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Analysis of hadronic decays of Q/J particles in generalized Veneziano models.
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Constructing the amplitude for the Q +KKrr-decay from the five-point Veneziano function for KK h KKn,
we calculate the KKm Dalitz-plot density. This amplitude explains the features of the experimental data
well, especially the fact that the quasi-two-body final state KK~ is dominant.

I. INTRODUCTION

In our previous papers" (referred to hereafter
as I and II) we presented a speculation on the
mechanism which governs the hadronic decays of

the g/J' particle into ordinary hadrons, and studied
the i'- 3tt decay channel as a first application. We
assumed that the i)~ decays into ordinary hadrons
through its mixing with the J= 1 daughters of the
+ and/or i)) recurrences. Hence, the amplitude
for iti- ordinary hadrons may be written as

1A(d-hadrons)= g dr„, a „.,A(s, a-hadrons)~ & 8 m~'- n '(ej

1
+ gg g&@, s, „.,A(Q, s hadrons),

8 s PÃq —Q@ (Z)

where tz (eye) is the Regge trajectory of th& (Q).
The &c; s (P, a) are daughters of the &o(Q) recur-
rences, satisfying the equation

tz~(rrt, ,') =t (rze(rrte, ,') =s)

and having spin 1. In general, daughters are de-
generate and the subscript if' distinguishes one
state from another in the degenerate level. The
constants g&, a (gee. } express the strength of
the g mixing with ~d, s (P, s}.

In the case of the iI~-3m decay, only daughters
of the & recurrences contribute. %e constructed
the amplitude A (i)i - 3tr) for the process )3iifrtorm
the five-point Veneziano function for KK- 3m.

Then we found that our amplitude A(i)p - 3rr) well
reproduces the characteristic features of the ex-
perimental data. ."

In this paper, we apply our idea further to the
study of the ili- EKm decay channel. The Dalitz
plot' in Fig. I for the decay process i)i- K',K'tt"- (tr'tt )K'tt' shows the following features: (i)
Just as the m'n m' channel is dominated by pm,

the K~Km channel is dominated by the quasi-two-
body final state ZK* (Ref. 4); (ii) the decay modes
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FIG. 1. Experimental E'. gE'~g Dalitz plot OI'ef. 3).

KK~* are not seen.
Unlike the cs,se of the i)i- 3tr decay, daughters

of both the &o and Q recurrences contribute to the
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II. CONSTRUCTION OF THE AMPLITUDE

FOR Q K'

As stated in Sec. I, daughters of both the w and
recurrences contribute to the process g-KKm.

If we fix the u trajectory by assuming the exact
exchange degeneracy of the & and p trajectories,
just as we did in papers I and II, we obtain'

o~(s) = 0.48+ 0.89s . (2)

Further if we determine the Q trajectory by re-
quiring the universal slope and by the condition

channel g-KKm. This forces us to introduce one
parameter, which indicates the reelatiye weight
of the two contributions. Estimating the parameter
under a plausible assumption that the daughters
~, 3 (Q; 3) have very large widths, we can show
that the amplitude constructed from the five-point
Veneziano function for KK KEm well reproduces
the features of the experimental plot for g
—K~'v', in particular the strong suppression
of the central region in the Dalitz plot.

Some time ago Cohen-Tannoudji et at. ' proposed
that the Dalitz plot for g- KKm (as well as for
g-3m) exhibits characteristic structures described
by a Virasoro amplitude. This Virasoro amplitude
does not have poles at even-integer points of the
K* trajectory. So the signals of K*~ do not appear,
which is consistent with the experimental data.
However, this amplitude gives rise. to an enhance-
ment in the central region of the KZm Dalitz plot
just like the g- 3m case. ' This result disagrees
with the features of the experi. mental plot.

This paper is organized as follows. In Sec. II
we describe the way to construct the amplitude
A(g- KKv). In Sec. III we introduce the imaginary
parts into the p and K* trajectories, and calculate
the Dalitz-plot density for g- ZKm. Comparison
with the experimental plot is made. In Sec. IV
we present concluding remarks.

uq(mq3) =1 we obtain'

o&(s) =0.08+0.89s.

Evaluating Egs. (2) and (3) at s =m&3, we find
u (m& ) =9.0 and a&(m&') = 8.6. Then the con-
tribution of the daughters co&, 8 would seem to
dominate the amplitude for g- KKv.

But here we should notice the following point:
Because the g mass is very heavy„a little change
in the slope parameter brings about a slight varia-
tion to the values of u (m&3) and n&(m&3). For
example, when we determine the slope and inter-
cept of the u& trajectory from the masses of u&(783)

with 8~=1 and ~(1675) with J~=3, we find

o~(s) =0.44+0.91s

and o. (m&') =9.2. And fixing the Q trajectory
just in the same way as before, we obtain

o.&(s) = 0.05+ 0.91s

and n&(m&3) =8.8. Then the contribution of the
daughters Q;, 8 would become as important as
that of ju, , ~. Moreover, if we consider the
propagators in Eq. (1) as in the resonance form
such as I/(m33-mz3+imsi s) with decay width
I's and ms = n '(i), the relative weight of the two

contributions depends also on the unknown decay
widths of the daughters z, 3 and Q, 8.

From these arguments, we assume in the follow-
ing that only the daughters u&&-, 8 (Ref. 7) and

Q, 3 3 contribute to the decay amplitude A(g KKm),
and leave the relative strength of the two con-
tributions as a free parameter (in general, a
complex number). For the actual calculation later
on of the pole residues and the projection of the
J= 1 states, we shall use the values in Eq. (2) and

(3) for the (universal) slope and intercepts of the
&u and Q trajectories.

Now we construct the A(g-KKm) from a five-
point Veneziano function for the process KK
-KKm. The amplitude A(KZ-KKm) is given by
Bardakci-Huegg as follows, '

A. (KK- KKw) ~ Q (K,
"
v;3K4) (K3 K3)KPB 3(e,33 —1, ~3' —1, n~~ —1, nr33* —1, ar3 —1),

&N i,3),(2,4) j

where K~ is a kinematical factor written as

K~ =e J j,~~2~~.+~4E p&p&p3p4 1 3 3 4

The indices 1, . . . , 5 label the particles in Fig. 2. The sum is over the permutations 1—3, 2—4, and
(1—3)8 (2—4). The function B, can be written in many particular forms, "one of which being

B ( 3o»1, a33 lp CR3@ 1, o.33- 1, (z„—1)
1

du du u -~»(1 -u, ) "3~, " (I-u~) ""(I-uiu.)
0

(4)

(5)
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—=B,(l, 2, 3, 4, 5) .

This B, function has the following cyclic and reflection symmetries:

B,(1, 2, 3, 4, 5) =B,(2, 3, 4, 5, 1) = ..
and

B,(1, 2, 3, 4, 5) =B,(5, 4, 3, 2, 1). (8)

We shalle s all make full use of these symmetry properties. For other notations and symbols in Eq. (4), refer
to paper I. From the Fierz identity such as

(W 7;K4) (K,'K,) = , (K',—r,K~) (Ks Kg+ —,
'

(K+, KJ(K v K ) —-'ie, ~ (K', 7'~,) (K,' v, K~),

Eq. (4) requires the exact exchange degeneracy between the p and &u trajectories and also between the K*
and K**trajectories.

In the amplitude of Eq. (4), the I = 0 part for the initial two kaons labeled as 1 and 2 can be found by using
the above identity Eq. (9) as

0(KK-KK&)~ (KgK2)(K3v'( K~)Kg[B,(ct,~- I, ~2i3-1, up~ —1, a"*-I u",~ -1)
+B,(o.„—1, o.~,

*—1, n~* —1, n~~~ —1, o,~~
—1)

~5(+ai 1~ &x4 I~ +45 —1~ &as 1~ o'32 H . (10)

The first and second terms in Eq. (10) contain the

process KK- ~;,-Kit, corresponding to Figs.
3(a) and 3(b), respectively. On the other hand the

process KK- Q, ,-KKv corresponding to Fig.
3(c) is contained in the third term.

Herice the contribution of the daughters u, , ~

to the amplitude A (g -KKv) may be obtained by

evaluating the pole residues of the first and second

terms in Eq. (10) at o.»=9, projecting out the J =1
state, factorizing the KKcu&, 8 vertex and finally

multiplying it by the coupling constant g~,
For the details of the evaluation of pole residues
and the spin projection, we refer the reader to

paper I.
However, daughters may be degenerate and the

factorization does not hold in general. Here we

shall tike either of the following two assumptions:

(i) The g&, is proportional to the coupling

strength of the KK &, z vertex f~x~, », with the

same proportional constant for all p, i.e.,

g~( s= X(jpflcy(g( 9 g
fol ail P ~

(ii) Only one state among the degenerate states

+, , 8 dominantly couples to g and also to KK

channel. In this case the same relation as Eq. (11)
holds for the dominant state. "

Then in either case the factorization of the

KKco&, ~ vertex and the succeeding multiplication

by g, , 8 together amount to a single procedure
of multiplication by a constant A.

(C)

FIG, 2. Variables for the KKKZg reaction.

{a) The process JQ7 co,. 9 &
Kg& {b) the

process Eg ~g. s g ~g {c)the process KK
KKg.



ANALYSIS OF HADRON IC DECAYS OF P/J. . . . III.

gt«=9, 8 sf'«=9. 8' (12)

Then successive procedures of factorization of the

ZKQ, 9 s vertex and multiplicationbyg&&, , ~

amount to multiplication by a constant ~ ~.
After tedious but straightforward calculations,

we finally obtain the amplitude for g- KKv

Just in the same way we can obtain the contribu-
tion of the daughters Q, 9 s to the amplitude
A(g- KZv). We make either of the similar as-
sumptions on the g&&& &

and the coupling strength
of the KKQ, 9 s vertices f&r«, s. In either case,
we can write

we can show

D'(s, t, u) =D'(t, s, u) .
Therefore, the amplitudes(g-KKw) in Eq. (13)
is indeed symmetric in the variables s and t.

III. DALITZ-PLOT DENSITY FOR KKg

Now we calculate the Dalitz-plot density for
KKv. First we must introduce the imaginary

parts into the p and K* trajectories to smear out
the infinities arising from the beta functions. We
have already determined the imaginary part of
the p trajectory in paper II,

A((- KKv) = e~„91,P9"P99P9e~

x(y1[D'(t, u, s)+D'(s, u, t)]

+ y9D'(s, t, u)),

where e is the polarization vector of |l&, snd

(13)

n9 (s) = 0.48+0.89s+t0.14(s -4m, ')'~'. (18)

Also we choose the imaginary part of the K* tra-
jectory as follows xa

u»~(s) = 0.28+ 0.89s+t0 06.4[s —(mz+m „)']'&'.

s= (P, +P)9=(P„+P,)',
t = (P,+Pg'= (P,+P,)', -
u=(P, +Pj'=(Pr+Px)'.

(14)

The parameters y, and y, express the weight of
contributions of the daughters 99, 9 q and &t&,-9 s,
respectively, and their explicit forms are

y, =A. x (propagator of +, 9 s),

y9 = —2X e x (propagator of Q, 9 s) .
(15)

Bs(n21 1& u14 1& u49 1, uss*-1& u39 1)

=B9(u19- I& n999 »ups*- I-& n~*- » u91- I) &

The scalar amplitudes D'(t, u, s) and D9(s, t, u)
have, respectively, the following forms:

D'(t, u, s) = g C„'(t, su)B(n —n~9, (t), 1-n9(u)),
8= ],

(16)

D'(s, t, u) = g C„'(s, t, )Bu(n —uz~(s), 1-nz+(t)}.

(17)

The remaining amplitude D'(s, u, t) is obtained
from Eq. (16)by interchanging s and t. The co-
efficients C„' and C„' are polynomials in s, t,
and u. Their expressions are essentially the same
as C„ in paper II, except for some modifications
which are due to the appearance of different tra-
jectories. %e show in the Appendix the necessary
modifications. The pole structures arise from the
Euler beta functions 8 .

Using the symmetry properties of the 3, func-
tion in Eqs. (7) and (8), more specifically, the
fact that

(A(q-KKv)('. (21)

If we want to obtain numerical results, we must
fix the parameters y, and y, in Eq. (20); For our
present purpose we require only the ratio ~ -=y,/y,
as the overall normalization is not necessary for
the calculation of the Dalitz-plot density. From
Eq. (15) we have

K=
—2& & (propagator of &t&& 9 8)

A.„(propagator of u; 9 s)
(22)

%e can obtain the ratio of A, to A, @, if we assume
the SU(3) symmetry both for the KK9&, 9 8 and

KENT) 9 8 vertices and for the g —~, 9 8 and

s mixing. With the assumption of f being an
SU(3) singlet, we find

~icx&di=9, 8/~axe&=9 s= —1/v 2

[The real part of u&~(s) was already determined
in paper I by requiring the universal slope and the
Adler partially conserved axial-vector current
(PCAC) condition. ]

Now the trajectories have imaginary parts, hence
D9(s, t, u) in Eqs. (13) and (17), which corresponds
to the contribution of the daughters Q, 9s, becomes
asymmetric in the variables s and t. So we re-
write Eq. (13) such that the amplitude is mani-
festly symmetric in s and t,

g(tl&-KKm) =a~ 1P&~P9P, e1

x(y, [D'(t, u, s) +D'(s, u, t)]

'y+, [D'(s, t, u) D '+(t, s, u)]). (20.)

It is easy to see that the Dalitz-plot density for
the final states K~K'm' is proportional to
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and

gp. ../'g, ~. . .=v2,

(23)

-3A. m4 u)i= n. R~Ãi= n. 8

@=g 8 A- 8

Note that the differences between the mass of
and ~, , 8 (P, , 8) are very small. Therefore
with a good approximation that the SU(3) sym-
metry for the vertices is nearly exact, ~ is a
real positive value. However, the precise esti-
mation of ~ is beyond the scope of the present
paper. Here we shall adopt, as a rough approxi-
mation, the value ~ = 1 under a supposition that
the. widths 1„, , 8 and I &. , 8 may be comparable
in magnitude.

With this choice of ~, we calculate the Dalitz-
plot density for g- K~E'm'. Our result is shown
in Fig. 4. Comparing with the experimental plot
in Fig. 1, we find a very good agreement. Es-
pecially it can be seen that the quasi-two-body
final state KE* is dominant.

The kinematical factor in Eg. (20) has the same
effect as that in the case of $-3m, i.e., enhancing
the central region of the Dalitz plot, because

3Pm

gP @vga X 2

1 f'=~ [s&~+ ( g~' m»')(m-»'-m ')u

-m»'(m
~
' -m, ')'j . (24)

But our result shows that the effect of this kine-
matical factor is surpassed by the sum of the
scalar amplitudes D' and D', and the suppression
in the central region of the Dalitz plot is brought
about.

In order to see how much our result depends on
the choice of the parameter ~, we have calculated
the Dalitz-plot density in the following four cases:
(i)»=-,', (ii)»=2, (iii)»=0 (i.e., y, =O), and (iv)
» =~ (i e., y, =0). Then we find that in the first
tyro cases, the results are not so different from

Furthermore, if the SU(3) symmetry is exact also
in mass, the result is that a (s) = u&(s). Then in
this case we have a= l.

However, as stated in Sec. II, in order to esti-
mate ~ in the real world, we have to know also
the decay widths of ~, , 8 and P;, 8 Now the
~, , 8 (Q;, s) are daughters of the much )/her
&u(p) recurrences. Then it may be plausib. .e that
they have very large widths. In such a case, Eq.
(22) will be approximated to be

&i= .8 ~ i= . 8 i= . 82Agm -m +'
Qp mQ Sl@ +161' I ei=9, 8 Vi=9, 8 @i=9, 8

O

0)

O~
5

I

3.
I I I

5 6 7
M'(K~76+) [(GeV/c~} ]

'=Re&+
K

FIG. 4. Predictions of our Veneziano model for
g og *g~ Dalitz plot in the case of g = 1. The diagram
is divided into five parts according to the density of
events (maximum= 10) as follows:

i, , &., KM, & 2,.885, 2 3, i::::::::::::::},3 s, , 6—10.

mK m f}'
2

et' (s) = n» +(s) = n„(s) = u z(s),

Yg YQ j

and the coefficients C„' and C'„in Egs. (16) and (17)
are reduced to C„'s in papers I and II. Thus the
amplitude for (-%Em turns out to be identical with

that for g- 3v and also symmetric in all variables
s, t, and w. Consequently the signals of E**dis-
appear from the final KKm states. This is our
version of the statement that the g cannot decay
into KX*~ meson pairs in the SU(3) limit. " In
the real world, the SU(3) symmetry is not exactly

the case of K =1. However, in the last two extreme
cases, agreement with the experimental plot is
lost. In particular, the E**signals appear much
more strongly than those of the K* mesons.
Furthermore we find that in the case of K = negative
value, the central regi, on in the Dalitz plot is not
suppressed. These arguments mean that contribu-
tions of both the daughters +, , s and Q, , s are
important at about equal strength.

Finally, it may be interesting to consider the
exact-SU(3)-symmetry limit. In this limit we have
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realized, then we expect the appearance of K~*
signals in the KXm Dalitz plot. But from Fig. 4
we find that K**signals are much suppressed as
compared with those of the K* mesons.

IV. CONCLUDING REMARKS

In the present series of papers, we have shown
that the aged Veneziano model is still applicable
to the hadronic decay phenomena of the nero

particle g. In fact, the characteristic features
of the final-state distributions for both the P- Ss
and g- KKw decays can be well described by the
amplitudes which are constructed from five-point
Veneziano functions.

The essential point is our assumption that g
decays into 3m and KKm through mixing with heavy
daughters of the + and/or Q recurrences and that
the final-state distributions are determined only
by the decay amplitudes of those daughters into
3m and KKm. In consequence, the pm channel is
dominant in the g- Sm decays, and so is the KK*
channel in the g- KKm decays. Also deep sup-
pression is brought about in the central region of
the Dalitz plots for both decays.

Finally it may be possible to apply our idea to
the study of other hadronic decays of g into more
than three final particles. Application might be
also possible to the future study of hadronic de-
cays of heavier quarkonium states such as T(9.5).
From the results of our analysis of the g decays
into 3n and /Km, we do expect that there also
appears deep suppression in the central region
of the Dalitz plots for the final three-body hadronic
decays of heavier quarkonium states.
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APPENDIX

In this appendix we refer to the expressions of
the coefficients C„' and C„' in Eqs. (16) and (17).
Because the structures of C„' and C„' are essentially
the same as C„ in the Appendix of paper D, we
present here the necessary modifications only.
We can obtain the C„'(s, t, u) and C'„(s, t, u) by modi-
fying the expressions of a„b„,g„g„, andh, „
appearing in the C„(s,f, u) in paper II as follows:

(i) For C„'(s, t, u),

a, =-,' [a's+ a~(0) —Sn„*(0)+ 2n&(0) —9],
h„ = -,' [n u —n, (0) + 5n„,(0) —2a, (0) —12],

g, —a K[m~'-2(s+m ')ms'+ (s -m„')'],
g„=a"K[mt, ' —2(u+mr')ms'+ (u —mr' )'],
It, „=a"K[su+ (ms'-mr' )(s+u)+mr'

m, '+ 2-m, '(m»' m, ')] .—

(il) For C„(s~ I ~u)~

s, =-', [a's+ Sa, (0) -Sn„(0)—~a],

b„=-,'[a'u+ 2a, (0) —ass],

g, = a"K[ms'-2(s+mr')ms'+ (s -mr' )'],
g„= n"K[m s'-2(u+m „')ms'+ (u -m, ')'],
a, „=a"K[(s -ma'-mr' )(u -me'-m„')

+2m''(s+u -ms'-mr' )] .

In the above expressions,

m, '-4m'' 9- a, (0) -4[-,' —nrg(0)]
4m' ' 4[9 - np(0)]

and a' is the universal trajectory slope (=0.89
GeV ').
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