s' mass matrix
(7.S) with A'=A. Let

S IBR S I R

of approximately —,'o. Computing 8c in ('l. lS), we
find Oc =12.60', very close to the experimental
value of Hc =13'. Since the d-s Cabibbo angle ex-
perimentally is measured relative to the u quark,
we emphasize the importance of the zero I-c mix-
ing in this theory.

APPENDIX A: NOTATION

Let J„Bbe an antisymmetric tensor (over a
four-dimensional, complex vector space V). De-
note by J"B the unique, antisymmetric tensor
satisfying

where MD is diagonal. It follows that

First consider MM~:

Diagonalizing (7.16) we find that

f cos8c -sin8c)
(sin8ce@ cos8ce@j

(7.15)

(7.16)

(7.17)

(Ai)

J $A gA JAB( (As)

JABJ gA
~

Note that JAB and O'"B (complex conjugation denoted
JAB and J', respectively) are antisymmetric and
satisfy the relation

JABJ gA (A2)CB C
~ ~

We can use J»,J" and J„g„J" to raise and lower
indices according to

where
$B JAB~ qA JAB' . (A4)

m
tan26

m S

and, if += I4IB'" += I+ e'", then

(v. is) Note that since JA~ is antisymmetric,

JAB&'= JBA&'=-&»- (As)

Diagonalizing M~M we find that

( cos8c sln&c
R

(-sin8ce " cos8,e "j
Similar results hold for t„ t2 and b„b2:

(v. ie)

(v.2o)
and positive definite

.gA~B& 0 (Av)

so one must be careful to contract with the correct
index when raising and lowering. Now consider a
tensor g„B that is both Hermitian

gAB ~BA

(v.21)

mt
tan'& =t-m

t2

mb
tan'6) =

b m't
bg

with one arbitrary CP phase in each sector. It is
clear from the last two terms of (7.12), that I',
c',X', F' are all mass eigenstates. That is, there
is no u-c or X-P mixing. Note also that gAB JAC JBDg (A9)

for all g", and is zero if and only if )A=0. Denote
the unique inverse of g» by g" . Then

A AB B
gCB C & g gAC (As)

There are many such metric tensors. Metric ten-
sor g» is said to be compatible with J» if it has
the property that

m mx
m m

(7.22) There are, as a rule, many metric tensors com-
patible with a given J'„B. Using Eqs. (A1) and (AS)
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(A10)

it is easy to show that g» is compatible with J»
if and only if

LCD~ AB gAC gBD '

and

~CAD~AB ~C D
A 8 (al)

APPENDIX B: THE GROUP Sp(4)

Fix 4» and a compatible metric tensor g» on
V. The set of all linear mappings AB of p to V
with the 'property that

( -', y)

(~)

(-I,O)

(~)

(l,O)

ACA$ gAB gc b (a2)

forms a ten-parameter Lie group. This group is
called the unitary, symplectic group in four com-
plex dimensions. We denote it by Sp(4). Define
the completely antisymmetric tensor

(i (O,-I )
(&)

FIG. 6. The root diagram for the group Sp(4).

CABC D

This tensor has the property that

&ABCD=4l .ABC D

Let A~s be in Sp(4). Then

(a4)

are in the real Lie algebra. Using part 2 of Ap-
pendix C and the commutation relations, we im-
mediately identify four SU(2} subgroups of Sp(4).
These are generated by

yO( E
det(AA) &

I ~ABc D~ AEAF Ac As

Using Eqs. (81), (83), and (a4}, it is clear that

det(A~s) =+1.

(as) &3+&3 ~E. s~

-T3 + T~&, E~),

(a9)

Therefore, Sp(4) is a subgroup of SU(4). The
complexified Lie algebra of Sp(4) is called C, .
Denote its canonical Cartan basis by H„H„E, ,
E, &, E,„,g, &. The commutation relations for
this basis are given in many references. " %e
find it convenient to use a new basis, related to
the canonical basis as follows:

r,"= &3a, , T$ = WSH2, E ~ „=v 6E ~ „,

T~ Eg, +E ~

vY

Eg +Ei'
(as)

E~ s ——2WSE„8, E',
y

W6E, y, E-—', ( ——2 3E„.
The root diagram for the new basis is shown in
Pig. 6. The new commutation relations (from now
on we drop the primes) are given in part 1 of
Appendix C. The normalization of the new genera-
tors is chosen so that the action of any step oper-
ator (e.g. , E„)on a weight vector of the funda-
mental representation of C, yields +1 or 0 mul-
tiple of another weight vector. The relation of
elements of C, to elements of the real Lie algebra
of Sp(4) is (1}T~", T$ are in the real algebra and
(2) for step operators E,&

AB —&B —&&gB &
aA (a10)

is an element of Sp(4). Using Eq. (81) we find
that

0(c cxc
~CAT'3B = JCBT'3A .

Now evaluating the expression

~c~TBs &i &g
A B

(al 1)

respectively, and correspond to the four direc-
tions of the root vectors in Fig. 6. The funda-
mental representation of Sp(4) (and therefore of
C, ) is in four complex dimensions and is denoted
by 4, . its weight diagram is given in Fig. 2. The
diagram is self-conjugate, which implies that 4,
is equivalent to 4, . Note, however, that 4, is not
equivalent to a real, four-dimensional representa-
tion. The weight vectors are written (~&, ordered
as in Fig. 2. They are eigenstates of T," and T$
with eigenvalues A. , and Xf, respectively. These
eigenvalues can be read off the weight diagram.
The matrix representations of the complexified
generators in the $f basis is given in part 3 of
Appendix Ci Let JA and g» be the defining ten-
sors of Sp(4). We now find an explicit representa-
tion of these tensors in terms of the weight vec-
tors $", . To this end we note that for infinitesi-
mal 6,
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in two different ways using Eq. (B11), we find that

(Xj +A, )tjA(",. =0.

Similarly, for TS~B we find that

(~1]+~I)(,.„~Aj =o.

(Bls)

(B14)

laABj=(g"'j= (B25)

AB = 6B —i(EB+E B)Be

is in Sp(4) for infinitesimal e. Evaluating

~3A~4 ~BA A C ~ D AB AF$3 h4

(815)

(B16)

Finally, since Ez+F. z is in the real Lie algebra
of Sp(4), Higher dimensional irreducible representations

of Sp(4) are obtained by taking tensor products of

4, and 4„subtracting out the g» and J» trace
and, finally, reducing the tensor products using
the symmetry properties of the indices. Con-
sider T' ~ 4, S 4, . Then

using Eqs. (Bl) and (B15) and the matrix rep-
resentations for E+ &

in part 3 of Appendix C, we

find that

&1A&A - -4A(3 = 0. (817)

From Eqs. (B1S) and (B14) it follows that

(A 0

(B18)

(B19)

when i, j are not 1,4 or 4, 1 and 2, 3 and 3, 2. Now

JAB can be written as

~AB Q Q+ ~jLA~jBj' (B2o)

Contracting JAB with t1, (2, and $3 separately,
we have finally that

AB (~1(A~4Bj ~2$A~3B j) &

which is the desired expression. In matrix
notation, with respect to basis )A, ,

(B21)

Since for a given Sp(4) Lie group J„B is defined
only up to a nonzero multiple, we choose JAB such
that

ICD
7 gAB TAB (T RCD) AB+

4 g (B26)
D

The (gAB traceless) tensors T" can be further
reduced as follows. Consider the tensor

Z
AB JBC .TABgCB (B27)

The representation on T" is equivalent to the
representation on T" since they are related by
the invariant tensors g» and J». Note that

TABg g .TAB 0 (B26)

by Eq. (B26). The tensors T"B are, however,
still not irreducible. They can be written as the
sum of symmetric and antisymmetric tensors.
That is,

T» =T&»)+T~B l (B29)

The set of tensors T" with the property that
T" = T " form a ten-dimensional, complex
vector space. The representation of Sp(4) that
they carry is denoted by 10,. As we will shortly
show, 10, is still reducible. The set of tensors
T with the property that T" = T~ forms a
five-dimensional, complex vector space. The
representation of Sp(4) that they carry is denoted

5,. It, too, is still reducible. It is clear that TA

is the direct sum of these two kinds of tensors.
Symbolically,

(B22)
4, 4, = 10,$5,$1, , (aso)

A B
BABt1 hj 6ij ' (B2s}

and

In the same manner as above, and using the com-
patibility of g» with J», it can be shown that

(as 1)

where 1, is the one-dimensional, complex space
spanned by g„B. The weight diagrams of 5, and

10, are given in Figs. 3 and 4, respectively. We
now determine these weight vectors in terms of
$"; and t";, the weight vectors of 4, and 4, . First
consider the weights of the reducible (into 10,$5,)
representation 15,. Consider, for example,

TAB
+~AHAB+ 5~A~B

gAB (1 kl A4 B(A28~3A(3B ~4A~4 'B
ln matrix notation, with respect to basis $",

(B24)

(Bs2)

where a, b are complex numbers. Then, using
Eqs. (B21) and (B24) we find

TAB JBc TAB (A(B+ b(B(A
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~
AB ((AgB (A(B)1

(B34)

Obviously T"B is antisymmetric (symmetric) if
and only if a= b (a= -5}. Therefore the first
weight vector (normalized to unity) of the weight
diagram of 5, is

~a 1 ~a (B33)

The second weight vector of the weight diagram of
10, is

E ~&& —E ~&& —0 (B37)

In deriving the above we have used the fact that
E& acting on 4, is equal to -E& acting on 4, . Any
element of 5„denoted T"„, can be written

(B38)
5

TA'=2c, qAB+Wg Q c,y"B
j=l
j BB3

(where the c s are complex numbers) or, in ma-
trix notation with respect to basis $A, ,

In this manner all the weight vectors can be deter-
mined. For the 5, representation they are (or-
dered as in Fig. 3)

gA8 (]AgA ~ (A(8)
1

[TABI

—C3 C4 C1

—C2 C3 0 C1

C5 0 C3 —C4

0 C5 CP —C3

(B39)

yA B
(]A ]B +]A )B}'1 Similarly, any element of 10„denoted T",p„can

be written

gAB
0

2
1 2 3 4

qAB ((A(B ~ ]A(B)

(a35)
(B40)

+ c7'g7 + cg'g g + W2 Q c2~7/2q
j= 1

where the c s are complex numbers. In matrix
notation with respect to basis $f,

For the 10, representation (ordered as in Fig. 4}

~
AB (A(B

0

[&io', J
=

C5 C4 —C2 C1

C6 C10 —C3 C2

—C8 C7 C10 C4

(B41)

0

~AB ((A]B (A(B)
—Cg Ca C, C,

~AB (A(B

~AB (]A(B+ (A(B)

~
AB ((A(B (A(B)

~
AB ((A(B+ (AtB)

~
AB gA(B

~
AB (gA(B (A(B)1

~AB ~AgB

~ AB (gA(B (A]B)1

We have chosen g", and q,"0 so that

(Bse)

As stated earlier, both 5, and 10, are reducible.
Consider 5, . Then

TAB & (TAB + TAB ) + & (yAB IPAB) (B42)

(a4s)5, =5„$5„.
0

Similarly, T"„,can be written as the sum of a,

Hermitian and an anti-Hermitian tensor. The
Hermitian and anti-Hermitian tensors both form
ten-dimensional real vector spaces. The repre-
sentations of Sp(4) on these two vector spaces are
equivalent, irreducible, and denoted by 10„. That

The first term on the right is obviously Hermi-
tian. Such tensors form a five-dimensional,
real vector space. The representation of Sp(4}
that they carry is denoted by 5„and is irreducible.
The second term on the left is anti-Hermitian.
Such tensors form a five-dimensional real vector
space. Since any anti-Hermitian tensor is simply
i times a Hermitian tensor it is clear that the
representation of Sp(4) on anti-Hermitian tensors
is equivalent ot 5„. Symbolically,
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(a44)

T»e = 2r + Wgc, q»'+ v 2 c,q»~
Sr

+ W2d, ge —W2d, gs,
(a4g)

where rs is real and c„d, complex. In matrix
notation,

[TAB l
-d, rs 0 c, (846)

10,= 10„$10„.
Any element of 5„, denoted T",„, can be written

[Ee,zy]=0, fz e, E y]=0,

[z„,z, ]=o, [E „,z, ]=o,
fza Ee]=ze fze Z- ]=-E-e
[E„,E e ] = -E g, [Ee, E g ]= 2E

[Ee,z ]=2E, [Z,Z ]=Ze

All other commutation relations can be obtained
from the above using the rule that if [E,, E,)
=N, qE then N, ~=-N, q.

(2) Let T„T„T,be the standard basis for the
Lie algebra of SU(2). Then,

Cg 0

+ c,g,"e —c,g»e+W2d, q»e+W2d, g»'

+~&d g»e+W2 d,ge»e, (a47)

where x„r„are real and c„c„d„d4are com-
plex. In matrix notation,

d4 ~d2 Cg

0 c, d,

Any element of 10„, denoted Ti~„, can be written
0 0 0 4 0

TAB ~2~ ~AB +/g~ ~AB+c ~AB c r AB

The standard basis T„T,Ts fear the complexified
Lie algebra of SU(2) is defined by

T+ Tj +i T2

T Tg lf T2

TS ~S'

The new commutation relations are

[T„T,]=T„
fre, r ]= T-
[T, , T ]=2re.

[TAB] d 4 -KyP —CS

-d, -Cs

cg dp

(a43)
(3) The matrix representations of our basis of

C, with respect to the weight vector basis g» of
the fundamnetal representation 4„are given by

I
. 2

APPENDIX C: THE LIE ALGEBRA C2

(1) We give the commutation relations of the
Lie algebra C,:

[r,",T&]=o,

[r,",z,.]=+z,„, [r(,z, „]=0,
[Te z.e]=+»E.e ~ fr j ~ E~ el= +2E& e,

0

0

j.
2.

1
2

[T,",z„]=o, [Tg,z„]=+z„,
frs». el=kz. a [T.',E,g]=~2z, e,
[Zn E-o]=2re

[Ee, E e] =2(re +Tf),
[z, ,z, ]=2rg,

[E),E q]=2(- 'T+ )}T,

fZ ]=
I I [Ee]=
(0 oi 0 -ii

[z.,z, ]=o, [E, , z .]=o,
[E,Ey ] = 0, [E(,E „]= 0,
[z.,z, ]=o, [z .,z, ]=o,
[E,E e]=0, [E „,E „]=0,

0 0

1 0
[EL l=

0 0

1 0
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The remaining matrices are simply the Hermitian
conjugates of those above. For example,
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