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The decay rates for the electromagnetic decays of vector mesons are derived within the spectrum-

generating SU(4) approach. Radiative as well as leptonic decays of vector mesons can be derived from one
theoretical assumption and given in terms of three reduced matrix elements. The implication of the
experimental value I'(p~rry) = 35+10 keV for the form of the electromagnetic current operator is

discussed. Two alternatives have been considered: (1) The electromagnetic current operator in SU(3) is given

by the Gell-Mann-Nishijima formula; then the experimental value I (prey) = 35+10 keV cannot be
obtained. (2) The experimental value of I'(p —+wy) is taken to determine the value of the SU(3)-scalar term
in the electromagnetic current operator. The resulting ansatz for the electromagnetic current operator is

compatible with the experimental values for I (q'~py)/I (q'~goy).

I. INTRODUCTION

If the groups SU(2), SU(3), SU(4), etc. , are
treated as symmetry groups,

I P„,SU(4)] =0,

where P„ is the momentum operator in the hadron
space, then one uses the %igner-Eckart theorem
to write the matrix elements of a regular tensor
operator TB in the form

&n'p'IT'I pn) = g C(n, pn'), &m. p'IIT Ilpm.)„
(1.2)

where C(n, P, n')» are SU(4) Clebsch-Gordan co-
efficients and (m„p'IITIIpm )» are SU(4)-invariant
reduced matrix elements. Expressions like (1.2)
may be fulfilled (i.e., (m „,p'

II T IIp.n )» may be
invariant) only to the extent to which the mass
dependence ~ upon the internal quantum numbers
n can be neglected. Such a neglect of the mass
differences within a multiplet is obviously un-
justified for SU(4). Already for SU(3) the variation
of the "reduced matrix element" (m p'

II T IIpm„)»
with n and n' may be as large as the variation of
the Clebsch-Gordan coefficient C(n, P, n') with n
and n', for SU(4) the variation of (m „p'II T II pm )„
may be much larger than the variation of C(n, P,
n').

In the spectrum-generating-group approach, '
the group that classifies particles with different
masses in a multiplet, which we will call SU(4)s,
is assumed to fulfill instead of (1.1) the relation

IP„,SU(4)s]=0, where Pu =P~M '. (l.3)

Under assumption (1.3) the natural choice for
basis vectors in the hadron space is

83C "~ where X is the representation space
of the velocity-Poincare group tL g charac-

If v,
terized by the invariants P~P" =1 and s, and
Xs"I'1 is the representation space of SU(4)s. Thus
the generators of SU(4)s are represented by 1
8E, and the generators of O'L P„are repre-

ss LIf gP

sented by l.„,(31 and I'„ l. However, the mass
operator and consequently the momentum oper-
ator, i.e., the representative of the generator of
the physical Poincard group in the hadron space
X~ LSRsU ', cannot be given as a direct product
in which one of the factors is the unit operator.

In our quantum-mechanical description of the
one-hadron system the algebra of observables con-
tains in addition to the operators of the extended
Poincard group and the generators E of the spec-
trum-generating SU(4)s other observables which
are defined by their algebraic relations with these
operators. Such observables are the transition
operators or "nonlocal currents" V„; p. indicates
their transformation property as a Lorentz-vector
operator and the label n, which can take all the
particle labels w, I|, g, D, F, g, and 0,' is con-
nected with their SU(4)s transformation property. '
However, as discussed in Ref. 1, there is no rea-
son to assume that the transition operators V„
themselves are regular tensor operators. Instead,
experimental data give preference to the assump-
tion that functions of V„and the mass operator,
e.g. , V„={V„,~ '] transform irreducibly under
SU(4)s. In the direct-product space for the one-
hadron system K 8X " ' these irreducible tensor
operators are then without any further assumption
written in their most general form as a linear
combination of direct products of operators V„'

in X and irreducible tensor operators Vi in
sv«&.

Ipss„n) = Ipss, ) Cg In) .
This is the basis in the direct-product space

(1.4)
Vr(@V (1.5)
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where I are some additional labels.
Instead of (1.2) one uses in the spectrum-gen-

erating-group approach the Wigner-Eckart theorem
for the matrix elements of the irreducible tensor
operator Vi" between the generalized eigenvectors
of velocity (1.4):

&~'p'fT'fPO(& = Q C(nPc('},&P'117'IIP&, . (1.6)

Now the (P' ffT ffP&~ are SU(4) ~-invm'iant reduced
matrix elements which are functions only of SU(4)+-
invariant quantities like the four-velocity P and
do not depend upon a.

In Sec. II we apply the above ideas of a rela-
tivistic quantum mechanics, using the spectrum-
generating-group assumption (1.3) and a well
specified transformation property of the V„", to
the calculation of the radiative decays t/'-Pz. The
result (2.20) differs from the conventional ex-
pression for I'( I'- Py) by a suppression factor
P(m~, m), } (Ref. 5) whose detailed form depends
upon the precise assumption of the SU(4}~proper-
ties of the electromagnetic transition operator.
The SU(4) matrix elements can be expressed in
terms of four reduced matrix elements which can
be reduced to two after the charge-conjugation
property and the group-theoretical substitute for
the Okubo-Zweig-Iizuka (OZI) rule has been used.
The number of parameters may be further reduced
to one by the requirement that for the old mesons
in SU(3) the electromagnetic current operator is
given by the Gell-Mann-Nishijima formula. How-
ever, this assumption cannot reproduce the ex-
perimental data for I'(p- vy), so we have also
tried dropping it. Both cases are capable of de-
scribing the general features of the experimental
situation, in particular the suppression of the
radiative decays of the new mesons II)-y(2. 8)y and
D*-Dy. The recently measured value of I'(g'
—py)/I (g'- &uy) is also compatible with both cases.
In Sec. III the same assumptions that were used
in Sec. II for the radiative decays are applied to
the leptonic decays of vector mesons, V-ee, and
agreement with the experimental values is ob-
tained. Therewith all electromagnetic decay rates
of vector mesons can be derived from one precise
theoretical assumption and given in terms of three
reduced matrix elements. Although this particular
form of the suppression factor is phenomenologic-
ally acceptable within this context, it is not yet
firmly established. Nevertheless, the general
idea of the spectrum-generating-group approach
appears to be the only tenable interpretation of
SU(4)."

II. RADIATIVE DECAYS

In this section we wi11 discuss in detail the decay
of a vector meson V into a pseudoscalar meson &

(l('k' fkX& = 6 2E(k)6(k —k'),

then

(2.2)

(2.3)

However, one could also choose any other basis
system. As we have remarked above, under as-
sumption (1.3) it is very advantageous to choose
for the hadron spaces not the generalized momen-
tum eigenvectors but generalized velocity eigen-
vectors fPA. & which are normalized according to

&&'P'lP» =6 2E'(P)b'(P-P'), (2.4)

where P=P/m and E=E/m =(1+p'/m')'~' Then

(2 5)

Using the generalized momentum eigenvectors
(2.2} for the photon and the generalized velocity
eigenvectors (2.4) for the pseudoscalar mesons,
one has the basis system

fbPy& = fPP& (8) fkAy& = fPkAPy&; (2.6)

so (2.1) is written as

r(v-~) 2mf "'„~ g f ='~a(z, +z, —.E,)
y

&& f(PyakP fr f V) f'.

(2.7)

The decaying state vector f U) may be expanded
in terms of the generalized velocity eigenvectors

and a photon y. Owing to the possible nonlocality
one can already not use the conventional expression
for the decay rate; we start with its derivation.
From the general principles of quantum mechanics
it follows that the rate for the decay of a system
V i.nto a system &y is given by

I'(I'-Py) =2 Zb(E. P-.-) f&yPbl7'll')t',

(2.1)

where fV) denotes the state vector describing the
state of the decaying system U and fbPy& denotes
(not a state vector but) an element of a basis sys-
tem of (generalized) eigenvectors which span the
space of the decay products P, y. g, means sum-
mation (or integration) over all values of b which
are detected. T is the transition operator (inter-
action Hamiltonian).

In relativistic processes one usually chooses
these generalized basis vectors to be generalized
eigenvectors of the momentum operators. If these
generalized momentum operators fk, A& are
"normalized" according to
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(2.8) 4x"(P )4'x'(P ) = 35 k" v2~5(P'- pv)

= s5~-~ ~v'2&5(P' p-p) (2.9)
where the "velocity wave function" Q z(pv) is
normalized such that

The label V in jpX V& stands for the internal quan-
tum numbers a of the vector mesons, and

(P „(P}(' describes the probability density that
the momentum of the decaying system is P =m&P
and the polarization is &. For the case that the
decaying particles have the momentum pv(=0) and
completely undetermined polarization

as there are three polarizations g.
As a consequence of momentum conservation (or

the Wigner-Eckart theorem for the scalar operator
T of the translation group) one can write the T
matrix

& r~PITlh'&, V) =5'(n+P-P'}&&yP(T( V)&,

(2.10)
where the reduced matrix element depends only
upon two of the momenta A, P, P'.

Using (2.8) with (2.9) and (2.10) in (2.'I) one ob-
tains after some calculations:

I'( V P ) =2 Z 5(E +E,—E„)5'(P+&-P ) . , 2 l«&,PPITIP V~ && I' (2.11)

where Q q „„means summing over the photon
'

y V
polarizations and averaging over the vector-meson
polarization.

Equation (2.11}is still completely general. For
the T matrix of the radiative decays we assume,
in analogy to (3.15) of Ref. 1 and in concord with
the lowest-order perturbation theory expression,
that the T matrix can be written as the product of
a photonic part e"(0, X) and a hadronic part:

«XyPP IT IPv V) v » = e"(0, X)«PP I H'„ IPv V&v »

(2.12)

where H„' is the transition operator (nonlocai~
current) in the electromagnetic transitions of
hadrons.

The hadronic matrix element «Pj ~

H'„' g» V&& is
obtained from the theory that describes the hadron
structure, which is assumed to be a relativistic
quantum mechanics. For the model which de-
scribes the vector mesons and pseudoscalar mes-
ons it is given by an algebra of operators, which
in addition to the generators of the extended Poin-
care group and the group SU(4)~ [or the suitably
defined group SU(8}j contains a sixteenplet of
Lorentz-vector operators V„, o. =a, n, g, E, D, E,

(In addition to the Lorentz-vector operators
there are also Lorentz-axial-vector operators
A„and perhaps others which, however, do not
concern us for electromagnetic transitions. ) These
vector operators are very reminiscent of, but not
identical with, the local currents. Their proper-
ties are just specified by their relations to the
other operators of the algebra (algebraic rela-
tions), e.g., that they are Lorentz-vector operators
with a certain charge-conjugation and time-in-
version transformation property and have a par-

ticular transformation property under SU(4)s. In
analogy to the property of the local current op-
erators, one would want to assume that the V„
are scalar (for n =c') and regular tensor operators.
However, as SU(4) is not considered to be a sym-
metry group, one may want to admit a more gen-
eral transformation property of the V„which in
the symmetry limit goes over into the old assump-
tion. Various possibilities for these new assump-
tions have been discussed in Ref. 1 for the weak
leptonic decays.

We choose here in analogy

Hg' =&('if, A', V~B, q='~1~ ~ (213)
where M is the mass operator and where V„"
for SU(4) according to (23) of I is given by

V& Vwo+ I Vq (2)x/2 Vx+ Va
P ~ (2.14)

As in Ref. 1:

{Vg, &lf ') = SU(4) ~-regular-tensor operator

(2.15)

for a = v, K, . .. , and an SU(4)z-scalar operator
for 0. =&.

The strength constant G is dimensionless for
q =1. However, as there is no theoretical deriva-
tion of basic assumptions like (2.13) (2.15) and
their only justification can be given by agreement
with experiment, we include in the fits of Table II
also the values g =

& and &.

From this assumption (for q = 1), from the trans-
formation properties with respect to the homo-
geneous Lorentz group, space reflection and time
inversion, and from CVC (conservation of vector
current) in the form
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[P" If"1=0» (2.16) pression factors. From the general form of (2.13)
suppression factors of the form

where P„ is the momentum operator in hadron
spice, it follows that the matrix element describ-
ing the hadronic structure can be written as

e+m a
~(e)(m m )»' v

P v
(2.22)

«Pp[H'„'[q V)(» =Q(m +m )(PI V ~ IV&

x e„,p, p'q~e'(q, )(). (2.1I)

Here e'(q, &) is the polarization vector of the
vector meson, q" =mvq' is its momentum, p'
is the momentum of the pseudoscalar meson and
&P[V ~IV& is the SU(4) matrix element. V I is
one or a, linear combination of the operators V&'

in Xs" ' occurring in (1.5), mag standing for the
index I.

Inserting (2.IV) into (2.12) gives

d3k d3p"~f »», »»~'"-»-"'»E,

x lepvoop qve (q&v)e"(~ )() I

(2.19)

which after integration becomes

1(v-P)) =2v ' 'G(P[v" lv)
mpmv

2 3
mp't

x —m„' l. —
24 mv]

(2.20)

This expression differs from the usual expression
for the V- P) decay rate, by the appearance of
a mass-clependent suppression factor

p +mv = y(m~, mv) .
mpmv

(2.21)

As mentioned above, different assumptions than
(2.13) with q = 1 and (2.15) will give different sup-

«) rPp[T[q v)( » =G(m~+m )&Plv ~[v&

x e„)p,p'q e'(q)) e (k» )(),

(2.18)

which is identical with the usual matrix element
for magnetic dipole transitions, except that here,
due to the use of generalized velocity eigenvectors,
the magnetic moments depend not upon the internal
quantum numbers through &Pl V ~[ V) or the
Clebsch-Gordan coefficients, but also upon the
masses (m~+mv).

To obtain the decay rate one inserts the 7.
' ma-

trix (2.18) into (2.11)
2

r(v-P)}=2v ' 'G&P[v "lv&
mpmv

&P [ V "
I V& = Q C(V, el, P) ~ a(q) . (2.23)

As a consequence of (2.14) these electromagnetic
components of the Clebsch-Gordan coefficients
are given by

C(V, el, P) v= C(V, vo, P) y+ C(V, q, P)
1

Ms

—(~)' 'C(V, )(, P)), + C(V, cr, P),

(2.24)

where ) stands for the additional label F (anti-
symmetric) or I) (symmetric} and V and P for the
internal quantum numbers of the mesons.

For the four reduced ma,trix elements a&&& we
use the following notation:

a( ) =&0 &»}IIV'"'ii)»)1 & =P,

, , =&0-(15jl[V'"'[Ij15)1 & =D=v3d,

a( ) =&0 l»kllv'"'ll(1)I &

&I jljllv'"'ll(»X & =A,
&&5

a(e) =(0 (151[V'Ii15&1 ) =S.

(2.25)

From Eq. (36) of I it follows that F = 0. In order
to obtain the SU(4) matrix elements &Pl V '~

I
V&

the vector mesons I V& and pseudoscalar mesons
[P& have to be assigned to vectors with definite
SU(4) properties. As described in I (Sec. IV) we
shall choose for the pseudoscalar mesons the
basis vectors of the reduction chain (3I}of I and
for the vector mesons the basis vectors of the
reduction chain (38) of I. The 1=0 vector mesons
are then described by (42) of I and the I=0 pseudo-
scalar mesons are described by the unmixed SU(4)
basis vectors. We shall call this particle assign-
ment the ideal mixing limit. This limit ignores
not only deviation from ideal mixing for vector
mesons, but also g-g'-y mixing and isospin mix
ing. Deviation from ideal mixing should not be
considered separately without considering isospin
mixing (po-(»»» n'0-))) because they are of the same

would follow. However, basic assumptions like
(2.13) or (2.15) have only an empirical justification.
Other forms of the suppression factors are also
possible and should be tested.

The SU(4) matrix element is expressed in terms
of reduced matrix elements a( ~) (Ref. 7) and the
SU(4) Clebsch-Gordan coefficients C(V, el, P):
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a+~A .22 (2.26)

The reduced matrix elements d, A, and S are
free parameters which can be determined by a fit
to the experimentally known decay rates of the old
vector mesons (see Table 11}. The experimental
rate l(g- v'y) =4.9+1.6 keV is orders of magni-
tude smaller than expected from its phase-space
value, so one may conclude that l(w'l V glP) l =0.
From (2.26) it then follows that the decay rates of
g- n Oy and p-qy must also be small. The re-
quirement

A =-d/~2 (2.27)

TABLE I. SU{4) matrix elements of the transition
operator between pseudosealar and vector mesons.

General Nith {2.27}

1-d-~A

magnitude and perhaps of the same origin. '
The Clebsch-Gordan coefficients C(V&, el, P),

i.e., the coefficients appearing in the matrix ele-
ments (Pl V~l V~) where

l Vg) stands for the
basis vector in the SU(4) basis [Eq. (41) of I] are
given in Table VI of I, and the coefficient appear-
ing in the matrix element (Pl V gg lo') in front of A
is given by C(u, P, I') =6 gp. ' Using for the ideally
mixed vector mesons the expressions (42) of I
one then obtains immediately the SU(4) matrix
elements (Pl V~

l V) in terms of the three pa-
rameters d, 4, and S. These are listed in Table
I, except for:

,Olv-el~) &~olv~l4,

will make the amplitude for these transitions zero
if one uses, as done here, the ideal mixing limit.
We postulate relation (2.27) (and corresponding
relations for other decays), which then explains
the smallness of the decay rates of f into the old
mesons as well as the smallness of Q

- gy as slight
deviations from ideal mixing. In the quark model
the consequences of (2.27} are explained by the
0@I rule &0»

There is another possible theoretical require-
ment that would further reduce the number of pa-
rameters and relate d to S. This requirement
would be that the SU(3}-scalar part of V g would
not contribute to the matrix elements of V be-
tween the old mesons. That is,

(0, P'I[- (-')' ' V" + V;] l
V ', I ) = 0, (2.28)

where P' and t/' are any of the old pseudoscalar
and vector mesons, respectively. This leads to
the following relation between the reduced matrix
elements:

S=- Bd. (2.29)

In the symmetry limit, (2.29) leads to the same
predictions as the naive quark model. " It is well
known that the prediction I"(p- gy)/I'(&o wy) =&~

of that model is in disagreement with the experi-
mental value I""g(p- Vy) /I""g (v - n y) = ~».
Furthermore, as the p and e masses are so close
to each other, any suppression factor will fulfill
P(m „m&) = Q(m „,m ). Thus it is highly unlikely
that this, disagreement could be explained by a
symmetry-breaking effect. Therefore, if I""g(p- gy), which was obtained in only one experiment, »
is correct, (2.28) cannot hold and the Gell-Mann-
Nishijima formula for the current must be aug-
mented by an SU(3) scalar term Vgg, so that in

SU(3) the electromagnetic current is given by

{3)i/2d A+ {2)i/2S1

&niv-'l~&

(xlv-gle&

(~ ol v mag
lD og)

&~'I v-g l~'*)

(~ +l v magllg +s)

1 1 ~3~ d+~A+ —S

(~ Ol v magi~ Og) d + s
&z'lv 'g)x'+) s

1 1~d-~A-~S

{-'}'"(d+S)

d+S

—{-d+S3
2

(2.30)

This still leads to the old dwell-Mann-Nishijima
formula for the meson charges, since

(~lV'l~~) =0 (2.31)

according to (29) of I. It should be remarked that
&„cannot contribute to the baryon charges but

might contribute to the baryon magnetic mo-
ments. '4' "

From the experimental value of I'(p- ny)/
I'(&u-vy) one obtains lS/dl=, '-. The'experimental
value for I'(@- gy)/I'(&u - ggy) favors a positive
sign y so

S=d (2.32)

is the empirically determined relation between S
and d. A detailed comparison of the predictions of
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TABLE II. Calculated values of the decay rates, in keV. In the first three fits [these fits
have already been published in A. Bohm and R. B. Teese, Phys. Rev. Lett. 38, 629 (1977)]
the ratio d/$ is fixed empirically [Eq. (2.32)], using the suppression factor (2.22) depending
on q. In the last two fits, the relation (2.29) is used with the suppression factor (2.33) de-
pending on p. The parameter d is fixed by the w ~ rate.

Decay Experiment P=2

(d~ &P

p~ fry
@0' @0~
E* X&
(d ~ ~
p %'
0- xv
g) Og DO~
g)+ g D+~
g+g ~+~

870 y 61a
66 ~9b
35 + 10c
75 + 35~

&80
3 042.5 d

50 + 13d
&3 5'

870
51
35
66
1.9
0.18
3.9
0.30
0.10
0.006
0.006

870
76
35
87
2.6
0.22
4.8
1.6
0.35
0.022
0.022

870
98
35
98
3.0
0.23
5.0
7.3
1.0
0.07
0.07

870
77
95
89
23
2.2

18
18
3.9
0.24
0.24

870
60
96
79
20
2.1

17
4,0
1.3
0.08
0.08

~Particle Data Group, Rev. Mod. Phys. 48, S1 (1976).
"See Ref. 16. The Drsay results are I'(Q ~)=107+29 keV fp. Benaksas ep a$. , Phys.

Lett. 42B, 511 (1972)] and I'(Q pp)= 62+ 16 keV I,G. Cosme et a$. , Phys. Lett. 63B, 352
(1976)].

cSee Ref 13
See Ref. 17.

'B. H. %'iik and G. VVolf, DESY Report No. 77/01 (unpublished).

1
4(~~, ~v)= p p .

+m~
(2.83)

(2.32) using (2.22) with the experimental data" is
given in columns 3, 4, and 5 of Table II; except
for the Sa' deviation from the value for I'(p- gy}
(Ref. 17) the agreement is goad.

If we assume the absence of any SU(3)-scalar
contribution to the old decays, a,s expressed by
(2.28), then the suppression factor is chosen ta be

3 1
Q~ S=S-

&2

And & and S are given by

a.

~ =(0 {8}liv'll(sjl-&,

s =(-')'"«-$8)IIP(' IIII'-&
(2.36)

(2.37)

Fits of this hypothesis are shown in columns 7

and 8 af Table II. Except for the value of I'(p- vy) these fits are good. One may think that the
value for I'(p- gy) is still off but, taking g —g'
mixing into account, this can be brought into per-
fect agreement with the experimental data.

To conclude this section we want to discuss
whether the recently obtained experimental value"

1d = 8, S=s-3d =s-
&2

where

n=(-,')'"(I-{s)III'"II9&&*,

& =(0 fljllv ~II(1)1 &.

9' d=d and S=S, i.e., if a=0 and s =s, then one
obtains from (2.85)

I'(q'- py}/I'(q'- ~y) =9.9+2.0 (2.84)

can discriminate between (2.29) and (2.82). Taking
for the physical g'.

Ig~„& = sing Ig& +cosQ lu~&,

one calculates for this ratio

I"(yah py) v 2 d —dtanP
(I'(q~„- (uy) ~28 —S tang

Here d and S are the reduced matrix elements
given in (2.25) which can be expressed in terms of
the SU(3} reduced matrix elements

(2.38)

and the experimental value (2.34) clearly excludes
(2.32) and is in agreementwith(2. 29). But for this
a.ssumption the|.e exists no more justification than
for the assumption V~=0. And for the general
case (2.35), (2.34) does not determine Id/S I.

Concluding, we have found that if the experi-
mental value for I (p- vy) (Ref. 13) is correct then
there must exist an SU(3)-scalar term V~ (or
higher multiplet terms) in the electromagnetic
current operator. The experimental value (2.84)
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for the ra, diative decay of q' does not disagree
with this assumption but the experimental value"
for p- gy and ~- gg are then hard to explain with
the symmetry breaking suggested here. If the
experimental value" for I'(p-))y) is ignored, then
all other experimental data can be fitted without
an additional term in the Gell-Mann-Nishijima
formula for the electromagnetic current.

HI. LEPTONIC DECAY OF VECTOR MESONS

It may be instructive to compare our calculations
for the radiative decays with the calculations for
the leptonic decays ~-ee of vector mesons. "

The decay rate for V-ee is derived by the same
arguments given in the derivation of (2.11)

However, here the reduced matrix elements a&»
are different from those given in (2.25), and the
ones different from zero are denoted

a&„& =&O'&I& [[V& 5~ [[115&I-&=a,

a(s) =&0'fij [[V"jl{ljl ) =s.
(3 5)

Whereas the transitions in V -Py were magnetic-
type transitions, the transitions here are electric-
type transitions. We therefore use the notation
V" for this Vl' of the direct-product decomposi-

tion (1.5).
Using for the vector mesons the vectors (41) and

(42) of I (ideal mixing limit) and inserting the
Clebsch-Gordan coefficients into (3.4), one obtains
for these matrix elements

(v[V" [p& =- a,1

The T matrix is written in analogy to (2.12)

(3.1)

(v [
V" [(d& = — s,1

v2 (3.6}

((«[T j V» = a(P, ) y' ( (p )—.«v [If ~'
j V && ~ (3 2)

where the leptonic part is chosen in complete
analogy to the usual perturbation-theory'expression
with the one-photon exchange term (q being the
momentum transfer) and where the hadronic part
((v [H"

j U)) is to come from our relativistic (Iuan-
tum mechanics of the one-hadron system. jv& here
denotes the vector with the hadron quantum num-
bers of the vacuum, i.e., it is according to (1.4)
the direct product of the trivial representation of
the velocity-Poincare group O'L,„,g and of the
trivial representation of the spectrum-generating
SU(4)s. With (2.15) and (2.13), i.e., the same
assumptions that were used for the radiative de-
cays (and also the leptonic and semileptonic decays
of pseudoscalar mesons') one obtains

((v[H", [U&) =Gm, m, ((v[U'„' [U)&

((v[jV (, ~VS-')[V&& =(v[V" j V)((v[U. [V, P», 1 &&.

Consequently,

«v [ V„" j V» =m &v j
V"

[ V& e„(p, & },
and therewith

((v [a'„' j V)& = Gm»"'(o [
V"

j U & e, (p A»} . (3.3)

Here (v j
U" [V) is the SU(4)s matrix element

which in analogy to (2.23) is given by
[Gs [

= 0.96 keV' ' + l l'%%u, for q = —,',
[Ga f =V.46 keV' ' +6%, for q =-,',

(3.8)

(3.9)

(v [
V"

jq& = - a + -,'s .
v'30

The decay rate is calculated by inserting (3.3)
into (3.2) and (3.2) into (3.1). The result is"

I'(V ee) =2w[Gm ' '(v[V" [U) j'~)7m (3 "I)

In Ref. 19 a detailed comparison of (S.V) with
the experimental decay rates of the old vector
mesons was made, and it was found that for q
= 0, 1 reasonable fits were obtained and that g =

&

gave an excellent fit. The case q =0 will not be
considered further as it does not work for the
radiative decays. For the case of q =1 and q =-,
one can calculate the two parameters Gs and Ga
from the decay rates of the old vector mesons and
then calculate the rate for (j)- ee. The prediction
for q =1 is then I'(([)- ee) =23.3 keV +30%%, which
is certainly too large compared to the experimental
value I"'"~(g- ee) =4.85+0.55 keV. For q =-', the
prediction is I'(([)- ee) =5.63+1.08 keV [or I'((j)- ee) =5.48+0.38 keV if one uses only the Orsay
data for the decay rates of the old vector mesons],
which is in excellent agreement with the experi-
menta, l value.

The values of the reduced matrix elements that
one obtains for the case q =-,' from the experimental
decay rates of the old vector mesons are

(v[V" j V) = P C(V, el, v)a( ). (3.4)
and
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sign+ = —sign+ . (3.10)

The ratio of a/s that one obtains from these
empirical values is

tor mesons in SU(3) are given by (oI[V"+(1/
v 3) V "]jV'). Inserting the values of the CIebsch-
Gordan coefficients into (4.12) leads to

a/s =- V.V6 +14%. (3.11) a/s =-8.22. (3.13)

The empirical value (3.11) is interesting because
there is a theoretical argument that will allow
one to calculate this ratio: Unlike for the operator
V ~ in the SU(4) space describing the magnetic-

type transitions V Py, the operator V" in the
SU(4) space describing the electric-type transi-
tions should obey the same restrictions that lead
to the Geii-Mann-¹ishijima formula when SU(4)
is restricted to SU(3). Therefore, it is tempting
to postulate

(0+, a([-(-')' '-V" + V ](V', 1)=0 (3 ~ 12)

for any of the old vector mesons V', because
then the electric-type transitions for the old vec-

This is in perfect agreement with the empirical
value (3.11).
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