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P-wave barons in the quark model
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We discuss the spectrum and mixing angles of negative-parity baryons in a quark-model framework
inspired by quantum chromodynamics. We take into account in zero order the removal of the degeneracy
between the two P-wave states of the three-quark system in the S = —1 sector, as well as the hyperfine
interaction between quarks, but neglect spin-orbit coupling. We find good agreement with experiment in the
S*=0 and S = —1 sectors where: there are data and predict the S = —2, —3 sectors.

I. INTRODUCTION

The experimental discovery of the Z/g and rela-
ted particles has given strong moral support to
theoretical work on quark models. Much recent
work has been inspired by concrete proposals' for
quark-quark interactions based on the analogy be-
tween chromodynamics and ordinary electrody-
namics.

We are concerned here with the masses and mix-
ings of low-lying negative-parity baryons in a
quark-model framework. We are guided by ideas
widely expected to hold true in chromodynamics:
a universal confining interaction potential —the
same for all flav'ors (masses) and spin orientations
of quark —and a hype rf ine inte raction between
quarks along the lines of a recent proposal. "
These guidelines are sufficient to understand the
large body of data available on these states in a
simple way.

Although many of our conclusions are quite gen-
eral, we shall at first discuss a very simple har-
moni'c-oscillator model where our assertions are
(we hope) very transparent and well defined. The
assumptions made about the interactions between
quarks are spelled out in Sec. II: %e take only
harmonic springs and hyperfine interactions. Our
task is then extremely simple in principle: We
have to diagonalize the interaction in the relevant
space of state s—the negative- parity baryon s. This
involves choosing carefully zero-order wave func-
tions. While our choice is quite traditional for
those states which are composed of equal-mass
quarks (S = 0 and S = -3 sector), the zero-order
wave functions chosen for the other states (S=
-2 sectors) are somewhat novel. The usual pre-
scription' is to symmetrize between all three
quarks. %e only symmetrize between equal-mass
(up and down) quarks. This is discussed in Sec. III.

We then compare the most naive version of the

model we investigate with experiment. In our first
report on this work' we discussed the nonstrange
sector and found good agreement between the naive
model and the data. We therefore concentrate in
Sec. IV on the S = -I sector (A's and 3's) where a
large quantity of data is available. ' We find again
good agreement with experiment where data exist. .

As a result we feel that there is little risk in pre-
dicting the S = -2 and -3 sectors where there are
almost no data.

In Secs. V and VI we go beyond the simple as-
sumptions made in the initial discussion: the re-
striction to harmonic-oscillator states (which is
easy to relax), and the neglect of spin-orbit coup-
ling. %e find the data indicate that harmonic os-
cillators are a good choice of wave function and
that not much spin-orbit coupling is required. %e
also discuss possible reasons for the absence of
spin-orbit coupling. Our discussion here has much
overlap with recent work on charmonium where
similar conclusions have been reached. "'

The negative-parity baryons have been discussed
in a quark-model framework in the work of Green-
berg, ' Dalitz, ' and their collaborators. The ap-
proximation followed in this early work consisted
in neglecting tensor forces and keeping instead
spin-orbit coupling. This approximation is orth-
ogonal to the prescription suggested by quantum
chromodynamics (@CD) which we use. While the
experimental mass spectrum can be reproduced
in this way, the observed mixing angles are a
problem. More recently, since the original appli-
cation" of the Fermi-Breit Hamiltonian to quarks,
negative-parity baryons have been discussed by
Celmaster' and by Gromes 2nd St3matescu. ' We
differ from both these references in our deliberate
neglect of spin-orbit coupling, and our choice of
zero- order wave functions. Celmaster keeps the
full. spin-orbit coupling present in the Breit Ham-
iltonian, but neglects spin-orbit coupling coming
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from the confinement potential. As a consequence
he predicts the lowest-mass nonstrange negative-
parity baryon at about 1330 MeV instead of the ex-
perimentally observed lowest-mass state at 1520
MeV. In our opinion this demonstrates clearly
that spin-orbit coupling is just not present at the
level predicted by the Breit Hamiltonian. The in-
itial work of Gromes and Stamatescu' neglects the
tensor part of the Breit interaction; this restric-
tion is removed in subsequent work by Gromes.
These authors discuss only S = 0 states.

II. ZERO-ORDER MODEL: HARMONIC OSCILLATORS+
HYPERFINE COUPLING

responsible for the confining forces between three
quarks 1, 2, and 3, of which quarks 1 and 2 have
equal masses m while quark 3 has mass m' (this
is the most general case required for the states
of interest in this paper), is

~l ~2 ~3
2m 2m

+ 2m'

+-,'Seer, —r, /'+-,'Z/r, —r, /'+-,'SC/r, —r, f'.
(2.2)

If we define

p-=(r, —r, ),
We repeat that this model is discussed primar-

ily for the reader's convenience; generalizations
and comments are relegated to Secs. V, VI, and
VII.

We assume throughout that the splitting of the
family of negative-parity baryons is preponder-
antly due to the hyperfine interaction H» between
each pair of quarks (i,j) of the form"

2n 'Qm

Hh', = ' 5'(—r(~)S) ~ S~
3mgmg 3

+,(3S, r)~S~ ~ x)~ —S, ~ S~), (2.1)
Vf)

(r, +r, —2r, ),

m(r, + r,)+I'r,
2m+ m'

then we obtain
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where
3m m'

M=2m+m', m =—m, m), =-

2m+ m"

(2.3)

(2.4)

(2.5)

where m, and S& are the mass and spin of the ith
quark and r, &

is the separation between a pair of
quarks. Aside from the overall constant in front,
this is the familiar magnetic-dipole-magnetic-
dipole component of the Breit Hamiltonian. "
De Rujula et al. conjectured that the Breit Hamil-
tonian would apply to quark-quark interactions
mediated by gluons, where o', would be the quark-
gluon fine-structure constant. We have discarded
the spin-orbit part of their ansatz and view in what
follows &, as a free parameter.

The first term (which we denote by H~~„„„)is
called the Fermi contact term, and operates only
when the quark pair (ij) has zero orbital angular
momentum while the second term (H,'' „), often
called the tensor term, is operative only in states
with nonzero orbital angular momentum between
the quarks i and j.

The negative-parity baryons are especially suit-
able for studying the hyperfine interaction. These
baryons belong in the quark model to a multiplet
of 70 states with L =1. In the simplest models,
which we assume here, this unit of orbital angular
momentum resides in one of the two quark rela-
tive coordinates. Thus in one coordinate only the
tensor term is operative while the contact term
alone operates in the other. These baryons are
therefore a good place to test simultaneously. both
pieces of the hyperfine interaction. The Hamiltonian

dR-- dp ~ dX
p, =M ', p, =,—,p„=m„ (2.6)

The problem therefore separates into center-of-
mass motion plus two independent harmonic oscil-
lators p and A. with the same spring constant K but
different masses. When all three quarks have the
same mass the two oscillators p, X have the same
frequency, but not otherwise. The eigenstates of
the Hamiltonian (2.4) are well known. The ground
state P«has both (p, A. ) oscillators in their respec-
tive ground states. The first excited states g',„,

which concern us here have one or the other of
the two oscillators in their first excited state.
For example,

a 3/' a 3/'
/~ ~) p p e p2/2 eg2X /2

9'DOLPH' ~) = 3/4 3/4m g

~ 6/2~ 3/2

P, (p, x) = — „,' (x„+ix„)e- P"''e'"'"''
(2.V)

where

~,'=(3+nz, )'"
a„'=(3Am„)'~'.

(2.S)

Note from (2.3) that g,„is even under the transpos-
ition (l2), while the analogous wave function gf„
is odcl.

Usuall. y the difference produced by different
quark rgasses are neglected in spatial wave func-
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tions. We will neglect the mass difference between
the up and down quarks (on this scale},"but do
take into account the different mass of the strange
quark. As a, first approximation, we find that in
computing matrix elemelts of the perturbation
one may take o', '= a„' while remembering that the
two oscillators (p, X) are nondegenerate. This is
oddly the case for strange baryons, and will no
longer be a, good approximation for charmed bary-
ons, which we hope to discuss in a separate paper.

III. ZEROARDER WAVE FUNCTIONS

The multiplet of states associated with the neg-
ative-parity orbital excitations g,'„, t)/1 are well
known: They are commonly classified in a 70-sup-
ermultiplet of ltSU(6) which breaks into the multi-
plets '1, '8, '8, and '10 where the superscripts
indicate the total quark spin associated with the
SU(3) multiplets. The quark spin S is then added
to the orbital. angular momentum L to give the to-
tal angular momentum J. A list of the states in the
SU(6}basis is given in Table 1. When there are
several states of the same J, strangeness, a,nd

isospin the physical states are in general mixed.
In all previous work of which we are aware the

wave functions of these physical states are con-
structed by taking linear superpositions of spa, ce,
spin, and unitary-spin wave functions which are
totally symmetric under the exchange of any two
quarks. This is the correct prescription as long
as all the guarks have equal mass. This is the
case in the S =0 and S =-3 sectors. Wheri dealing
with states containing unequal-ma, ss quarks we
only symmetrize between those quarks which have
equal mass. This prescription" is contingent upon
the explicit symmetry breaking in the orbitaI, wave

TABLE I. Low-lying negative-parity baryons in an
SU(3) basis.

functions (2.7).
We now list with this prescription the space-

spin-flavor wave functions of the 4', Z' states,
with the convention that the strange quark is par-
ticle number 3:

4p or 'X

A2 411XS/2~0

/~2 ( }(lmXS/2 m~0

(}&1 Xl/2- &0

5 s,
+~2 411XS/2~1

Z-'2 ( }41 Xs/2- &1

( }&lmXS/2-m&0

(}&1 Xl/2- &0

()41 XS/2- &0

( )0 lmX1/2-m&0

( }(lmxS/2-m~1 ( }~lmX1/2-m~1

( )Pl.X1/2-. &1 ( )4 lmX1/2-m~1 ( }tl 1.X1/2- &1

(3.1)

~J12'P&=( }41 x3/2- 4o

3. 3. 3
(I~ i22~m 2 m)ttlmXS/2 mA&

(5 ) kllxl/240 (3) 410X3/240 '

The quartet spin wave functions g~ are the usual
ones (X',/, = ~4&0&), while the p and X type doublet
spin states are

(~400& —~004&),

(~4&4&- ~&«&},
W2

(~140&+ ~000&-2~00i&),

where the empty parentheses in front of a wave
function indicates summation over the magnetic
quantum number m with the appropriate Clebsch-
Gordan coefficients, in the LS order, e.g. ,

S= 0:

28 10 21

x"„,= '
(2(ii~ -(~« -(~ii ),-/

~6

and the isospin wave functions $0 and Q, are

$=-1:

S=-2:

$—~3 ~

2

J' —X

J-
J'—X

s ~ o

N

~ ~ ~

N

(ud —du)s,

(ud+ du}s .

It is worth noting that the wave functions (3.1) are
simpler than the usual choice of completely sym-
metrized states.

While the quartet spin states have '8 states as
their limit when m, -ms, the states

~

A; Sp &,
~

A;
'X&, ~Z, 'p&, and ~Z, 'A. & do not have individual
SU(3) states as their limit, but
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~A 1&= lim
~sw mg

~A 8&= lim (~A p-&+ ~A ~&),
1

~s"md

[5; 8&= lim ((5 p& —(5 A. &),
1'

1
(~Z p&+ ~Z A&).10&= lim

ms ~g 2
I

(These equations should be understood only in the
sense of matrix elements of both sides being e-
qual. ) The actual physical states are neither pure
SU(3) states nor pure p (or X) excitations but linear
combinations of all substates with the same J,
strangeness, and isospin. Most physical states
are, however, closer to pure p or X states than to
pure SU(3) eigenstates. The linear combinations
quoted in the literature are'0 in terms of an SU(3)
basis, which is why we need these transforma-
tions.

The N, &, :-, 0 states can be constructed in a
similar way. However, it is unnecessary to con-
struct their wave functions since the relevant ma-
trix elements may be inferred from those of the
A', Z' sector by either taking (i) m = m' = m~ (N's,
&'s), (ii) m = m' = m, (Q ' s), or m = m, and m' = m~
(='s)

IV. COMPARISON VfITH EXPERIMENT

We relegate an account of some of the details
of the calculation of the hyperfine matrix elements
to Appendix A, but mention a few points here be-
fore quoting the results. While these computations
are simple in principle they tend to be long, and
.so the authors have taken the precaution of calcu-
lating separately each matrix element until agree-
ment is reached. The matrix elements of the con-
tact term are relatively simple to calculate. As
mentioned earlier, the contact term operates only
between quarks that are in relative 8 waves, so
that, for example, there is no contribution of
H,"„„„in a gf„. Even when one keeps o'.,4 a, one
can still invoke symmetry properties in these cal-
culations: It is still true that the matrix elements

,",,~„t a,re equal. An additional sim-
plicity arises from the fact that there are no ma-
trix elements of H„„„~connecting quark spin-&
states to quark spin-& states, since H, „„,is a
spin- zero operator.

The matrix elements of the tensor term are more
trouble to. evaluate; fortunately, many of the ma-
trix e1.ements are zero, This is because H, e~, is
a spin-2 operator and so cannot connect quark spin
~ to quark spin ~. One can also make use of the
fact that H,", „vanishes in p„states since such
states have quarks 1 and 2 in a rela. tive 8 wave;

furthermore, matrix elements of H,", „andH,", „
are equal, as the reasons applied in the case of
the contact term continue to hold.

The relevant matrix elements of the hyperfine
interaction are computed and displa, yed in Append-
ix A. One must add this interaction to the unper-
turbed Hamiltonian. In the 8 = —1 sector, for ex-
ample, this amounts to remembering tha. t the p
oscillator is not degenerate with the A. oscillator.
In the harmonic-oscillator model the frequency of
the p oscillator is higher than that of the X oscilla, -
tor by

2x+ 1) '~'
(d —+=6) 1-

P 3 )
(4.1)

where x =m„/m, and I&o= h&o, is the harmonic-os-
cillator spacing in the 8 =0 sector. The harmonic-
oscillator model also predicts the relative position
of all (S=O, S=-l, S=-2, S=-3) sectors given
I~, m~, and m, . This is discussed in Appendix B.
Without harmonic oscillators these quantities are
undetermined parameters; nevertheless we believe
the harmonic-oscillator values to be typical also
for other potentials.

We are now ready to diagonalize the resulting
matrices sector by sector and compare to experi-
ment. The results for all sectors are displayed
in Table II and in Figs. I, 2, 3, and 4.

A. The S = 0 sector of N~'s and 6+'s

B. The S = -1 sector of A's and Z's

The experimental data shown in the figures for
this sector are based on the four multichannel &pf
phase-shift analyses known to us [except for
A*~ (1405) which is below thresholdj. We show
those resonances which have been seen in at least
two of the four analyses, and choose the shaded
region to encompass the quoted mass values.
(There are additional candidates seen only in one
analysis. ) This mass region agrees with the likely
mass region suggested by the Particle Data Group
in all cases except for the E*—', (1770)and 3*2 (1940)
(where the disagreement is relatively mild).

The mass difference between the J =-,' Z and A i,s
primarily a spin-independent effect due to the lack

There is little to add to the discussion in I of
these states. The agreement with the observed
ma. sses is good. The size of the splitting here has
been related to the &-N splitting in the ground
state. The tensor force gives strong mixing in the
N*-,' sector, but very little mixing in the N*-', sec-
tor as observed. This, to our knowledge, was not
previously understood. The predicted mixing ang-
les are in very good agreement with the magnitude
and sign obtained by the decay analyses. We stress
that our conclusions about mixing angles are inde-
pendent of any parameters.
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TABLE II. Predicted masses and compositions of negative-parity baryons.

Predicted splitting
from unperturbed mass

in units of ~

Predicted
mass
(MeV)

Predicted (**)and
measured composition

'1 '8 '8 '10

-0.40

+0.25

-0.69'

1490

1685

1490

HLC

HLC

+0.90

+0.85

+0.S5

+0.73

+0.53

+0.53

+0.68

+0.43

+0.53

+0.53

+0.68

-0.85

-0.85

-0.73

+0.06 ~ ~ 4

-0.16 1650

1800

HLC +0.85

FP1 +0.79

+0.72

-0.39

HLC -0.30

FPl -0.44

FP2 -0.32

-0.18

HLC -0.43

FP1 -0.41

FP2 -0.62

+0.46

+0.61

+0.68

+0.75

+0.04

+0.63

+0.15

+0.50

+O.S9

+0.49

+O.V1

+0.25

-0.04

+0.14

+0.58

+0.95

+0.64

+0.94

-0.85

-0.17

-0.77

~ ~ ~

~ 4 ~

Z*$
z*P'
Z*$ ~

We(

g )Icp

0+$
N*$

-0.1V

+0.17

+0.36

-0.41

-0.01

+O.ll
+0.13

-0.26

+0.46

1650

1750

1V80

1900

2020

1535

HLC

HLC

e e ~

+0.82

-0.46

+0.33

+0.88

-0.18

+0.43

0.99

0.98

0.97

0.11

0.18

0.26

+0,54 -0.17

+0.81 +0.35

-0.21 +0.92

+0.42 +0.22

+0.73 -0.66

-0.56 -0.73

-0.11

-0.18

-0.26

+0.99

0.98

0.97

+0.25

-0.69'

-0.03

+0.61

1685

1490

1690

1880

HLC +0.92

-0.40

HLC -0.39

HLC -0.04

+0.40

+0.39

+0.91

+0.92

+0.11

+0.01

-0.01

-0.04

0.12

+0.00

+0.99

+1.00

~ ~ l

~ ~ 4



4l92 AGATHA% ISGUR AND GABRIEL KARL 18

TABLE II. (continued)

Predicted splitting
from unperturbed mass

in units of (5

Predicted
mass
(MeV)

Predicted (**)and
measured composition

21 28 48 210

w gQM

W

M g+

-0.08

+0.35

+0,38

-0.34

+0.07

+0.2 9

+0.13

+0.20

+0.38

+0.20

+0.10

1675

1805

1815

1800

1920

1985

1670

1815

1760

1930

HLC

+0.96 -0.11 -0.26

+0.89 -0.38 +0.26

+0.88 +0.07 -0.46

+0,25 +0.76 +0.60

+0.96 -0.08 -0.30

+0.29 -0.09 +0.95

+0.10 +0.99 +0.06

'These are the eigenvalues relative to the unperturbedpositionof a ~-type oscillator in the rela-
vant space of states, using either x= 0.7 and approximate formulas (&~ = Q,'z) of Tables III and ]V
or x= 0.6 and the exact formulas &~ »z for the S=-l sector.

b The FP results quoted here have been converted to HLC phase conventions. '

These results both include an additional -0.12 units of splitting arising from second-order
effects. No other state any had significant second-order effects fin the SU(3) limit l is per-
turbed three times as much as any other statej.

Since the observed Z(1750) is actually midway between these two predictions, it makes no
sense to quote an experimental composition until the situation in this region is resolved.

of degeneracy between the p and A. oscillator. Both
of these states have quark spin S = —,'; this spin. state
is symmetric under interchange of auy two quarks.
The flavor wave function of the 5 (I =1) is also
even under interchange of ~ and d quarks. There-
fore, Z corresponds to the even oscillator (A) be-
ing excited. The flavor state of the A(I=0) is odd
under interchange of I and d quarks. Therefore,
the A corresponds to the odd oscillator (p) being
excited. Because the strange quark is heavier thari
the nonstrange quarks, the two oscillators are non-
degenerate. The A. oscillator in which the heavier
quark moves has the lower frequency, and corres-
pondingly the Z—,'is lighter than the A—,'. In the
harmonic-oscillator model this mass difference
[see (4.1)] is about 75 MeV -=(h&o, —h&o„) and hyper-
fine interactions give a relatively small correction
(-20 MeV) to this effect.

The ~*—,
' sector is also very well reproduced,

with good agreement for the masses and compo-
sitions of A*—', (1520) and A*—', (1690). The third

state is predicted to lie very high at around
1880 MeV and to be an almost pure '8 state (and
therefore decoupled from KN, which may account

for its not having been seen). The information in
the E*—,

' sector is quite sketchy. We correctly ob-
tain the mass of the well established E"-, (16"l5)
and correctly predict that it is dominantly a '8
state. The two decay analyses" do not agree on the
admixtures of '8 and '10 into this state, and we do
not agret: with either of them. %e predict that the
other two 5—', states will be nearly degenerate at
-1810 MeV; this prediction is very specific to
harmonic-oscillator forces. In any case, this de-
generacy will almost certainly be broken by mix-
ing via decay channels.

The A*-,' (1405) is, of the well-established states,
the one farthest from its expected mass. Its com-
position is, however, in quite good agreement with
experiment, ' especially with HI C and solution 1 of
FI'. We do not understand this discrepancy, al-
though several possibilities suggest themselves:
(1) The A*~ (1405) has been shifted from its bound-
state position by its proximity to KN threshold. It
is well known that mass shifts due to mixing with
virtual decay channels can be quite strong near a
threshold; such an effect could depress this state
significantly since it is strongly coupled to KN.
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FIG. 1. Comparison of the predicted and observed spectrum of negative-parity baryons. The shaded regions corre-
spond to the likely mass values of resonances; the solid bars are the predictions of the text, corresponding to the para-
meters mo= 1610 MeV, += 520 MeV, x = 0.6, &m = 280 MeV, and 15 = 300 MeV.

/////J'/&
0 I+.14~6
/r rr
///// ~/~.11~

//////x

'//lt'/ZAN/AXE/A&
////////// r'/////i

X
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E
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hP 1/2- N SI2- N~5g2

FIG. 2. Comparison of the predicted and observed spectrum of negative-parity S = 0 baryons. The predicted composi-
ti.on of a given state is displayed directly above the bar indicating its position. The experimental composition is given in
the most convenient location with respect to the shaded region which indicates its experimental position.
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2000

2
~ QQ 8+.11 8-.04 1

/. 85 8-.50 8+18 1 J.'

1700 —~32~448 4~2,
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X

1600—
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1400
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FIG. 3. Comparison of the predicted and observed spectrum of negative-parity S —1 baryons.

(2) The residual spin-orbit couplings, which we
have neglected throughout, have resurfaced in this
state (this possibility gets some support from the
discussion of Sec. V. (3) The predicted near de-
generacy of the lowest A*—,

' and A*—,
' states is

specific to the harmonic oscillator (see Sec. VI).
The masses of the remaining two A*—,

' states are
rather neatly predicted, but the situation regard-

ing their composition is unclear. The decay anal-
yses here find two quite different solutions: a solu-
tion A which corresponds to the HLC solution and
to solution 2 of FP, and a solution 8 which corres-
ponds to solution 1 of FP. %e would argue that
solution A should be viewed with some skepticism
as it has the dominantly '8 and '8 states reversed
relative to the N*—,

' sector. " In any event, our

.QQ 8+.1028+ 08210

~ 73210-.5648+.432I

1900 + 7348+ ~10-.1828
~ Q$21O+.2Q28-.OQ48

1800
~ 88 8+ 4248- 22210

ggXgg&& &VAN%&ggg
~ ~~ Q828-.3O21O-.O848~

1/2- 3/2- 5/2- Q 'l/2- Q 3/2-
FEG. 4. Comparison of the predicted and observed spectrum of negative-parity S= -2 and S= —3 baryons.
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C. The S = -2 and -3 sectors of =*'s and Q*'s

Our results on these two sectors are almost en-
tirely predictive. The only exception is the . (1820)
which is probabLy 2 .

We should remind the reader at this point that
the most reliable features of these predictions are
the splittings and mixing angles; the positions of
the unperturbed F = -1 and -2 masses are a sep-
arate issue, as disucssed in Appendix B.

V. WHERE HAS ALL THE SPIN-ORBIT COUPLING GONE?

The success of the simple Hamiltonian (2.1) in
describing the complex pattern of P-wave baryons
immediately raises several questions. If we are
to think of these results as establishing the exist-
ence of @n interaction between two color magnetic
moments, then we must try to understand why
these states show no evidence for the existence of
spin-orbit forces which could arise, in part, from
an interaction of the color magnets with the mag. -
netic fields due to the orbital motion. We have
from the beginning neglected spin-orbit forces.
It is certainly relevant to ask what the effect of
spin-orbit forces would be, or put another way,
to ask what strength of spin-orbit forces are in-
dicated by the data. Our conclusion is that spin-
orbit forces, if present at all, are at a level much
reduced over naive expectations.

To make this statement more precise, we in-
troduce the spin-orbit forces which arise from
one-gluon exchange in chromodynamics,

H~~
s o(yQ) so(yQ) ~ (5.1)

where

Sq ' r&&xp& S&
~ r&&xy&

m2 m2m~

2Sg ' r]gxpg —2'' rg)x p]
mfmy

(5 2)

predictions are in good agreement with the SU(3)-
like solution B (i.e., solution 1 of FP). This solu-
tion can be clearly differentiated from solution A

experimentally by a measurement of the sign of
the amplitude for NK- A(1610)-Ag. Such a mea-
suremedt would consititute an important test of our
model.

Finally, in the 5*2 sector we correctly obtain
the mass of the 5"2 (1620) and bracket with our
remaining two predictions the effect seen in the
S11 partial wave from 1750-1800 MeV. There is
no information on the composition of 3*-,' (1620)
and until the situation in the region from 1750 to
1800 MeV is resolved, any conclusions about the
compositions of states would be dangerous.

It is surprising that this force seems to have
three-body components. ' For example,

(S, —S,) ~ (px p,)
3

(5.3)

where m, p, p„and p„are defined in Sec. II. We
have calculated all the 70 1 matrix elements of
HsQ ( yQ ) u sing the same te chnique s as employed in
the calculations with Hhyp The complete re su its
are displayed in Appendix C; a good feeling for the
situation can, however, be obtained simply by ex-
amining the effect of HsO(yQ) on the X* sector alone.
It is not hard to see by looking at the trace of
Hso (yQ ) in the W*-,' state s that the center of gravity
of the two Ã*& states will be lowered by ~5 with
respect to its position in Figs. 1 and 2 relative to
the N*—', . But this amounts to almost 500 MeV and
so is totally out of the question. On this basis we
could argue that in the absence of other effects
Heo&, a& must be present at no more than about 10%
of its full strength. A more detailed analysis based
on the full results of Appendix C confirms this con-
clusion, which is very similar to conclusions which
have been drawn concerning the spin-orbit forces
in charmonium. "'

While we have no convincing explanation for this
observation, we would like to make a few specula-
tive comments. First of all, one could imagine
that the quark-gluon color magnetic moment is
highly anomalous. ' This would automatically make
spin-spin interactions dominant over spin-orbit
ones. Although we do not find this explanation very
appealing it is a possibility.

An alternative explanation is that the matrix el-
ements of Hso(yQ) are as calculated, but that they
are canceled by some other effect. If such a can-
cellation were to occur in each state, the effect in
question would have to be of a spin-orbit type.
There is in fact a spin-orbit coupling which we .

have, up to this point, failed to consider: Although
the long-range confining force is presumably spin
independent, "it zoill stil/ conA ibute to the spin-
orbit interaction through Thomas Precession It.
is, moreover, quite clear that this tends to cancel
with Hso(yQ) As is well known, the sign of the
Thoma. s precession term in a, I/r potential is op-
posite to the sign of the part of the spin-orbit pre-
cession arising from the interaction of the magnet-
ic moment with the magnetic fields due to the or-
bital motion. This sign is determined only by the
fact that the potential is attractive, and leads to a
reduction of the spin-orbit interaction strength by
the famous factor of 2. Now consider a quark
which is far away from the other guarks. It will
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feel a negligible sPin-orbit force from Hao(zQ) but
will feel a strong spin-orbit interaction from the
conf ining potential that is once again of opposite
sign to Ha«, G&. It follows that at some interquark
distance the spin-orbit interaction must change
sign, at which point it of course vanishes. The
crucial feature is the relation of this point to the
typical interquark distance in these states. We
have accordingly considered the spin-orbit inter-
action due to a harmonic potential,

= ~a'&
Thorn(HO) ~

Thorn(HO)

&

ICf

where

(5.4)

Z/12

Thorn(HO

) (S, +X,) ~ (pxpp)m

(S, -S,) ~ (p.xp, ) . (5.6)

The matrix elements of H», «o& are given in Ap-
pendix C. With co = 500 MeV and m —350 MeV
there is an almost perfect cancellation between the
takeo-body Parts of Hso&, a& and Hr„,~&ac& in the SU(3)
limit. A further enticing feature of this cancella-
tion is that in breaking SU(3) the only significant
change that occurs in the spectrum is that the low-
est ~*& is lowered by -40 MeV and the lowest

is raised by -20 MeV, thereby significantly
improving agreement with experiment.

Though this result is intriguing, it cannot be the
whole story since such a cancellation does not also
occur in the three-body spin-orbit terms. Even
though the three-body terms are generally smaller
than the two-body terms, without some cancella-
tion they still perturb our results in an intolerable
way. One way out of this problem would be to ar-
gue that since the confining force must necessarily
have three-body components which the harmonic-
oscillator model does not take into account, the
three-body terms in the spin-orbit interaction can-
not be reliably calculated. This may be so, but it
is a suggestion which we do not know yet how to
check. Another possibility is that the three-body
terms are not actually present; their derivation is
not straightforward and it is conceivable that they
are simply spurious. " In any event, a weakness
of this line of thought is that the cancellation which
occurs in the two-body terms is quite model de-
pendent (recall, for example, Ref. 16).

In conclusion: Spin-orbit coupling is certainly
small in these states, though the actual reasons
remain somewhat obscure.

HQ LA f s P$ I 0 PJ (5 5)Thorn(HO) m'

This interaction, like Hao&, ~&, also has both two-
and three-body components. For example,

VI. BEYOND HARMONIC OSCILLATORS

The above analysis can easily be generalized to
arbitrary orbital wave functions gf, P . This is
simply done by considering the relevant matrix
elements of the type & P» ~

6'(p)
~
g» & and

&g» ~p 'P, (cose, )~g,', & as arbitrary parameters at
our disposal. We then lose the ability to relate
these two matrix elements to each other and to
other quantities such as the expectation value
& g»

~

6'(p)
~

goo& (relevant to the &-N mass differ-
ence). Therefore we have two independent para-
meters which characterize the strength of hyper-
fine interactions and the relative amplitudey of the
tensor term to that of the contact term in a given
sector of the negative-parity baryons. Although we
lose some predictive power, we have so many
states available that we can still test the predict-
ions of the interaction (2.1) this time without mak-
ing any specific assumptions about the orbital wave
functions of the quarks.

While we have not performed an exhaustive fit of
this type, we did check the ~ and 5 2 and ~ states
in the approximation in which the distortion of the
wave functions g', g (due to m, 0 m„) is neglected.
In this approximation we find that the data would
choose a ratio y of the tensor matrix element rel-
ative to the contact matrix element rather near the
value y = 1 appropriate to harmonic-oscillator wave
functions. This is illustrated in Fig. 5, which dis-
plays the masses of the ~~ and A-', states as a
function of y.

It is seen that the mass of the two lowest-lying
states are not very sensitive to the value of y.

Although these two states A(1520) and A(1690) are
well predicted in the harmonic-oscillator analysis,
we learn that these two masses do not in fact test
the ratio y. On the other hand, the mass of the
lowest-lying A~ state is a very sensitive function
of the ratio y, and as the strength of the tensor
term increases the mass decreases. Since exper-
imentally the A(1405) is well below the A-,' (1520)
an increase in y can provide a mechanism for the
splitting of these two states. It is unlikely, how-
ever, that the observed splitting of the A(1405) is
entirely due to this mechanism, since there are
two difficulties when y is larger than about 1.5-2.
First, one notes that the first excited &—,

' state
also decreases rapidly in mass as y increases;
however, the harmonic-oscillator (y = 1) prediction
for this state (-1650 MeV) is in good agreement
with the experimental value (1660 Me V), whereas
for y = 1.5 this state would lie at 1610 MeV which 'is

rather poor. Second, as the value of y increases
the spin quartet component in the lowest-lying —,

'
state increases rapidly; even byy =2 this ampli-
tude is predicted to be 0.37, whereas the largest
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FIG. 5. The masses of the At~ ) and A(& ) baryons as a
function of the variable y defined in the text of Sec. VI.
The value y =0 corresponds to no tensor forces while
y = 1 is appropriate to harinonic-oscillator wave functions.

value reported for this quantity is 0.25 (in the an-
alysis of Hey, Litchfield, and Cashmore). There-
fore the largest value of y compatible with this
piece of information is about y =1.7.

In summary, by looking at the four lowest-lying
states A-,'", -', the best fit to their masses and com-
positions is rather near y = 1, the harmonic-oscil-
lator value. We stress that the best indications we
have for the ratio y come from mixing angles and
not from the masses of the states.

VH. SUMMARY, CONCLUSIONS, A'ND OUTLOOK

Our concern here has been restricted to the most
immediate issues raised by the application of QCD-
inspired interactions to negative-parity baryons.
It is quite clear that the data agree with the hyper-
fine interactions between quarks proposed by
De Rujula et al. , but without spin-orbit coupling.
We find it difficult not to be impressed by the over-
all goodness of the "predictions" which are based
on the simple Hamiltonian (2.1) with parameters
chosen from the ground-state baryons. What is
especially pleasing is that the tensor term which
plays no role in the ground-state I =0 multiplet
has the correct strength as predicted from (2.1)
with harmonic-oscillator wave functions. We be-

lieve this'particular conclusion to be quite new.
One other feature of the present analysis again

deserves separate mention: The splitting between
the J=-', A and 5 states provides good support for
the popular idea of a confining potential which is
independent of quark mass. This splitting illus-
trates the removal of degeneracy between the two
normal modes of the three-quark system brought
about by the heavier mass of the strange quark.

There is a whole ensemble of more advanced
questions which are raised by this analysis. We
already discussed the mystery of no spin-orbit
coupling in Sec. V. Another question, which we
have not discussed, concerns the precise" value
of o' required by this analysis and whether it is
consistent with the coupling of light quarks to glu-
ons as known from other places. These and other
related questions deserve separate and careful an-
alysis, which is, however, outside the framework
of the present paper.

The most immediate extensions of the calcula-
tions reported here are to negative-parity baryons
containing a charmed quark and to positive-parity
I = 2' states of the three-quark system. We hope
to report subsequently on these states. The most
important issue still remains that of how to con-
nect this and other phenomenological analyses with
the more fundamental theory of chromodynamics.
We hope this gap will eventually be bridged.

Note added in proof. The breaking of the degen-
eracy between the p and X states discussed here
provides a dynamical justification for an empiri-
cal mixing scheme previously proposed by %. P.
Petersen and J. L. Rosner [Phys, Rev. D 6, 820
(1972)] and by D. Faiman [Phys. Rev. D 15, 854
(1977)]. We discuss this in more detail in Phys.
Lett. 748, 353 (1978), where we also note the cor-
respondence of our work with a bag-model discus-
sion of T. A. De Grand and R. L. Jaffee [Ann.
Phys. (N.Y.) 100, 425 (1976)].

ACKNOW'LEDGMENT

This research was supported in part by the
National Research Council of Canada and bp the
Connaught Fund of the University of Toronto.

APPENDIX A: COMPUTATION OF MATRIX ELEMENTS
OF THE HYPERFINE INTERACTION

1. Contact terms

As an example we show the computation of ma-
trix elements of the three contact terms II",„„
H13,„„and H~„ in the state gf, y32/2Q, appropriate to
A'-,' . The simplest case corresponds to the contact
interaction between quarks 1 and 2:

811X3/2 I+cant I 411lt3/2& 3 2 3 &411 I (r12& I 411&82 g

x &q'/. Is, s.Ix.'/. &, (A1)
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(»)X,'/2 = X,'/2

vS
( 3)411 2411 2 411 x

(A3)

and therefore

&~11X3/21 o t I ~11X3/2& 4~&~11X3/2I cont I 411X3/2& (A4}

t/ t2 a (y1
I

63(m ) I
$)t

4 9'„'
x (x,/, ls, f, lx, /, &

Note that in obtaining (A5) we liave not yet assumed
harmonic oscillators, but only the permutational
ProPerties of )I)",g'. We have also neglected the
changes in tt)', g" induced by the different masses
nz, m'. In the harmonic-oscillator model this
,amounts to the approximation o.,= e,. For the in-
clusion of these effects see Sec. III.

For harmonic-oscillator wave functions (2.7) the
matrix element of the 6 function can be computed
easily:

The matrix element of the contact term, Hcontbetween
quarks 2 and 3 is the same as that between quarks
1 and 3 since there is explicit symmetry between

where we dropped the isospin wave function which
is not involved. This matrix element vanishes be-
cause tt), has to vanish when F»'= 0 since it is anti-
symmetric under the exchange (12).

%'e turn now to the contact interaction between
quarks 1 and 3 (recall that quark 3 is strange),
which can be related to an interaction between
quarks 1 and 2 by using permutations:

&)I)ttX3/2 Iff-.t I )I'ttX3/2&

=gP„X,/, l(23)(23)H",„t(23)(23)lq,"X /, ), (A2)

where

(23)If". t(23) =
C011t

and

f =-($x'+f) "'

&/i ')1 l&c.a)act IA ')t&

&A / I//contact IA P&

&/i / I//contact I/~ ~&

/ I+contactl~ /&

~ I /contact l~

/ I+contact l~

/) I//contact l~

)1 I+contact I~

-~2xy2f

+4 xXf

+~xy'f

+&~Z-xf ~

+~4. xyf

+4(3+3ssf)

-kx
+~4x

+$x

+~6~&-xi

+~x
4

+f(2.+3 ss)

quarks 1 and 2 in the state A —",-.
Because the contact terms have 9=0, I.=0, the

matrix elements derived above are also appropri-
ate to the states A'p-2'- and —,

' .
One can derive similarly the matrix elements of

the contact force appropriate to the configurations
'p, 'X, and 4X. The only difference from the pre-
vious case consists in the permutational properties
of X', X„(which are identical to those of ps, , g1„)
and the expectation values

(A7)

&X'.IS, S,IX'„.&=26„. . (A8)

The results are listed in Table III, which includes
also the off-diagonal matrix elements between 'p
and 2A. states.

2. Tensor terms

Tensor terms are somewhat more intricate to
compute a.s a result of the S = 2, L = 2 character of
the operators involved. We shall describe in detail
again only the computation of the three tensor
terms (between all pairs 12, 13,23) for the A —,

'
state: .

TABLE III. The nontrivial matrix elements of the con-
tact term. The entries in the table are given in units of
4 At))Ap /392&my, also

2x+1 ' 4

&al, xl,.Inl:,.„Ial, x.*g,) -=s l ;a„x,( ,a.s„a, .s„a- , .s)Sat x,'~.)md +12

2t)., ~ . . . , 3, , vY, ~ xst, t, -„-,;s, —,) a„a,l'„.a„. a, , xc, s s,.s,. x.,&, ),PPl g +12 II

where

(A9)

W(11, —'„2;2, -', ) = — =(10@6) '
3 3 5
2 2 2
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is a Bacah coefficient" and the last two factors stand for the seduced matrix elements appropriate
to the actual matrix elements displayed:

Ws —isbj/& p & -SO g p
X+1/2 2 1+ 2+ ~-3/2 ts/ t 41 2 12 12+ 12+ ~t-1 3/10

(A10)

where the last entry is the result appropriate to harmonic oscillators in the limit n, = o, For the
general case see (AS). We thus obtain

(g'„X,/, IH",„„,I P,g, /, ) = (2nJSm, ')(-412'/60& 2w) . (All)

The matrix element of the tensor term in Eq. (A9} can be evaluated more directly by using the expansion

S, .~S, .e 3- S, .S,=(2v/15)'' S, S, r„(~)-(S,~„+~„~,)1'„(&)

1—= (S,A 4S-„S„+S,S,„)F„(f)+('S„S„+S„S,)F, ,(P) +S„S„1;,(f),

which, however, gives rise to lengthier calculations.
The tensor force between the other pairs of quarks can be obtained from the result (All) by

making use of permutations

&&»X:/2 IHt'...., I &»~2/2& = &&»X'/2 IHt'...., I &»~2/2& = &~»~2/2 I
(23&(23)H t'....,(23}(23)

I &»Xs/2&

x I'2(y, 't ( 4&3
e+&~11X3/2 I tensor' ~11X2/2& 4 l 3 2 II 60~2x m„)I,

(A12)

(A13)

where we have used the permutuational properties
(AS) and have taken into account that the expecta-
tion value of the tensor force between quarks 1 and
2 in the state g" vanishes (in the state g' the pair 12
is in an 8 state}. Note that we have again ignored
the changes in wave functions due to the different
quark masses m and m'. In a similar way one can
compute the other matrix elements of the tensor
force in the J'= &, 2 and the off-diagonal terms 'p
-'p, 'X-'p, 'X-'X, and 'p-'X. These are listed
in Table IV.

By replacing the arguments of the 5 functions by
functions of p and X one obtains by explicit calcula-
tion the results shown in Table III.

The tensor terms are, as usual, more problem-
atic. The matrix elements of H,",„„areunchanged
from the values calculated in Sec. 2 of Appendix A,
but to calculate the matrix elements of II",,„„,
[which are equal to those of H",, ,„by (12) symme-
try], we have made a change of variables to

vSu=- —x+ 2p= —(r —r )
2 v'2

3. Vfave-function distortion due to n 4 n„P

In calculating the hyperfine matrix elements one
must in principle take into account the fact that
as et n„ in Eq. (2.V). We have found in practice that
these effects are relatively small in the S= -1 sec-
tor, and so do not much affect our description of
this sector. Nevertheless, it is important to take
these effects into account not only for accuracy and
completeness, but also for the purposes of making
predictions for S= -2, S = -3, and charmed sec-
tors. The accounts of the preceding two sections
were designed to allow the reader to easily check
the main features of our calculation in the S= -1
states without becoming enmeshed in the more ted-
ious calculations which arise when 0.,a„. Here
we outline how one can take these effects into ac-
count.

The contact terms remain very easy to calculate.

j 1
v = —p - 2X = (r, + r —2r, )

2 v'6

and made use of the expansion (A12) with r"-u.
After making this variable change one is left with
integrations which would be straightforward were
it not for a troublesome factor of

I &3
exp, i (n„—n, )u. v

'

l„2

appearing in the integrand. Fortunately (1212 —12,2)

is small here and we have found that to better than
1% accuracy in the final answer one can replace
this factor by 1+ (VS/2)(tx„' —ns')u 'v. The integra-
tions may then be performed easily, the main com-
plication being keeping track of Clebsch-Gordan
coefficients. The results are shown in Table IV.
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TABLE IV. The nontrivial matrix elements of the ten-
sor term. The entries in the table are given in units of

4+z+p/3~27I m& in terms of the quantities

—y2(&y2+4) -3/2(Xy2+2. )-i 4-2y2
4 4 4 4 y+y2

s.' = {frrr J.{ r{2{sr IL{ r )
2

y +y2

I =—(~y2+~) 3/2("y2+~) ' 2'
4 4 4 1+y2

I t —(gy2+&)-3/2(Zy2+g)-1 2.
4 4 4 4 y+y2

ing of the spectrum.
In the harmonic-oscillator model we expect that

the zeroth-order masses of our states will be

M ('Ã, 'N, '4) = m, , (Bl)

2x+1 '/'
M{A'X, Z'X, Z'Z)=m, +&m--', ~ 1-

(B2)

2„+y
M (A 'p, A 'p, 5 'p) = m, + &m- ~ &o 1—

(Bs)
where

2~+ ~ '/4
Z/2

M (= &{., ="Z)= m, + 2&m —~ 4 -—,x
5 2+x
2 3

(B4)

&A 'p~2 Ia„„...IA 'p~2)

p 2 IarensorlA p 2 &

(A ~p+ Ia„„...IA 4p+)

&~'~~ Ia„„...I~'p$ &

&a '4; Ia„„...Ix 4p~2 )

(w'p~2Ia„„...Ia'p~2 )

M(2 +X~g)

+X(2 +Xgg)

~4(~+~xg)

40

W2
Xg

8

(k 2
egg)

v5

&A 'pgla„„...lA 'p$ & (4 Egg)
v2

3 3

~ 2 Iarensorlz

(z ~ 2 Iatensor Iz

(z 4z~2Ia„„...Iz 4V; )

++5@@

—
4 ah

~glatensorlZ
W2

8

(z p 2 Iarensorlz 40

(z 2p~Ia„„...Iz 4V; ) &h
8

(z '~~2Ia„„„,Iz '&, ) — h

4(2 +X~)

+X(2 +Z~)

i(x+~~)

W5

40

W2

8

(4 4~)
40 3 3

(tL X~)v2

20+

W5

40

M(:- p)=m, +2&m —ur 4--,~ 2+%
2 3

M('0) = m, + 2&m —4&v jl —x'~'),
(B5)

(B6)

where &m = m, —m„, & is the harmonic- oscillator
spacing in the nonstrange sector, and m, is an un-
known constant.

Within a given strange'ness subspace these for-
mulas, while specific to the harmonic-oscillator
model, will be characteristic of any potential mod-
el: A heavy quark will have less energy in a given
state than a. lighter quark. %e therefore have no
doubt that this feature, which ig essential to the
understanding of the spectrum, is realistic. The
relative positions of the S=O, —. ]., -2, and -3 sec-
tors should also be qualitatively coz rect, but here,
where the spacings are quite large, the uncertain-
ties are larger than within a given strangeness
sector, and it is difficult to know how much confi-
dence to place in the predictions. To test the
credibility of these formulas we have therefore
turned to the ground-state baryons. We have found
that withe=0. 6, &=520 MeV, &m=280 MeV, and
fsee Egs. {A5) and (A6)]

APPENDIX B: THE ZEROTH-ORDER MASSES

We explicitly segregate this discussion into an
appendix to emphasize that the determination of
the zeroth-order masses of these states is a prob-
lem quite distinct from the main concerns of this
paper. The reader may, in view of this fact, wish
to consider these masses to be free parameters;
we would like to point out, however, that the har-
monic-oscillator model can predict these masses
as well, and thereby provide additional undex'stand-

-'-, = 300 MeV (BV)
77HZ g

(where o.' = /2Km, ) the analogous formulas to
(Bl)-(B6), coupled with the hyperfine interaction
(2.1), can convincingly describe the positions of
the N, &, A, 5, 5*, :", :-*,l and A. We therefore
use the 56 I, =0 states to fthm all our parameters
which then determine aB of the unperturbed masses
in the 70 L =1 states in terms of m, . We should
stress that not all our results depend, in anyevent,
on all the parameters. For example, the mixing
angles in the N*'s are entirely independent of all
parameters, ' and the complete set of mass split-
tings and mixing angles in the S = 0 sector depend
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TABLE V. The matrix elements of the two-body part of the spin-orbit interaction, where

I' 2x+1
~ =(Xy2+1.)-2/2(Xy2+f )-1

Q = ($y2+f)-2/2(ky2 +f )-5/ 2

I22 —yyy 2 5 y2

2+2/.=.(:::;)
1+3y2

+ 2/2

I '='(: )
="'(': I

Jill Q 4 3

r
40.so.

in units of ~=
3V2& md

&so~o~

~ ~ K
in units of y=

md

A4pg A4pg 1 1 1+4x+x'
2 4 6

3 x'+2x 2J/i
8 x

A2pp A2pg

A4pg A4pg

A2AQ A2pp

A2pp -A4pg

f 2+2x-x2~+ I'
3 24( 3

1 1 1+4x+x
3 6 6

I It

W5 1+2x
8 3

W5 v 5 2x'+2x —1
6 24 3

-$-~24 (2-X2)&'

+$ JlN

JlÃ
8

v5 W5

6 24

A2pp A2pp

A4pg -A4pg

A 2A.Q A 2pp

A 2' -A4pp

A2pp -A4pp

3 'x + 2x jp

2 1 2+2x-x I'
3 12 3

5 5 1+4x+x2 I'
6 12 6

1 1+2x

8 3

vY W2 2x2+2x-1
6 24 3

g x2Jtt
4

+3+~(2 (2 -x2)J'

5 5 1+x2

g JNI
4

vY
8

~2
(2 2 1)J.

6 24

Z4~~2 -Z4) $

z'z~ -z'~~
2 2

Z 2pp Z2pp

3 1+4x+x2 I"
4 6

1 24+2x ~x

1 x +2x

3 1 x Jgp

—,(2-x )J"
I

fx2J~
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TABLE V. (continued)

H2~
SG(i&)

(
40.,e„3

in units of o =
3 Fmd

a2'
SO(HO)

~ ~
K

in units of p =
md

z 4~4& -z 4~~2

Z 2A~ Z 2p~

1 1+4x+x2 I"
2 6

1 1+2x

1 (1 *)~„

g JrN
8

Z 2m~ -Z 4m~
2 2

2x'+ 2x —1
8 3 (2 2 1)J'Il

8

Z 2p~ —Z 4k~ V 5 1+2x I»
8 3

JtN
8

Z2~~ -Z2V- 1 2+ 2x -x2
+~4(2-x2)J"

Z 2p~ Z 2p~
2 2

1 x +2x
x J'

4 x

z4V: -z4V:
2 2

5 1+4x+x2
IN

4 6

Z 2m& -Z 2p& 1 1+2x
4 3

g JNI
4

Z2~~ -Z44:
2 2

v 2 2x2+2x —1
8 3

(2x '-1)JN
8

Z 2p~ Z 4k~ ~2 1+2x
8 3

v2
8

only on 5 which is directly determined in terms of
(M~ —Mn). Moreover, these values for x and &o

are essentially the canonical ones; that &m seems
rather larger than its canonical value we believe to
be due to the fact that wave-function effects, which
we have stressed here, if not taken into account
make &m seem smaller. Finally, in support of the
utility, if not reality" of these parameters, we
note that one can correctly obtain m, itself from
the unperturbed position of the nucleon. In any
event, we shall simply take x, co, &m, and 5 de-
termined in this way and apply them to the 70 L = 1
supermultiplet. It is in this sense that all that fol-
lows is an absolute prediction with no free para-
meters. On the other hand, the reader who is
skeptical of this approa. ch may, as mentioned
above, simply ignore our conclusions about the
relative positions between strangeness sectors and
concentrate on the results seitkin a given sector.
These splittings and mixing angles are essentially

/

independent of detailed assumptions, and should
be quite reliable.

In summary: We use the values m, =1610 MeV,
x = 0.6, &m = 280 MeV, e= 520 MeV, and 5 =300
MeV as the five parameters of this analysis. In
any case our results are not sensitive to the value
of x and &m; in particular, we have also used
x = 0.7 in conjunction with the approximate formu-
las (&, = a~) of Tables III and IV and obtained very
similar eigenvalues and eigenvectors to those
listed in Ta,ble II.

APPENDIX C: SPIN-ORBIT MATRIX ELEMENTS

IN THE NEGATIVE-PARITY BARYONS

The conc, lusions of Sec. V depend upon the ex-
plicit calculation of the matrix elements of the in-
teractions (5.1) and (5.4) arising from one gluon
exchange and the confining potential, respectively.
These interactions break up into two-body and
three-body interactions and are so decomposed in
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TABLE VI. The matrix elements of the three-body part of the spin-orbit interaction,
where

=y(Q y2 ++) 3/2 ( y2+ —) 12x+1 «4

and

g =y4(+y2+Q) 3/2(+y2+0 ) 5/2
~

SO(gg )

4n 03 ~

~

in units of 6 =
t, 3v'2x mq' &

~3B
so(Ho)

(in units of y =K/gq2)

A p+" A4p+"
2 2

A2p + A 2p+"
2 2

A4p & —A4p&

A2A, + A2p+"

A2x& - —A'p~2-

A2p+ ~ A4p+

A 2p+» ~ A 2pX

A4p&- —A4p&-

('-")"
' a

2

24

6x —x —22

Ry

(1-xt'~

) fthm

2x —1
72

y ~+ (2x —1)R
36 72

vg
72

(6x —1—2x2) Ry

~(2x-x'
12

6x-x2- 2

(i-*')s,
8

2x -1Sy8

""'
S

(z-,
)

ivy '++4~

~5
12 24

vg
— (1+ 2x2) Sy

x2
$

(': )
1—x 2

A 2X~ —A 2p+"

A2u;-- A4p&-

A2p&-- A4p&

& x-2x —1
36

+ y
"~+ (2x —1)R

36 72

+ (6x —1—2x ) Ry
v2
72

-cy wf

~2 S+ 12y + S

+ (1+2x )SyvT
24

Z4Z&-- Z4Z&-
2 2

Z 2A+"
2 2

g 2pg ~ g' upZ

('"-"-').2

72

2x x
24

x2x
8

S.4X&-- Z4X~2, 2

2. 2A,
+"—Z 2p+

Z2X&-- Z9~
2 2 (6x —1—2x )Ry2

72

+~ '+ ~r&

(1+ 2x2) Sy
W5

24



NATHAN ISGUR AND GABRIEL KARL 18

TABLE VI. (confieued)

H3B
so ( gt". )

~ ~ Q~ 3
in units of 6 =

3v 2 7f' st y

H3B
SO(HO)

(in units of 1/=X/gz~ )

g 2p& —Z4Z& y"~+ (2x —1)R36 72
V

12 24

ZA. ~Z &

g 2p+ Z 2k+
2 2

Z4)& -Z'p$

6x —x —2

-("-")"'
(' )"

x2
Sy ~

2/4 ~g 2p+
2 2

-i 2x —1

Z2X& -Z4X~
2 2

j~ 2p+ ~g 4gZ
2 2

(6x —1—2x )By
V2 2

72

+~2y-~+ '
(2x 1)a

36 72

(1+ 2x ) Sy
V2
24

M2

12 24

(5.3) and (5.6). The matrix elements of the two-
body part of these interactions are easily calcu-
lated as p xp, is just L„ the angular momentum
of the p oscillator. This simplifies only the calcu-
lation of the two-body part of H", of course, but
a transformation to the variables u and e defined
in Appendix A3 can be used to calculate matrix
elements of 0". The results of such a calculation
are given in Table V, where the entries are accur-

ate to order [(a„—a, )/(a~+ a,)]'. We remind the
reader that, as discussed at the end of Sec. III
this table is complete in the sense that the matrix
elements for any negative-parity baryon may be
obtained from it by a suitable choice of m and m'.

The three-body spin-orbit interactions are con-
siderably tougher and we found it necessary to use
even more effort than in the previous calculations.
The transformation to the coordinates u and e for

TABLE VII. The spin-orbit matrix elements in the SU(3) limit, where & =—4e,e /3v2~m„,
q = X/~„2.

Hso Hso

8 2

21 2

k'e 0)
10 ~2

21 2

(2s z)
)'s , i

4 ((5-7)

4 (~-V)

-~8MI0 I

(~-7)

/

«-v)

-~)2 (~+ 3V)

0 $~10)

, (&+3m)

~(& +3m)

f 0
~

i|'+sr)
u 0

—~6(&+3V)
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calculating matrix elements of H" is again very
useful, but other than this ave can offer no advice
on how to simplify the labor involved here. The
results are given in Table VI.

Since the tables are rather lengthy, it may help
the reader to digest their contents to examine the
matrix elements of Hso in the SU(3) limit which we
display in Table VII.
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