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We introduce a graphical method for determining the little groups of vacuum expectation values of Higgs
mesons in G X U(1) gauge theories. This method is particularly useful when rank G = 2. A general method
for natural suppression of intramultiplet mixings of equally charged fermions using discrete symmetries is
given. For concreteness we develop these methods using the gauge group Sp(4) X U(1) and present a
quasivectorlike theory of the weak and electromagnetic interactions based on this group. This theory insures
e-p and Cabibbo universality, the absence of right-handed currents in neutron, hyperon, and muon decay,
suppression of flavor-changing neutral currents and suppression of untenably large contributions to various
weak processes such as the K;K mass difference and lepton-number-nonconserving decays. Discrete
symmetries are used to discuss the fermion mass spectrum of this theory and, finally, to predict Cabibbo

type mixing angles in terms of ratios of fermion masses.

I. INTRODUCTION

Unified gauge models of the weak and electro-
magnetic interactions based on the group SU(2)
X U(1) have been rather successful in explaining
various properties of weak decays and charged-
and neutral-current neutrino interactions. How-
ever, the observation of high-energy trimuons
by the Harvard-Pennsylvania-Wisconsin-Fermi-
lab (HPWF) group’ raises serious questions about
the validity of such theories. The HPWF group
concludes that the trimuons arise from the pro-
duction and cascade decay of heavy leptons M~
and B° The decay chain is v, +N-M~+X, M~
- U~ +B°+7,, and finally B°~p~+u* +v,. The
measured rate of trimuon production is R(u“
~pTu"p*)/R(v,~p7)~5x10" An analysis of
the invariant-mass distributions in the above se-
quential decay indicates that m y-.=7.023:0 GeV
and m go=~ 3.5} GeV. With M~ very massive
and the branching ratio B(M ~ = g ~"p~u*) small it
is necessary to have the v, —~ M~ transition occur
at nearly full strength to account for the trimuon
production rate. This runs afoul with e — . and
Cabibbo (quark-lepton) universality in most SU(2)
X U(1) models. Several authors® have constructed
SU(2) x U(1) models in which universality is re-
stored by allowing the electron and light quarks
to undergo the appropriate (large) mixing with a
heavy lepton and heavy quarks, respectively.
These models do not seem to violate any existing
experimental constraints. They are, however,
rather unnatural and contrived and one is led to
ask whether there may not be a simpler and more
believable alternative.

In this spirit we note that it is possible to have
a full-strength v, ~ M~ transition if we introduce
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new gauge bosons which couple v, to M~. This,
of course, can only be accomplished by enlarging
the gauge group. There have been a number of
attempts® to implement this data using SU(3)

x U(1), SO(4)x U(1), and SU(4) X U(1) as gauge
groups with varying degrees of success. Most of
these models can account for present pheno-
menology, including, of course, trimuon pro-
duction. Their greatest drawback lies in their
complexity. Unless otherwise constrained, these
theories allow prolific mixings among fermions
of equal charge and chirality. These mixings do
violence to the notions of e-p and Cabibbo uni-
versality, and lead to right-handed currents in
neutron, hyperon, and u decay. They also allow
flavor-changing neutral currents (including the
unobserved neutral d-s quark current) and un-
tenably large values for the K; K mass difference,
the K; - u7 rate, and lepton-number-nonconserv-
ing processes such as u—ey and u—ece. We
can, of course, set unwanted mixing angles to
zero by fiat, thus circumventing the above prob-
lems. Unfortunately, this procedure is as arti-
ficial as the SU(2) X U(1) models that we are trying
to improve upon. What is needed is a group-
theoretical way to naturally suppress unwanted
mixings. We will examine in Secs. IV and V
methods for suppressing such mixings based on
the liberal use of discrete symmetry groups.
These methods are generally applicable to any

G x U(1) gauge theory but, for concreteness, we
will implement them for the group Sp(4) x U(1).
second complexity that arises in gauge theories
with enlarged gauge groups is the difficulty of
determining the “little groups” of the vacuum
expectation values (VEV’s) of Higgs mesons.
Though a trivial undertaking in most SU(2) X U(1)
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theories, this is a serious problem when dealing_
with enlarged gauge groups and Higgs mesons in
representations other than the fundamental one.*
In Sec. III we introduce a graphical method for
determining little groups based on the Cartan
weight diagrams. This method is, in theory, ap-
plicable to any G X U(1) gauge theory, but, in
practice, is most useful when rank G=2. Here
again, we illustrate these techniques for the gauge
group Sp(4) X U(1). It is our contention that once
one knows how to find little groups and how to
naturally suppress unwanted mixings, gauge theo-
ries based on enlarged gauge groups become
tractable and are rich in their theoretical im-
plications.

The Sp(4) X U(1) gauge model naturally ensures
(with the proviso stated in Sec. V) e-u and Cabibbo
universality, the absence of right-handed currents
in neutron, hyperon, and muon decay, suppression
of flavor-changing neutral currents, and sup-
pression of untenably large contributions to the
K K mass difference, the K; — U rate, the weak
contributions to the e and 1 anomalous magnetic
moments, and lepton-number-nonconserving pro-
cesses. The phenomenological implications of the
model will be fully discussed in a subsequent
paper. We note that our model contains an abso-
lutely stable, neutral heavy lepton with interesting
cosmological implications.® The existence of a
stable, heavy fermion would appear to be a general
feature of any gauge model based on an extended
gauge group provided that certain intramultiplet
fermion mixings are absolutely suppressed. In
our model such mixings are naturally suppressed
by the RU discrete symmetry. (See Sec. IV.) The
stable, heavy fermion can be charged or neutral,
lepton or quark depending on the relative magni-
tudes of the fermion masses. In this paper the
acceptance of the leptonic cascade explanation
of trimuon events demands that this fermion be
a neutral lepton. In Sec. VII we modify our model
to show how mixing angles (in particular the
Cabibbo angle) can be predicted in terms of fer-
mion mass ratios by the use of discrete sym-
metries.® The various properties of the group
Sp(4) necessary in our analysis are derived and
catalogued in Appendixes A, B, and C.

II. FERMION ASSIGNMENTS AND HIGGS MESONS

In this section we discuss the fermion assign-
ments and Higgs mesons for a quasivectorlike
theory of the weak and electromagnetic interactions
based on the gauge group Sp(4) X U(1). The charge
operator is chosen to be

Q=TI +T] +1Y, 2.1)

where Y is the generator for U(1). Attempts to
put p-related leptons into the 5, or 10, representa-
tions either cannot account for trimuon production
(via leptonic cascade), allow for unobserved
“wrong sign” (L*p* u”) trimuons at the same rate
as U ~u~u” trimuons, or introduce exotic doubly
charged leptons. We therefore assign left and
right chiral fermions in the p family to the funda-
mental 4, representation of Sp(4) x U(1). Con-
siderations of e-u and Cabibbo universality then
require us to assign all other left and right chiral
fermion families to the 4, representation. The
absence of right-handed currents in neutrino and
hyperon 8 decay necessitates the introduction of
both left and right chiral quark singlets. Similar-
ly, the purely left-handed chirality of the e and

u neutrinos implies left-handed lepton singlets.
Fermion assignments are shown in Fig. 1 and
anticipate the results of Sec. IV. The primes in
Fig. 1 indicate possible mixings between equally
charged, same chirality fermions. These mix-
ings can be broken into two categories: (1)
intermultiplet mixings (as between « and ¢) and
(2) intramultiplet mixings (as between « and ¢,).
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FIG. 1. Fermion assignments for a quasivectorlike
gauge model based on Sp(4) XU(1). The primes indicate
allowed mixings of equally charged, same chirality,
fermions.
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The first type of mixings occurs (as they must
for Cabibbo universality) in the usual SU(2)
X U(1) gauge models. The latter arise only in
theories based on enlarged gauge groups. Intra-
multiplet mixings vastly increase the number of
mixing angles and CP-violating phases in a model.
More importantly, if such mixings are not for-
bidden they lead to flavor-changing transitions in
the neutral current of af least one (and usually
all) Z%like vector boson. It is the first task of
any theory that aspires to natural suppression’
of flavor-changing neutral currents to prevent
intramultiplet mixings group theoretically. This
can be done in several ways. In Sec. IV we expand
on one such method and apply it to the Sp(4)
X U(1) gauge group. Our model will incorporate
this group-theoretical suppression. Intermultiplet
mixings still can (and do) occur. We want to for-
bid such mixings between b, and b, and E~ and M~
in order to suppress large contributions to the
K; Ks mass difference, the K; - ui rate, and
lepton-number-nonconserving processes. This
can be done naturally using discrete symmetry
and will be discussed in Sec. V. .
We will consider Higgs mesons in the 4, Y =1,
5.,(5,)Y=0, and 10,(10,)Y=0 representations only.
" We want to emphasize the essential differences
between real and complex representations. Real
Higgs mesons are desirable in that they have half
the number of fields as their complex counter-
parts. However, their VEV’s are usually too
restrictive to lead to a viable zeroth-order fer-
mion mass spectrum or to allow simplifying
discrete symmetries in the theory. This will be
discussed in detail in Secs. V and VII. In ending
this section we would like to point out that our
model, being quasivectorlike, is free of Adler-
Bell-Jackiw triangle anomalies.

III. CONTINUOUS LITTLE GROUPS

We now determine the continuous part of the
little group of selected vacuum expectation values
of Sp(4) x U(1) Higgs mesons. The reason for con-

(-4 (2,0) T?
(0,7¢)

FIG. 2. The weight diagram for the fundamental
representation (4.) of Sp(4).

sidering only certain VEV’s will become clear
in Sec. IV.

Continuous little groups will be found using a
graphical method that exploits the algebraic
structure of Cartan weight diagrams.® This meth-
od is convenient for any gauge group and leads to
a pictorial representation of the little groups. For
concreteness we develop the method within the
framework of our Sp(4) x U(1) gauge model.

First, note that from Eq. (B8) it follows that any
element of the real Lie algebra of Sp(4) can be
written

RT] +R'T) +CE o +CTE_y +C,Eg +T,E _g
+C3Ey +T,E_y +C,E¢ +T,E _ +R"3Y, (3.1)

where R,R’,R” are real and c¢,,c,,¢,,¢C,, are
complex numbers. Let #* be an element of 4.,
=-1 (see Fig. 2). Let its VEV be

r*y=vtEt, (3.2)

Apply (3.1) to (1*), use part (3) of Appendix C,
and set the result equal to zero. We find that

LR -R"E +c tA+C,E4+C,84=0. (3.3)

Since the £%’s are linearly independent, we must
have

R=R",
(3.4)
c,=Cy=cy=0.
Therefore, an arbitrary element in the little
algebra of (k) is given by '
R(T§+3Y)+R'T] +c,Ey +T;E _, . (3.5)

From (B9) we know that 7], E, , are generators
for the SU(2) subgroup of Sp(4) associated with the
v direction on the root diagram. Using Part 1 of
Appendix C it is easy to show that T +3Y com-
mutes with T and E, ,. Therefore, the continuous
little group of (3.2) is SU(2) x U(1), where SU(2)

is generated by T3, E, ,, and U(1) is generated by
TY+3Y. Now assume

(h*=vEs. (3.6)

In precisely the same manner as above, we find
that the continuous little group of (3.6) is SU(2)

x U(1), where SU(2) is generated by T%, E,, and
U(1) is generated by T +3Y. Before drawing any
conclusions, let us try one more example. Let

(h*=v(E4+E9). 3.7

Proceeding as above, we find the most general
element in the little algebra of (3.7) to be

R(TS+T]+3YV)+7(E+E_+Y)
3 3 € £
+c,(Eo +Eg+E))+T(E_o +E_g+E_)), (3.8)
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where 7 =c, is real. The last two terms in (3.8)
are obviously the raising and lowering operators
for an SU(2) subgroup. Commuting these two
terms using part 1 of Appendix C, we find that
the third generator of this SU(2) subgroup is

2T +TN - (E¢+E_,). (8.9)
Expression (3.8) can be rewritten
r,[2(TS +T)) - (Eg;E_E)]
7,[2(TS +TY) + (B¢ +E_g) +27] _
+¢,(Eq +Eg +E))+8,(E_o +E_g+E_,),  (3.10)

where 7,,7, are real. Using part 1 of Appendix
C, it can be shown that 2(T§ +T))+(E +E_,) +2Y
commutes with the other terms in (3.10). There-
fore, the continuous little group of (3.7) is SU(2)
X U(1), where SU(2) is generated by 2(T§ +T7)
~(E¢+E_p),E, o +E, s +E,,; and U(1) is gen-
erated by 2(T§ +T])+(E+E_;)+2Y. From these
results we extract the following rules:

(1) Draw the weight diagram for the Higgs mes-
on of interest. Indicate the VEV on the diagram
by marking the appropriate coefficient next to
each weight vector.

(2) Determine all linear combinations of step
operators that annihilate the VEV. This can be
done by inspection, using part 3 of Appendix C
and (B34) and (B35) to get the correct signs and
taking account of the coefficients in front of each
weight vector. From these linear combinations
choose only those that (a) when multiplied by a
phase are Hermitian (b) come in Hermitian-con-
jugate pairs. .

(3) Determine the remaining Hermitian opera-
tors that annihilate the VEV by commuting the
Hermitian conjugate pairs of step operators found
in (2). If these do not exhaust all such Hermitian
operators the remaining ones can easily be found
using linear combinations of T'§,T7,Y and
Hermitian combinations of step opérators.

(4) The generators so found span the little alge-
bra of the VEV. The various subalgebras of this
set may not, unfortunately, mutually commute,

It can, therefore, be difficult to decide what little
groups they generate. In many cases it is easy

to take linear combinations and arrive at new,
mutually commuting subalgebras. Even when this
cannot be done, general algebraic considerations
can usually decide which little group the operators
generate.

(5) The action of the above generators on the
weight diagrams gives a pictorial representation
of the continuous little groups.

As an example, we now determine the little
group of a Higgs meson in the 5., ¥=0 representa-
tion with VEV

(TABY= vyt8

where V+#0. It is clear from the weight diagram
in Fig. 3 that the only linear combinations of step
operators that annihilate (3.11) are E, o, E, y.
Evaluating [E,,E_,] and [E;, E_,] using part 1
of Appendix C, we find Hermitian generators
T¢ and T] respectively. Both T¢,T] as well as
Y annihilate (3.11). Since T'§, E, , all commute
with T}, E, ys it is clear that the little group of
(3.11) is SU(2) x SU(2) X U(1). One SU(2) subgroup
is generated by T3, E, , the other by 7J,E,,, and
U(1) by Y. ' _

For a more complicated example, consider a
Higgs meson in the 10,, Y =0 representation with
VEV

(T#8)= v +vinds |

(3.11)

(3.12)

where V, V'’ are not both zero. From part 3 of
Appendix C and Eqs. (B35), we have

E_on=mt?,
Eyni=-nt5,
Egn;‘é;n‘;‘;—n‘fg, (3.13)
Enib=—n#, |
E_mi=nt,
E_gnf8=-nt gt
From the weight diagram in Fig. 4 it is obvious

that the only linear combinations of step operators
that annihilate the VEV are multiples of

1 1

@ FrEo- 3 Ey,

() “‘}‘_E-a - % E_,, (3.14)
1 1

() 7 Eet B

By rule 2, (a) and (b) are in the little algebra only
if some multiple of (b) is the Hermitian conjugate

(£,%)

FIG. 3. The weight diagram for the 5, representation
of Sp(4).
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a a
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(3,3)

¥ (0,1

FIG. 4. The weight diagram for the 10, representation
of Sp(4).

of (a). This will be true if and only if
[vl=]v']. (3.15)

Also, by rule 2, (c) is in the little algebra only
if there is a phase e'® such that e'® times (c¢) is
Hermitian. This will also be true if and only if
(3.15) is true. Therefore, for V, V' where

[ V]#] V'], the little group of (3.12) can only be
U(1) X U(1), where one U(1) is generated by T'§
+TJ and the other is generated by Y. Now con-
sider V, V' where | V|=|V'|=7. Let V=ve~*?
and V’=7e~*¥. Then the above generators of the
little algebra can be written (after multiplying with
appropriate factors)

(@) e'YE, -€'’E,,

(") e*YE_,-E™E_,, (3.16)
(c:) ei(tzb—w)/zEg +e-i(¢-w)/2E_g .

Commuting (a’) with (b’), we get
2TS +TY). (3.17)

This Hermitian operator annihilates (3.12). Y
also annihilates (3.12). Operators (c’), (3.17),
and Y exhaust all such Hermitian operators since
the rank of SP(4) X U(1) is three and therefore

the rank of any little group must be <3, Using
part (1) of Appendix C it can be shown that (c’)
commutes with all other generators in the little
algebra. Therefore, the little group of (3.12)

is SU(2) x U(1) x U(1), where SU(2) is generated
by T§ +7T], e**’E, , —¢**?E,,, one U(1) subgroup
is generated by (c’) and the other generated by Y.
The action of this little group on, say, the 4,
representation is evident from the weight diagram
in Fig. 2. It obviously groups &2, £2 and &4, £2
into independent doublets under SU(2).

The continuous little groups of selected VEV
of 4., 10,, 5., 10,, and 5, representations are
tabulated in Table L

IV. RU DISCRETE SYMMETRY

As discussed in Secs. I and II; there is, in
general, undesirable mixing, within the same
multiplet, of fermions of equal charge. In this
section we discuss one method of naturally sup-
pressing® such mixings. Again, we will work
with the gauge group Sp(4) x U(1) for concrete-
ness. First, note that in the 4,, Y=-1 repre-
sentation, the charge operator (2.1) is given by

Q£=£§4523— 53‘513, 4.1)

or, in matrix notation

0
lea1=| o . 4.2)

-1

The one parameter group that QS generates is
found by exponentiation. That is

1
[AA(6)] = exp(- 1 [QA16) = 1

4.3)

Since det [Ag] is not 1, it follows from (B6) that
A is not in Sp(4) alone. However,

e-19/2

e=i0/2 e-t(-e/z)

[AZ(8)]=
ele /2

el9/2

(4.4)

clearly displays the relation of A to Sp(4) X U(1).
Any realistic model of the weak and electromag-
netic interactions must have [AA(6)] [~ U(1)] as
the continuous little group of all the VEV’s of its
Higgs mesons. However, nothing prevents us
from having a discrete symmetry group [not con-
tained in U(1)] of the VEV’s. If such a discrete
symmetry contained Z,, and if Z, had as its ma-
trix representation one of the matrices
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~ ~ that is, only
1 ’ -1 ’
-1 1 1 -1
1 -1 1
-1 1 A= -1 B=
— J -
1 -1
~ T
1 | -1 , (4.6)
-1 1 @.5) are in Sp(4). We now examine all possible pat-
-1 1 terns of symmetry breaking using Higgs mesons
in the 4., Y=-1, 5.(5,) Y=0, 10,(10,) Y#0 repre-
1 -1 sentations. We will show that it is impossible,
L . within the confines of an Sp(4) x U(1) gauge group

then the unwanted mixings of equal charge fermions
within the same multiplet would be suppressed.
It is'not hard to show that we can restrict Z, to be

to have such a discrete symmetry. First, con-

a subgroup of Sp(4). Using Eqs. (B1) and (B22),

we find that only the last two matrices in (4.5),

<Tfoé)=~/z_ X (V4B + V’n;},é),

TABLE I. Continuous little groups and their generators for physically relevant VEV's of Sp(4) x U(1) Higgs mesons.

sider the 10, Y=0 representation. The matrix
representation for this Higgs meson is given in
Eq. (B40). For VEV

Representation VEV Continuous little group Generators of the little group
4, Y =-I £ SU(2) x U(1) T3 Ex, i T§ +5Y
&4 SU2) xU(1) T¢ Exi T +3Y
£+ ¢ SU(2) xU (1) 2(T_{'+T3’)—(Eé+EA_£),Ei"+EM+EiY:
ATy +TY) +(E, +E_ ) +2Y
5.5, Y=0 uil® SU(2) xSU2) x U(1)

Vg8 v vy

AB

10, 10,, ¥ =0 r B+ romif,

ry.ry real

Va8 + Ving®,

V. V' complex

Q) [ V| =|V]:Su@) xu()
) |V]=|V'|, V=re™'d V' =pe~in:

SU(2) x SU(2) xU(1)

(a) ry #0.r,=0:
SUQ) x U™ x "U(1)
(b) ry=0.ry=0:
SU(2) xU(1) xU()

(e} ry=ry#0:
SU(2) xU(1) x U(1)
(d) ry==ry#0:

SU2) x U(1) x U(l)
(e) all other ry.ry:
U xu) xu(h)

Q) [V]=|V] U xu)

) | V]|=|V']|, V=re™'d, V' =re~it
SU(2) x U(1) xU(1)

T§ Ex i T Exy,
T¢ +T Exg ¥
TE 4T ExgetEy —eXmE,

i((”""'“"’/zEf — (,'w(,b-—n)/zE_E): Y
T].Eiy;Tj';Y

T{.E+,TPY

(l;
=T + T E4nT{ +TYY
Ty + T3 E 4y =Ty + T

T, Ty Y

Ty +T1.Y

Ty + Tg/.(‘t”hEi" — (,iuh;
el """""/ZE§¢’"“”"""/ZE,f; Y
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we have

(THBY= -V . 4.7

This VEV admits both A and F of (4.6) as sym-
metries for any values of V, V’. However, the
VEV (T{By=v2 (V48 + v'n28), that is,

(Tioo= v o ) (4.8)
o v
v’ 0

does not admit either A or B as symmetries (V, V'
are not both zero). Since all other VEV’s that
have (4.4) as a little group are linear combinations
of (4.7) and (4.8), it is clear that to have the above
discrete symmetry, (T{‘o‘z) must be of the form
(4.7). From the discussion in Sec. III it follows
that for any values of V, V’ the little group of
(4.7) contains U(1) x U(1) x U(1) generated by
T3$;T); Y. A similar discussion goes through for
the 10,, Y =0 representation. In this case, V and
V'’ are real in (4.7) and V’'=V in (4.8). The little
groups of (4.7) are given in Table I. They too
contain U(1) X U(1) x U(1) generated by T5;7T7;Y.
For the 5c(5,) Y =0 representation, we deter-
mine, in precisely the same way, that the only
VEV, that admits the above discrete symmetry is
(TABy=2Vy28 that is,

(T45)- v (4.9)

<h

-V

(where 7 is real for (T45)). This VEV admits
both A and B. The little group of (4.9) is listed
in Table I. Note that the intersection of this little
group with any little group of (4.7) must contain
U(1) x U(1) X U(1) generated by T3, T, and Y.
Therefore, in order to break the symmetry down
to U(1), we must introduce 4,, Y=-1 Higgs
mesons. Now it is clear that

Kt = (4.10)

o ©o o <

admits A (but not B) as a symmetry, and that

h'A= (4.11)

admits B (but not A) as a symmetry. Any linear
combination of (4.10) and (4.11) admits neither
A nor B, However, if we use 4, Higgs mesons
with VEV (4.10) only, the little group must con-
tain U(1) X U(1) generated by T and T2 +3Y.
Similarly, if we use 4, Higgs mesons with VEV
(4.11), only the little group contains U(1) x U(1)
generated by T &, T? +3Y. Since we must break
the symmetry down to U(1), we must use 4, Higgs
mesons, the sum of whose VEV’s is a linear
combination of (4.10) and (4.11), The continuous
little group of these VEV’s is indeed U(1) (gen-
erated by @) but they admit neither of the dis-
crete symmetries A nor B above. This difficulty
cannot be avoided by using Y=+1 4, Higgs mesons.
Therefore, within our Sp(4) X U(1) gauge theory
it is not possible to have such a discrete symmetry
prevent fermion mixings.

The simplest way to overcome this difficulty
is to extend the gauge group to Sp(4) x U(1) xR,
where R is-a discrete group isomorphic to Z,. As
we will show shortly, it is now possible to have a
discrete symmetry of the type (4.6) in the little
group of a realistic theory. We would like to
emphasize that a discrete symmetry such as R
appended to the continuous gauge group is very
useful in limiting the number of couplings in the
Lagrangian, These proliferate rapidly in theories
involving enlarged gauge groups and a discrete
symmetry such as R would have to be applied sim-
ply to make such theories tractable. In this sense,
the introduction of the discrete symmetry R is a
simplification of the gauge theory. In this paper
we pick the fermions representations in such a
way as to forbid %4, type “bare” (non-Higgs) mass
couplings. We let all 4, left chiral fermions
transform as — 1 under R, and all 4, right chiral
fermions transform as +1 under R. Therefore,
any 10, (10,) or 5, (5,) Higgs multiplet that has
mass couplings with fermions must transform as
—1 under R. In this paper we assume that all
Higgs mesons have mass couplings with fermions.
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We now return to the possibility of having a dis-
crete symmetry such as (4.6) in the little group
of a realistic theory. Again, ignoring the U(1)
part of the final little group, we have, in place

of (4.6), four possible discrete symmetries which
would prevent fermion mixings. These are

(A,l); (A’-l)’ (Byl)i (B,_l)r (4-12)

where A, B are as in (4.6) and 1, - 1eR. Returning
to 10,, Y=0 Higgs mesons, it is easy to see that
(4.7) admits (A, 1) and (B, 1) as symmetries, but
not (A, —1) and (B, —1). On the other hand, (4.8)
admits (A, —1) and (B, - 1) as symmetries. Any
linear combination of (4.7) and (4.8) has no such
discrete symmetry. Similarly, the 5,, Y=0 Higgs
meson with VEV (4.9), admits (4,1), (E,1) as
symmetries. VEV (TZ2B)y=vV2 (V28 + V7/y48), that
is

(4.13)

admits (A, - 1) (B, —1) as symmetries. Again,
any linear combination of (4.9) and (4.13) has no
such discrete symmetry. Exactly similar argu-
ments hold for the 10, and 5, representations. For
5,, V'=—V in (4.13). Therefore, we have two
possibilities. First, consider theories in which
the VEV’s of 10, (10,) and 5, (5,) Higgs mesons are
like (4.7) and (4.9), respectively, These both have
(A,1) and (B, 1) as discrete symmetries. We know
from the previous discussion that the continuous
little group of these VEV’s contains U(1) X U(1)

x U(1). We must therefore consider 4., Y=-1
Higgs mesons. The VEV (4.10) admits only (4,1)
as a symmetry independently of how h* transforms
under R. Similarly, VEV (4.11) has only (B, 1)
symmetry independently of how %’4 transforms
under R. Any linear combination of these two
VEV’s has no discrete symmetry. However, in
order to have final little group U(1) it is necessary
to have such a linear combination, This model,
therefore, has no discrete symmetry of type

(4.12) to prevent fermion mixings. Now consider
the second possibility. Let the VEV’s of the

10, (10,) and 5, (5,) Higgs mesons be (4.8) and
(4.13), respectively. These have both (4, 1)

and (B, —1) as symmetries. From Table I we see
that the little groups of such VEV’s always con-
tain U(1) X U(1) generated by T§ +T) and Y. There-
fore, we -must introduce 4,, Y=-1 Higgs mesons.
The VEV (4.10) admits (4, —1) [(B, - 1)] if R acts
on#* as +1 (-1). Similarly, VEV (4.11) admits

@A, -1)[B,-1]ifR acts onh’4as -1 (+1).
Clearly, by choosing (4.10)-type Higgs mesons -
as R=+1 (-1) representations and (4.11)-type
Higgs mesons as R =-1 (+1) representations, the
final little group will contain (4, —1) [(B, -1)].
Both choices lead to the same physics. In this
paper we will take the second alternative. This
immediately tells us that R acts as — 1 on all
fermion singlets since we want these to contribute
to the mass matrix. The continuous little group
is U(1) and the discrete little group, denoted RU,
is given by

RU={(,1), (B, -1)}.

RU is isomorphic to Z,. The matrix expression
for (B, — 1) on left chiral fermions is

(4.14)

-1 1 B
1 -1
X-1=
1 -1
-1 1
- - o
(4.15)
For right chiral fermions, (B, —1) acts as
(~ B
-1
1
(4.16)
1
-1

To summarize, we have shown that if (1) the
gauge group is enlarged to Sp(4) X U(1) X R(=Z,)
acts as —1 (+1) on left (right) chiral 4, fermions,
(2) all Higgs mesons couple to some fermions,
there is a unique pattern of symmetry breaking
which admits a discrete symmetry of type (4.12).
In this model all 10,y and 5.,y Higgs mesons
transform as -1 under R and have VEV’s (4.8)
and (4.13), respectively. There must be at least
one 4, Higgs meson. The 4, mesons with VEV
(4.10) (4.11) transform as —1 (+1) under R. All
fermion singlets transform as — 1 under R, The
little group of this model is U(1) X RU, where
U(1) is generated by @ and RU is given in (4.14).
The RU symmetry forbids intramultiplet mixings
of equal charge fermions in the zeroth-order mass
matrix. This model will be used exclusively
throughout the remainder of this paper.

We note that in any G X U(1) gauge theory, the
continuous little group generated by @ [call it
U,(1)] is not, as a rule, identical to U(1). Rather,
it is a mixture of G and U(1), of which the Wein-
berg angle is a measure. In exactly the same
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way, RU is not identical to R but instead is a
nontrivial mixture of R with Sp(4). In the above
theories, R is spontaneously broken but RU is
not. It is to be emphasized that the mere addition
of R to the gauge group does 7ot guarantee that RU
will be in the little group. The Higgs potential
must be chosen so that this is the case.

V. STRUCTURE OF THE MODEL

We now construct an explicit model for the weak
and electromagnetic interactions based on the
gauge group Sp(4) x U(1) and the fermion assign-
ments in Fig. 1. Using the results of Sec. IV we
expand the gauge group to Sp(4) X U(1)XR and
assume that the parameters in the Higgs potential
are such that RU is in the little group.

First, we determine the minimal number of
Higgs mesons necessary to give a realistic zeroth-
order fermion mass spectrum. Let us denote
left and right chiral fermions in the 4, representa-
tion by £#4 and &%, respectively. Let T4 be any
traceless tensor. Then we can form precisely
two Yukawa couplings )

5—4{ Eﬁe T%gci&8b _ (5.1)
and
Ef 62T 4505, (5.2)

In general, these two expressions are independent.
However, when T4 is in 10, or 5, this is no longer
the case. Assuming that 748 is in 10, (5,), we
know from Appendix B that

TCD - TczigFD. JOF (5.3)

is a symmetric (antisymmetric) tensor. Inverting
Eq. (5.3), substituting for 7% in Eq. (5.2), and
using Eq. (A9), we find that (5.2) becomes

EL BT g i Ipe. ' (5.4)

Using the symmetry (antisymmetry) of 7% and
Eq. (A8), it follows that (5.2) is equal to 1 (- 1)
times expression (5.1). Since we restrict tensor
Higgs mesons to 10, and 5, representations, we
need only consider (5.1). For 10, Higgs mesons
with VEV (4.8), the mass coupling takes the form

VEL b+ VIELElR+ VER Efp+ VES &R,
(5.5)

(where V’=V for 10, representations). Similarly,
for 5, Higgs mesons with VEV (4.13), the mass
coupling is

VELER - VELER - V' ELE R+ VELLR
(5.6)
(V' = V for 5, representations). The 4, Higgs

mesons with R=-1 (+1) and VEV (4.10) (4.11)
are denoted by #* (2’#). Their Yukawa couplings
are obvious. Using expressions (5.5) and (5.6)

it is not hard to show that the simplest theory with
a realistic mass spectrum (all fermion mass with
the exception of neutrinos nonzero) requires one
10, and one 5, Higgs meson and both 4 and 1’4,
In this case, nonzero fermion masses are arbi-
trary. At this point we note that cross couplings
between the d and s quark families and e and pu
lepton families induce mixings of b, with b, and
E~ with M~. These mixings lead to intolerably
large contributions to the K; K5 mass difference,
the K; - ul rate and lepton-number-violating
decays. The mixings can be naturally suppressed
by introducing yet another discrete symmetry.
Let Z, be the discrete group of eight elements
generated by e'" /4. Its action on the various
fermion families is shown in Table II. By allow-
ing Zg to act trivially on the above four Higgs
mesons we naturally suppress the unwanted mix-
ing angles but, unhappily, also suppress the
phenomenologically necessary Cabibbo angle and
possible pu— ey, U~ eee events. This can be
easily remedied by introducing two new 4, Y=-1
Higgs mesons 4 and #’*. These transform as
-1 and +1, respectively, under R and are as-
sumed to have VEV’s (4.10) and (4.11) so that RU
remains in the little group. They transform the
same way as the s and u fermion families under
Zg4. This restores mixing between u, X, ¢, and Y
quarks and between v,, A°, v,, and B° but
naturally suppresses all other mixings. Our
standard model will have as its invariance group
Sp(4) X U(1) XR X Z4 and will allow only the above
six Higgs mesons T{E, T8 pA, p'4, 74, and
R'4. The fermion assignments of the standard
model indicating the allowed mixings are given
in Fig. 5. From Table I we see that for | V'|

# | V| the continuous little group of the 5, VEV

is SU(2)x U(1), where SU(2) is generated by
TS+T),E,s and U(1) by Y. 1t is clear from the
fermion assignments in Fig. 5 that this little
group is the SU(2) X U(1) group for a quasivector-
like Weinberg-Salam model.*® In the limit

[VI(| V?[y> [ v’|(] V) and all other VEV’s, the
results of our model reduce to those of Weinberg

TABLE II. The action of Zg on fermion families of the
Sp(4) x U(1) gauge model.

Fermion family Action of Zg

(including singlets) +1 +o!m/ +i +io' ™4

1 1 1
i -1 —i
e +/ +ijo' ™/

d.e
S u
r

I+ —_ -




d fomily:

s family:

e family:

M family: Uy

T family:

°u
G
FIG. 5. Fermion assignments for the standard Sp(4)
XU(l) gauge model. The primes indicate the allowed
fermion mixings after the application of both RU and
Zg discrete symmetries.

and Salam. It is important to note that 24 and

h'# actually restore more mixing than is desirable.

The arbitrary mixing of v,, A° v,, and B° does
not account for e-p, universality, and leads to
disastrously large branching ratios for the pro-
cesses U —ey and U—- eee. Similarly, the arbi-
trary mixing of #, X, ¢, and Y does not account
for Cabibbo universality, leads to large contribu-
tions to the K; K5 mass difference, induces a
right-handed u-d current, and, since X’ and Y’
are singlets, does not naturally suppress charm-
changing neutral currents. Though it would be
desirable to naturally suppress all these mixings
with the exception of the Cabibbo angle, we find

. the discrete symmetries that must be invoked to
do so both aritifical and overly complicated. We
therefore take the point of view that the above
mixings must be determined experimentally. Con-
sider the leptons first. It is not hard to show
that the upper bound on the branching ratio for
the p* - e*y decay

[C(u* ~e*y)/T(u* - e'v,7,)<3.6 X 107° (Ref. 11)]

essentially decouples v,, v, from A° B° Antici-
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pating this result, we set the mixing of v,, v, with
A°, B° to be strictly zero. Since v,,v, are mass-
less they can always be defined to equal v} and
vy, respectively. This restores e-y universality.
A° and B° can mix arbitrarily. Similarly, in the
quark sector, absence of charm-changing neutral
currents evidenced by the small branching ratio
B(y(3772)~e*e”)=(1.3+0.2) X 10~° in the 3.772-
GeV ) resonance'® essentially decouples u,c from
X, Y. Anticipating this result, we set the mixing
of u,c with X, Y to be strictly zero. This restores
Cabibbo universality, suppresses the right-handed
u-d current, and leads to a realistic prediction

of the K; K5 mass difference and the K; - up
rate. Therefore, with the proviso that fermion
singlets be prevented by fiat from mixing with 4c
fermions (with good experimental justification),
our model naturally ensures all the desirable
properties listed in Sec. I. We would like to point
out that similar models based on SU(3) x U(1)
automatically prevent singlets from mixing with
4, fermions and thus are free of our slightly un-
satisfying proviso. Assuming that E° is less
massive than any other Zeavy lepton (with the
possible exception of A° and B°), it is easy to see
that E° is absolutely stable.

We now turn to the determination of the mass-
eigenstate vector bosons and their mass spectrum.
The gauge-covariant derivative in our Sp(4)

x U(1) model is given by

E E
\/*_zc_x Wha + *23 Wl

D# =98¢ - ig(T‘;N,L’ +TIN} +
E! £y .Y
+ ‘/-JW 9 fg)—zg'TB“,
(5.8)
We now turn to the determination of the mass
eigenstate vector bosons and their mass spectrum.

The gauge-covariant derivative in our Sp(4) X U(1)
model is given by

E E.
D“=a"_ig<T:Ng+ TYNE 42 Wb 4 2By

ﬁ £+ 2
+§?*‘LW;‘,+%§—WL>—ig'%B“, (5.8)

where N, NJ, and B* are real fields and W,
=Wl for all z. The VEV’s of T#2, TZE r*, and
1’4 are given by (4.8), (4.13), (4 10), and (4.11),
respectively. The VEV’s of k% and #'4 are

@ty = (5.9)

o o o <=
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and where
ql
0 cose:\/'z"[l_l_qrz “ A+ (5.16)
@a=|"? (5.10) and
0 TV -V = PP -V e . (5.17)
0 Note that
We can now solve for the mass-eigenstate vector 1
bosons and their masses This is best done graph- 7o COS€= 1 (5.18)
ically using Eq. (5.8) and the properties of the 7
modified Cartan basis. Let '
~ _ and
=IV12+|V'|2’ B=|V’2+IV,IZ7
= lol+ B3, 2=|o’ |2+ 5], %cose—%
_B _y+z y) V-7
PEZ, 4Tx > 4 em (6.11) In the Weinberg-Salam limit we find that
217V + V1, 2TV - TV
6= < 5 = : ) mamz..(ﬁq) & (5.19)
g"
w:W . (). Wi, W‘;2 (charge zero):
Note that in the Weinberg-Salam (WS) limit m, 1(,2,=(1—+1—1:1£>m & (5.20)
R _
szor 22V s 0 4%,6, 6%, w (5.12) . 1 eto .
A W T T W,
=| 2 2 , (5.21)
We find the physical vector bosons and their mass- 1 et
es to be as follows. Wi, —_— = Wy
(1) W (charge ¥): 2 V2
ms 2=3g%A(1+q). (5.13) where
2) W;ﬁ, W!# (charge ¥, ¥): TP+ VV+ TP+ V'V et . (5.22)
L [1ep+q.(g2+ 52302 , ’ In the WS limit we f}nd that
Mgy = T mg® , (5.14)
+q »
iy m‘l(fz’z‘(lq.q)mﬂz . (5.23)
n —ai ©“
W? _ [cose —sinee Wy ’ (5.15)
|44 sine cosee®® Wi (4) z&,z¥%, A* (charge zero):
1 2w /2
l+p+ 29 =) [1+P ( ) ](1+P)+( ) 2
2_ 2 1-2w/)? 2
Mz(zy) = 2(1+q) )m,, ’
(5.24)
my=0,

where we have used the approximation z<<y in deriving m , 22)2.

remainder of the paper Also,

z4 % Y 2, NE
Zh |=1% 9, 2, NG
A* Yw vw (1-2)/2 | B*

where

We will use this approximation for the

(5.25)
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2w
A 1+p—(1—2w>q
M4 p+ T )A+p+29)+ (L —w)T .7 4(1+2w) |72’
1—2w "= 2w) ¢
1+1)+2<11 _21:)” )q-'rm
Y= P X1e2) s (5.26)
1+p - <1—2w>q
w \l/2
Z(z)=—<m) 1+ Y1) s
and which is the familiar SU(2) X U(1) expression. Also

Te)=2mz (2,°/8°A .
Note that in the WS limit

)q

1-w
mz12 _‘gz/2<1 - 2w

A=<g22g'z)(y+z)’

(5.27)
1 1
Vet — -—— 0 N¥
1 \/_2' ‘/'2_ o
- 1/2 (1 1/2
A+ Vw Vw V12w || B*

in this limit. From the coupling of the photon to
the electromagnetic current, we find that where

e=gVw , (5.30)

where e is the electron charge. From the coupling
of W*; to its charged current, we determine that

£ _Gr
Tomz - V2 (5.31)
Combining these two equations, we have, finally
V2ra\l/2 26.37
mB—<~m> —71;;—— Gev . (532)

VL. VR VU DISCRETE SYMMETRY

Notice that in our standard model, the , d, s,
and ¢ quarks and e, u, and 7 leptons are the
“light” fermions. In fact, they would be massless
if V/ vanished in (4.8) V vanished in (4.13), and all
u’gr ¢’ mass couplings were disallowed. If these
conditions could be guaranteed by a symmetry of
the Lagrangian, then the relatively small masses
of the above fermions might have a theoretical ex-
planation in terms of soft breaking of this sym-

(5.28)

2, p 2
"z, (1 +q)m" ’

so that the masses of all vector bosons with the
exception of the WS bosons W {; and Z} approach
each other and become infinitely large in the WS
limit. We also find that expression (5.24) becomes

(5.29)

r

metry, In this section we determine the simplest
such symmetry. The most general diagonal ele-
ment of Sp(4) is given by

, 6.1)

where a, b are complex numbers of unit modulus.
The triplet (C,e*®, 1) is in Sp(4)XU(1)X R (we
ignore Z, since it acts trivially on the 10, and 5,
Higgs mesons). The action of this triplet on VEV
(4, 8) yields

0 Vadb

viap © X(x1). (6.2)

0 V(@b)™!

0

We demand that ab=+1, This, however, implies
that @b =%1, so that a (C, ¢'®, 1) discrete sym-
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metry in the little group of an Sp(4)XU(1)X R
theory cannrot guarantee that V/ =0, We reach the
same conclusion for VEV (4.13). It is clear that
we get the desired result if we have +¢ in (6.2).
We therefore introduce a new discrete symmetry
VR, where VR is isomorphic to Z,. The VR
group acts as {1, -1, ¢,-i} ({1,1,1,1}) on all left
(right) chiral fermions. On Higgs mesons, VR
acts as {1, -1, i,—i} on the 10, and 5, represen-
tations, and as {1,-1, —i,i} ({1,1,~-1,-1})on

4, R=-1 (+1) representations. This immediately
forbids all #% cg couplings. For simplicity we
ignore the U(1) and R parts of the gauge group and
concentrate on Sp(4)x VR, The doublet (C, {+1,
+i}) is in Sp (4) XVR and acts on VEV (4.8) as

0 vVad
v'ab 0
0 v @)t X(x1,%i),
V' @) o
6.3)

If (6.3) is to be invariant under (C, {+1,+s}), we
must have ab =i, respectively. Choosing phases
for C such that the VEV’s of the 4, Higgs meson
are invariant under (C,{+1, +i}), we find that
a=1, -1, ¢, - and b=1,1, -1, -1 respectively.
For ab=%¢ we have V/ab=%iV’, It is clear that
(6.3) will be invariant under (C, +¢) if and only if
V’=0. The set (C, {1, +i}), where

-1 , -1 (6.4)

J

for +1 and +¢, respectively, forms a discrete
group isomorphic to Z, which we denote VR VU
for obvious reasons. In precisely the same manner
as above, it is not hard to show that 5. VEV (4.13)
is invariant and under VR VU ifand only if V =0,
Thus we have shown that if we (1) enlarge the gauge
group to Sp@)XU(1)X RX Z,X VR, where VR acts
as{1,-1,i,-i} ({1,1,1,1’}) on left (right) chiral
fermions, (2) let VR actas{1,-1, i ,—i} on 10,
and 5, Higgs mesons and as {1,-1, -, i} ({1,1,
-1,-1}) on 4, R =-1 (+1) Higgs mesons, (3) re-
quire that VR VU be in the little group, then the
masses of the #,d, s, ¢ quarks and e, |, 7 leptons
(but no other fermions except neutrinos) vanish.
Note that if VR VT is in the little group then so is
RU. The addition of VR to the gauge group does
not guarantee that VR VU is in the little group.
The Higgs potential must be chosen so that this is
the case. ‘

VII. PREDICTING CABIBBO ANGLES

In the standard model, defined in Sec. V, mixing
occurs between# and ¢, X and Y quarks and be-
tween A and B, v,, and C leptons. Mixings be-
tween#, ¢ and X, Y quarks and between v,, v,
and A, B leptons are suppressed by fiat with
strong experimental justification. All other mix-
ings are suppressed naturally using RU and Z 8
discrete symmetry. No attempt is made to pre-
dict the magnitudes of the allowed mixing angles.
In this section we will modify the standard model
in such a way as to specify all mixing angles in the
quavk sector (including the d-s Cabibbo angle) in
terms of quark mass ratios. The absence of right
chiral neutrino singlets precludes a similar re-
sult in the lepton sector. For simplicity we will
ignore leptons in this section. To begin, we lift
the restriction of Z, symmetry. This obviates the
need for the 74 and 4’4 Higgs mesons (we now dis-
card them) and, while retaining the above quark
mixings, introduces new mixings between d and s,
b, and b, and, finally, ¢, and {,. We continue to
suppress by fiat u, ¢ mixings with X, y. If we
denote the 10, and 5. Higgs mesons by H,, and H,,
respectively, then the most general Yukawa cou-
plings consistent with Sp(4)X R are

G1le5R1 + szle R, + GSEZHSRI + G4Z2H5R2 + g1Z1Hle + g21_‘1HwR2 + gsrszRl + g4zzH10R2

+ X 0'R + g, X W'R, + g ¥ iR + g Y AR, + gL W ug+g L0 upg

+8& LW cp+ gL, cp +Hermitian conjugate (7.1)

Terms such as X4 are forbidden by fiat. There
are 16 coupling constants and only 12 fields into
which to absorb their complex phases. Therefore,
12 coupling constants can be chosen to be real

whereas four must remain complex. We choose
these four to be G,, G,, &, and g,. Note that com-
plex phases in the VEV’s of any Higgs meson can
no longer be defined away. We now demand that
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the Lagrangian be invariant under the following where A =sz’+ §,V’. It is easy to show that this
discrete exchange operations. ~ mass matrix implies that m,=m,. Similarly, this
. theory predicts m, =m, and m, =m, . Therefore
L R L,~~—-iR t t b b ’
o 2 the theory, as it stlands.,2 is untenable: We find it
X, —~=tugp, Y +cp, (7.2) necessary to add two new Higgs meson Hj, and '

H{ to the model. They transform as —1 under R
and we continue to assume that RU is in the little
h—ih', group. Hj, and H} have Yukawa couplings identical
to those in (7.1) (put primes on the new coupling
constants), However, there are now only two fields
to absorb all eight phases. Therefore, all cou-
plings constants are complex with the exception

of two which we choose to be G] and §;. We de-
mand that when all previous fields transform as
(7.2), Hj, and H! transform as

" "
Hy—-iH;, H—-iH,,

Applying these operations in (7.1), remembering
that all coupling constants with the exception of
G,, G, &, and g, are real, we find that

GI=G4=91=94=g2=g3=g6=g7=0,
G3=G,y, 95=9,, 8£,=85, 8:=&-

(7.3)

Therefore, the most general Yukawa couplings

become H{— -H', Hl~-H}. (7.6)
G,L.HR,+G,L,H.R,+$,L H,,R,+$9,L.
zrTs _2+ # 2H5__‘+ ¥ 1: 2+ ZH_“’Rl Demanding that the Lagrangian be invariant under
+8, X, 'R +g,. L up+g Y, h'R,+g, L h'c, (7.2) and (7.6), we find that
+Hermitian conjugate, (7.4)
G1=8{=0,
where all coupling constants are real. Using Fig.
1 and Egs. (5.5) and (5.6), we compute the d’-s’ . =
mass couplings Gy=1iGy, 83=18;, (7.7)
— A ’
(@,s), 0 ><d > +Hermitian conjugate, G,=G,, 8,=8,.
A 0/\s'/g
(7.5) The new Yukawa couplings become
GILH! R, +iC}LH,R, +G,LHIR,

8L Hl R, +i8,L,H],v 1+8,L,H! R, + Hermitian conjugate, (7.8)

where only G} and 8] are real. Computing the d’-s’ mass matrix, we find

( 0 A>, (7.9)
? B .

where
A=G,7+8,V' +G4V,+85V], A'=G,V+8,V' +iGLV,+i8,V}, B=G.V,+8.V}, (7.10)

and the subscript 0 implies an element in the VEV of H] or H},. Since A’ is not equal to A, there are three
parameters in the mass matrix which are to be determined by two mass eigenvalues m, and m,. There-
fore, the mixing angle will not be completely specified by a ratio of quark masses. To overcome this dif-
ficulty, we introduce yet another discrete symmetry which we denote by R’. R’ acts as -1 onL,, R,, X;,
cg, Hl, H}, h, and 2’, and as +1 on everything else. Demanding that the Lagrangian be invariant under

R’, we find that :
G1=9.=0. (7.11)

Then A=A’ in (7.10). We will shortly show that such a mass matrix leads to the correct d-s Cabibbo
angle. The remaining mass couplings are given by



4240 BURT A. OVRUT 18

0 G, V' +8,V
(t_]'.,t—;)L - ZY * 2 >
G,V+8,V G,V'+8,V,

t]’. e B
+(b],05),
t3 /x

0 -G,V +8,V \ (!
-G, 7" +8,V ~GiV4+84V, /\bl /=

4 ’ ’
+ (@, e, £v 0 u + (X, ?’)L gl? 0\/X +Hermitian conjugate. (7.12)
0 go'/\c' /g 0 go/\Y /i

Note that all quark masses are independent and
arbitrary due to fortuitous minus signs and the
fact that Higgs messons are all in comples repre-
sentations., How consider the d’-s’ mass matrix
(7.9) with A’=A. Let

("') =UL’R<d> , (7.13)
s’ L,R S/ L,r

where U, p is unitary and d, s are mass eigen-
states. Then

U},MUR=MD9 (7.14)
where M, is diagonal. It follows that
ULMM'U,=M,?, UWM™MU z=M,?. (7.15)
First consider MM":
2
wr=( A1 4 > (1.16)
A8 |a]+|B]?
Diagonalizing (7.16) we find that
U, = cosb, -sinf, ’ (7.17)
sin6.e’® cosb et
where
tan?6 =2 (7.18)
m

s

and, if A= |A|e*, B=|B|e™, then

6= n- Zp . (7 919)
Diagonalizing MM we find that
Ug= cosf, sinf . > ) (7.20)
-sinf e”® cosb e

Similar results hold for ¢,, ¢, and b, b,:

my
tan®6, =—2* ,
my,
"y
tan®6,=—21, (7.21)
my,
with one arbitrary CP phase in each sector. It is
clear from the last two terms of (7.12), thatu’,
¢/, X’, Y’ are all mass eigenstates. That is, there
is no #-c or X-Y mixing. Note also that

My My . (1.22)
m, My

I

of approximately 35. Computing 6, in (7.18), we
find 0.,12.60°, very close to the experimental
value of 6,=13°. Since the d-s Cabibbo angle ex-
perimentally is measured relative to the « quark,
we emphasize the importance of the zero #-c mix-
ing in this theory.

APPENDIX A: NOTATION

Let J, 5 be an antisymmetric tensor (over a
four-dimensional, complex vector space V). De-
note by J42 the unique, antisymmetric tensor
satisfying

JABJ  =B4, (A1)

Note that J 5 and JA4B (complex conjugation denoted
Jz5andJ*® respectively) are antisymmetric and
satisfy the relation

ABy _s4
J Jc"é_50' . (A2)

We can use J, 5,J*% and J ;3,J4F to raise and lower
indices according to

Ep=d ptt, PA=J4%Y, (A3)
and

Ey=d 1384, A=gAByy. (A4)
Note that since J ,; is antisymmetric,

Japk’==dpstP=-£,, (A5)

so one must be careful to contract with the correct
index when raising and lowering. Now consider a
tensor g,5 that is both Hermitian

EAL} =854 (A8)
and positive definite
g45E4E2> 0 (A7)

for all £4, and is zero if and only if £4=0. Denote
the unique inverse of g,5 by g4%. Then

gABgcé=52, gABgAC‘=5g . (A8)
There are many such metric tensors. Metric ten-
sor g,p is said to be compatible with J 5 if it has
the property that

g4B = gac Jébgcé . (A9)

There are, as a rule, many metric tensors com-
patible with a given J,,. Using Egs. (A1) and (A8)
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it is easy to show that g,; is compatible with J .4
if and only if

Jap=9°P8 46855 - (A10)

APPENDIX B: THE GROUP Sp(4)

‘Fix J,5 and a compatible metric tensor g,3 on
V. The set of all linear mappings A4 of V to V
with the property that

AgAgJAB=JCD (B1)
and

Aéxggu'a:gcb (B2)

forms a ten-parameter Lie group. This group is
called the unitary, symplectic group in four com-
plex dimensions. We denote it by Sp(4). Define
the completely antisymmetric tensor

€ancp==3Jpupdcpy - (B3)
This tensor has the property that

eABCDe, 4. (B4)
Let A4 be in Sp(4). Then

det(Af) = 51€4%Pe ey AZ NS AS AL (B5)

Using Eqs. (B1), (B3), and (B4), it is clear that
det(A%)=+1. (B6)

Therefore, Sp(4) is a subgroup of SU(4). The
complexified Lie algebra of Sp(4) is called C,.
Denote its canonical Cartan basis by H,,H,,E, ,
E,p,E,y,E,¢. The commutation relations for
this basis are given in many references.!* We
find it convenient to use a new basis, related to
the canonical basis as follows:

T8=V3H,, T]=V3H,, E,,=V6E,,,
liﬁ=2‘/§—EiB! E;y=‘/—6—E¢y’ E;§=2\/§Ei§.

The root diagram for the new basis is shown in
Fig. 6. The new commutation relations (from now
on we drop the primes) are given in part 1 of
Appendix C. The normalization of the new genera-
tors is chosen so that the action of any step oper-
ator (e.g., E,) on a weight vector of the funda-
mental representation of C, yields +1 or 0 mul-
tiple of another weight vector. The relation of
elements of C, to elements of the 7eal Lie algebra
of Sp(4) is (1) T3, T} are in the real algebra and
(2) for step operators E,,

(BT)

v -EutEoy
t vz
(B8)

) (01)

(7)
FIG. 6. The root diagram for the group Sp(4).

are in the real Lie algebra. Using part 2 of Ap-
pendix C and the commutation relations, we im-
mediately identify four SU(2) subgroups of Sp(4).
These are generated by

T3 ,E;q,
T;+T] ,E,p,
T} ,E,,,
~Ty+T{ ,E .,

(B9)

respectively, and correspond to the four direc-
tions of the root vectors in Fig. 6. The funda-
mental representation of Sp(4) (and therefore of
C,) is in four complex dimensions and is denoted
by 4.. Its weight diagram is given in Fig. 2. The
diagram is self-conjugate, which implies that Zc
is equivalent to 4,. Note, however, that 4, is not
equivalent to a real, four-dimensional representa-
tion. The weight vectors are written é‘,‘, ordered
as in Fig. 2. They are eigenstates of Ty and T}
with eigenvalues A{ and A}, respectively. These
eigenvalues can be read off the weight diagram.
The matrix representations of the complexified
generators in the £{ basis is given in part 3 of
Appendix C: Let J,5 and g, be the defining ten-
sors of Sp(4). We now find an explicit representa-
tion of these tensors in terms of the weight vec-
tors £2. To this end we note that for infinitesi-
mal €,

Ag=68—iT3e (B10)

is an element of Sp(4). Using Eq. (B1) we find
that

JoaTss =JdcsTsS . (B11)
Now evaluating the expression

JoaTss 61E7 (B12)
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in two different ways using Eq. (B11), we find that
(AF+X)E,,E4=0. (B13)
Similarly, for TJ; we find that
(A +\)E; 488 =0. (B14)

Finally, since Eg+E _g is in the real Lie algebra
of Sp(4),

A5=04 —i(Eg+E_p)ae (B15)

is in Sp(4) for infinitesimal €. Evaluating
E48s =Tpa ATIE AT AT ARESET (B16)

using Eqgs. (B1) and (B15) and the matrix rep-
resentations for E, g in part 3 of Appendix C, we
find that

£1A§i=—52A§??0- (B17)

Since for a given Sp(4) Lie group J,5 is defined
only up to a nonzero multiple, we choose J, 5 such
that

ElAgtf:—nggsAzl . (B18)
From Eqs. (B13) and (B14) it follows that
EiAE}'A:O, (B19)

when 7,7 are not 1,4 or 4,1 and 2,3 and 3,2. Now
J,p Can be written as

4
Jap= Z 20‘”51[,45;'3]- (B20)

i=1j7>14

Contracting J,, with &£, ¢2, and &2 separately,
we have finally that

JIap = 2(‘51[/4545] - gz[A‘faB]) s (B21)

which is the desired expression. In matrix
notation, with respect to basis &%,

[Tap]=[J*%]= . (B22)
-1

In the same manner as above, and using the com-
patibility of g,z with J,5, it can be shown that

gastlEP =0, (B23)
and
8aB~ 51.4.5_15 + 52A22§ + gsAg:sB' + §4AE41§ . (B24)

In matrix notation, with respect td basis 5?

[ganl=[2%%]= 1 . (B25)

Higher dimensional irreducible representations
of Sp(4) are obtained by taking tensor products of
4, and 4,, subtracting out the g,5 and J,  trace
and, finally, reducing the tensor products using
the symmetry properties of the indices. Con-
sider T'48€4,®4,. Then

. . €Dy o)
T'AB _TAB _(Z_Aic_l)l gAB . (B26)

The (g, 3 traceless) tensors T8 can be further
reduced as follows. Consider the tensor

TAB = J5Cg, 548, (B27)

The representation on T4 is equivalent to the
representation on T#2 since they are related by
the invariant tensors g, 5 and J, 5. Note that

TAB],, =g sTA8=0 (B28)

by Eq. (B26). The tensors T4? are, however,
still not irreducible. They can be written as the
sum of symmetric and antisymmetric tensors.
That is,

TAB T (4B) L TAB ] (B29)

The set of tensors T4Z with the property that
TAB=T(4B) form a ten-dimensional, complex
vector space. The representation of Sp(4) that
they carry is denoted by 10,. As we will shortly
show, 10, is still »educible. The set of tensors
T2 with the property that T2 =T%5] forms a
five-dimensional, complex vector space. The
representation of Sp(4) that they carry is denoted
5,. It, too, is still reducible. It is clear that 742
is the direct sum of these two kinds of tensors.
Symbolically,

4,®4,=10,05,® 1., ‘ (B30)

where 1, is the one-dimensional, complex space
spanned by g,3. The weight diagrams of 5, and
10, are given in Figs. 3 and 4, respectively. We
now determine these weight vectors in terms of
£# and ¢4, the weight vectors of 4, and 4,. First
consider the weights of the reducible (into 10,&5,)
representation 15,. Consider, for example,

TAB - qg #EB 4 peAgS (B31)

where a, b are complex numbers. Then, uéing
Eqgs. (B21) and (B24) we find

TAP = JPCg, sTA% = —atfe) + bEPES | (B32)
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_Obviously T#% is antisymmetric (symmetric) if
and only if a=b (a=-b). Therefore the first
weight vector (normalized to unity) of the weight
diagram of 5, is ’

. 1 . .

vt = o G £, (B33)
The second weight vector of the weight diagram of
10, is

o 1 . —
nyf=- ﬁ@;‘éf—s;‘&f). (B34)

In this manner all the weight vectors can be deter-
mined. For the 5, representation they are (or-
dered as in Fig. 3)

1

ytt - (8 8T,

yas= 7; (E4E5 + £2ED),
e — GE B -gTend), )
18- — B - 51h),

. 1 . .
?B:—z(ifﬁf**ﬁf&zﬂ).

For the 10, representation ‘(ordered as in Fig. 4)
nyP=61%7,

. 1 . .
N3P = —— (&1¢5 - £5'E9),

V2

UI?B:—‘E?E:;B)

ndds —— (488 42D,

. 1 . s
ndé- <L (eE - e1ED),

(B36)

. 1 — —_—
4P = 3 (EER +£4ED),
nAB=gAg8

. 1 . .
ng?= 72:(5;‘55’—5:5?),
773‘"5 =_§:Elé )

° 1 — —
Nt = " (¢560 - £287).

We have chosen n‘s‘é and nfoé so that

EtanfoB=Eiyn‘;B=0' (B37)

In deriving the above we have used the fact that
E, acting on 4, is equal to -E, acting on 4,. Any
element of 5,, denoted T;‘f , can be written

5
T4 =2¢,0884v2 3 cyt® (B38)
' i=1
' i1#3

(where the ¢;’s are complex numbers) or, in ma-
trix notation with respect to basis £,

-Ccy €4 ¢, O

—Cz G 0 ¢ ) (B39)
¢ 0 ¢ -¢

[1if)-

5¢

0 ¢ ¢; —-¢
Similarly, any element of 10,, denoted Tfoﬁ, can
be written

AB _ AB AB AB AB
T30 "/-2-05775 +f2—cm"7 10 TN~ +C3M 3

(B40)

4

AB AB AB

+enyP e +V2 Zczi'nzi ,
i=1

where the ¢;’s are complex numbers. In matrix
notation with respect to basis £4,

=G Cy —C G
[Tad)= | @ "0 7% % (B41)

-Cg G Cio €4

-Cy € Cg Cs

As stated earlier, both 5, and 10, are reducible.
Consider 5,. Then

TAE = L (TAB T4 ) L (148 _ TAS), (B42)
The first term on the right is obviously Hermi-
tian. Such tensors form a five-dimensional,
real vector space. The representation of Sp(4)
that they carry is denoted by 5, and is irreducible.
The second term on the left is anti-Hermitian.
Such tensors form a five-dimensional real vector
space. Since any anti-Hermitian tensor is simply
i times a Hermitian tensor it is clear that the
representation of Sp(4) on anti-Hermitian tensors
is equivalent ot 5,. Symbolically,

5.=5,®5,. (B43)

Similarly, Tfo‘: can be written as the sum of a
Hermitian and an anti-Hermitian tensor. The
Hermitian and anti-Hermitian tensors both form
ten-dimensional real vector spaces. The repre-
sentations of Sp(4) on these two vector spaces are
equivalent, irreducible, and denoted by 10,. That
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is, .
10,=10,® 10, . (B44)
Any element of 5,, denoted Tg,é , can be written
T45 =27, +VZ ¢, g% +V2 ¢, yd¥
VZ d Y8 VT d i

where 7, is real and c¢,,d, complex. In matrix
notation,

(B45)

-r, =dy ¢, O

[T‘;é]= -d; 73 0 ¢
r

- (B46)
¢ 0 7, d,
0 T, dy -75
Any element of 10,, denoted T‘foé , can be written
TEE =VTrnd® + Trgn i + e t? - e

+ 0377:'!45 -Tni? +V2d,n ‘z‘é +\/7dz?7§“§

+VZTdnAB VT dnhs, (B4T)

where 7;,7,, are real and ¢,, ¢3,d,,d, are com-
plex. In matrix notation,

-7y dg -dy €
[rgd]= | e T % 42| (B48)
-d; -¢ 7y dy

¢y d, dy 7s

APPENDIX C: THE LIE ALGEBRA C,

(1) We give the commutation relations of the
Lie algebra C,:

[T§,T{]=0,

[T, E,ol=2E, o, [T],E;a]=0,
[T§,E,s]l=+3E.s, [T],E.s]l=+3E,,
[T5,E.,]=0, [T],E,,]=+E,,,
[TS“,E“]=§E“, [Tg;E*g]=i%Eig,
[Eo,E_o]=2T¢
[Eg,E_g]=2(T3+T}),
[e,.E_,]=2T],

[E¢, E_(]=2(-T3+T)),

[Eo,Epl=0, [E,,E_,]=0,
[Ea,Ey]=0, [E¢,E.,]=0,
[Eq,Ey]=0, [E_o,E_4]=0,

[Eo(;E-g]:o: [E—DL’E-‘)']=0’

[Eg,E,]=0, [E_5,E_,]=0,
[E,,E(]=0, [E_,,E_¢]=0,
[Eo,E(]l=Eg, [Eg,E_,]=-E_q,
(Eo,Egl=-E.¢, [Eg,E_(]=2E,,
[Es,E¢]=2E,, [E,,E_(]=E;.

All other commutation relations can be obtained
from the above using the rule that if [E_, E, ]
=Ny, E, then N_, _,==N_,.

(2) LetT,,T,, T, be the standard basis for the
Lie algebra of SU(2). Then,

[Ty,T,]=i€;;, T,.

The standard basis T,, T _, T, for the complexified
Lie algebra of SU(2) is defined by

T,=T,+tT,,
T_=T,-iT,,
Ty=T,.
The new commutation relations are
(Ty,T,]=T,,
[Ts , T ]=-T_,
[T,,T_]=2T,.

(3) The matrix representations of our basis of
C, with respect to the weight vector basis £} of
the fundamnetal representation 4,, are given by

1

2

[T%]= ;

i

(r7]= ,




The remaining matrices are simply the Hermitian
conjugates of those above. For example,

[E-a1=[Ea1*=(° 0).
10
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