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Although the effective hadronic forces have short range in rapidity space, one nevertheless expects long-
range dynamical correlations induced by unitarity constraints. This paper contains a thorough discussion of
long-range rapidity correlations in high-multiplicity events. In particular, we analyze in detail the forward-
backward multiplicity correlations, measured recently in the whole CERN ISR energy range. We find from
these data that the normalized variance of the number n of exchanged cut Pomerons, ((n/(n) —1) ),
is most probably in the range 0.32 to 0.36. We show that such a number is obtained from Reggeon theory in
the eikonal approximation. We a)so predict a very specific violation of local compensation of charge in

multiparticle events: The violation should appear in the fourth-order zone correlation function and is absent
in the second-order correlation function, the only one measured until now.

I. INTRODUCTION

The effective hadronic forces have a short range
in rapidity space and are soft (in the sense of sup-
pression of large invariant momentum transfers-
in particular, the transverse momenta of se'con-
daries are, on the average, small). Thus, the en-
semble of particles produced in a high-energy col-
lision has some resemblance to a noncritial liquid
enclosed in a long (but thin) container. Consequent-
ly, it has been suggested that multiparticle states
exhibit a short-range order (SRO), in the sense
that there are only short-range dynamical rapidity
correlations (cf. Ref. 1 and references therein).
The introduction into the context of multiparticle
physics of the model-independent concept of SRO
turned out to be very fruitful. It has been rapidly
realized, however, that SRO is expected to hold

only in the approximation where effects induced

by unitarity constraints are neglected. "' The pur-
pose of this paper is to discuss long-range rapidity
correlations in multiparticle production. ' In order
to put the content of this work in the proper per-
spective, let us briefly recall the chain of argu-
ments which lead one to expect that SRO is broken.

In the context of high-energy physics the concept
of SRO is intimately related to the idea of repre-
senting diffractive scattering, in first approxima-
tion, as the exchange of a specific Regge pole, the
Pomeron. ' Now, the Pomeron is a quasiparticle
strongly coupled to hadron sources. Therefore, in

the complete theory, the forward elastic-scattering
amplitude is expected to be a sum of single- and
multi-P omeron-exchange amplitudes. ' However,
the existence of the multi-Pomeron-exchange con-
tributions to the elastic ampl. itude has far reaching
consequences for multiparticle production. C ross
sections for physical processes can be obtained by
isolating the appropriate discontinuities of the for-

ward elastic-scattering amplitude or, using a more
pictorial language, by cutting in a suitable manner
the diagrams representing this amplitude. " The
operation of cutting through a single Pomeron de-
fines an "elementary" rapidity density of secon-
daries (a random function of the rapidity variable
with the property of SRO). Cutting through g Pom-.
erons defines a rapidity density which is a sum of
~ elementary ones. Hence, the rapidity density of
secondaries produced in a highly inelastic hadron-
hadron collision is a superposition of a fluctuating
number of elementary densities. It is easy to see
that this picture implies long-range rapidity cor-

relationss.

Let 5 N denote the number of particles found in
a single event within a given rapidity subinterval.
Multiplicity fluctuations within elementary densi-
ties are of the order O((5N)' '), while the multi-
plicity fluctuations due to the variation of the num-
ber of superposed elementary densities are of the
order O((5N)). Therefore, when one observes 5N
» (5N) and provided (5N) is large enough, one can
be almost sure that one has picked up an event
where several elementary densities are super-
posed. Consequently, one can bet, with a consid-
erable chance of success, that, in the event in
question, the multiplicity within another, distant
rapidity subinterval is also well above the average.
A more rigorous version of this argument will be
given in the next section.

Summarizing: although the effective hadronic
forces have short range in rapidity space, one ex-
pects SRO to be broken, even if one considers ex-
clusively those events which are, so to say,
"dense" in rapidity (no large rapidity gaps). Nev-
ertheless, as we shall see, the pattern of SRO
breaking is predictable and very specific.

As already mentioned, the above chain or argu-
ments is not new. There are new data, however,
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providing a new challenge to theorists: CERN ISR
collaboration has measured the correlation between
multiplicities in the two center-of-mass hemi-
spheres (the forward and the backward one), in the
whole ISR energy range. " Such a correlation has
already been observed at Fermilab, "but its per-
sistence at the highest ISR energies (where it is
the strongest) is a rather clear evidence for a
nontrivial long-range rapidity correlation.

A natural tool for studying long-range rapidity
correlations is the Reggeon theory. Unfortunately;
this is an asymptotic theory where finite-energy
effects, and in particular the energy-momentum-
conservation constraints, are practically beyond
control. We do not mean that Reggeon theory is
useless for phenomenology. Simply, at present
accelerator energies, the applicability of this the-
ory to different sectors of phenomenology is not
equally legitimate. The theory seems sound when
appl. ied to elastic scattering, but it has to be han-
dled with care in the context of multiparticle pro-
duction. This is the reason why we formulate, in
Sec. II, a probabil. istic analog model, which is as-
ymptotically isomorphic to Reggeon theory (with-
out Reggeon-Reggeon interaction), but which has a
natural extension towards lower energies. This
latter extension and a technique of estimating finite
energy corrections is presented in Sec. III. In Sec.
IV we set forth the formalism relevant for the
analysis of the forward-backward multiplicity cor-
relation. In Sec. V we come back to the Reggeon
theory segsu st~icto. We conjecture that the prob-
ability distribution of z, the number of elementary
densities, calculated from Reggeon theory can be
trusted at present energies. This conjecture, to-
gether with the probabilistic analog model, pro-
vides an interesting connection between the phe-
nomenology of multiparticle production and the
phenomenology of two-body scattering. The most
significant part of our numerical results and a
discussion of the data are given in Sec. VB. In
Sec. VI we show that local compensation of charge
is broken in a very subtle manner, when unitary
corrections to SRO are taken into account. We
suggest measuring the fourth-order zone corre-
lation function. Section VII contains the summary
and the conclusions of the paper. Technical details
concerning inelastic diffraction are put in the Ap-
pendix, to make the paper more readable.

We should mention that the phenomenological
implications of Reggeon theory for multiparticle
production have already been studied by other au-
thors. " In the absence of better data, these stud-
ies were usually limited to the discussion of mul-
tiplicity distributions. For this reason, these ear-
lier studies seem to us less conclusive than it
might appear. In principle, the energy variation of

multiplicity distributions reveals the pattern of
correlations between secondary particles. In prac-
tice, this variation is very slow and one can hardly
distinguish a transitory phenomenon from a truly
asymptotic trend.

II. A PROBABILISTIC ANALOG MODEL

N(y) = g NP'(y), (&)
j=l

where ~ is itself a random' variable. Furthermore:

(a) Distinct elementary densities are statistically
independent. For example,

(N(g)(y)N(k)(yI)) (N(J)(y)) (N(k)(yI))

for jok. The subscript z indicates that the average
has been taken keeping g fixed.

(b) All elementary densities have identical aver-
age properties Thus, th.e subscript (j) is usually
superfluous,

(3a)

(Sb)

(No"(y)). -=(No(y)).

(N,'~'(y)N,'~'(y'))„=—(N,(y)N, (y'))„, etc .

(c) The moment functions (N, (y, ) . N,(y~))„ex-
hibit short-range rapidity correlations only.

At asymptotic energies the elementary densities
should have all the conventional SRO properties.
However, this asymptotic regime is not reached
yet. The n dependence of the moment functions
(N,(y, ) ' ' ' N, ( y))„come sthrough their energy de-
pendence. Indeed, W is partitioned among pg ele-
mentary densities. Thus, the energy relevant for
an elementary density is W/s rather than W(see

The model formulated in this section gives iden-
tical results to the Reggeon theory (with Reggeon-
Reggeon interactions neglected), provided the col-
lision energy is high enough and as long as one is in the
so-called "central region" (see Sec.VA and note add-
ed in proof). However, the probabilistic analog mod-
el has a natural extension to lower energies, where
Reggeon theory has no predictive power. We em-
ployed an almost identical model in the context of ha-
dron-nucleus collisions. '4 The remarkable success
of this earlier study encourages us to use similar
arguments again. Furthermore, the probabilistie
analog model. offers an attractive intuitive picture
of the mechanism of long-range rapidity correla-
tions.

Let N(y) denote the random function representing
the rapidity density of secondary particles (or, just
of a given species of secondaries). For definiteness,
we work in the center-of-mass reference frame. The
total energy in this frame is denoted by S'.

We claim that N(y) is a sum of a fluctuating num-
ber of elementary densities:
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Sec. III).
From Eq. (1) one finds

&N(y)) = «N.{y)»„.
Likewise,

(4)

idity subinterval is kept at a (nearly) fixed value. "
The last few remarks should also be obvious from
the intuitive argument presented in the Introduc-
tion.

(N(y)N(y')&= ( (N,(y)N, (y'))„)

+ &~(~ - 1)(NO{y)&.(NO{y')&.&

Let us introduce the (second-order) density corre-
lation function (cf. Ref. 15)

@y y') = &N{y)N(y')& - &N{y)&(N{y')&.

This function is simply related to the standard ~&-
elusive correlation function C(y, y')

&(y, y')=C(y, y')+ &N(y)&6(y -y')

From Eqs. (4)-(6) one further obtains

@y y') =&BR(y y')+ &~'(No(y)&. (NO(y'». &

—«N.{y)&„)«N.(y'))„&,

where

(8)

C{y,3') = C~R(y, y')+ &n (No(y))„(NO{y')&„)

—
& (N.{y)». «. N.{y')». (10)

In the asymptotic regime, where (N,(y))„becomes
independent of n, one finds

&N(y)) = &~& &N.(y))

and

&s,{y,y') = &~l. (N.{y».{y')).
—(N.{y)&„(N.{y')&„]& (8)

tends rapidly to zero when ~y -y'
~

- ~(the sub-
script SR stands for short range). Equation (8) can
also be rewritten in the form

III. FINITE-ENERGY EFFECTS

We have argued in the Introduction that the ob-
servation of a large multiplicity in a given rapidity
subinterval is, most likely, an indication that sev-
eral elementary densities are superposed in the
event under consideration. This, in turn, means
that multiplicity is also enhanced beyond the origi-
nally observed subinterval. Question: how far in
rapidity is a local density fluctuation felt, at a fi-
nite collision energy' The answer to this question
necessarily involves a discussion of the energy-
momentum-conservation constraints.

The total available energy is partitioned among
n (n= 1, 2, . . . , ) elementa. ry densities. Further-
more, the elementary densities are not necessarily
at rest with respect to each other, Consequently. ,
the elementary densities do not fully overlap and,
in any case, the rapidity extension of a single ele-
mentary density is roughly 2 1n(W/zW, ), with W,
=1 GeV or so. Thus, the range of the long-range
correlations is reduced due to kinematic con-
straints. In particular, there should be no corre-
lation, or very little, between the two fragmenta-
tion regions'(neglecting diffraction dissociation).
Such a correlation is indeed not observed. ""

Finite-energy effects relevant for the following
discussion can be estimated using a rough, but
very simple technique which we are going to ex-
plain now. We illustrate this technique with a few
examples, which are sufficient to convey the idea,

Integrating Eq. (4) with respect to y, we find the
average multiplicity

C(y, y') = C»(y, y')+x(0)(N(y)&(Ã(y')). (12)
(N) = (~(N.).&. (14)

We introduce here the specific symbol

x(u) = (n'" '&/(n' )' —1,
which will be often used in the rest of this paper.
Obviously, z(0) is the normalized variance of the
number of elementary dens ities. Furthermor e, in
the asymptotic regime, (N, (y)& becomes indepen-
dent of y, provided y is far enough from kinematic
boundaries and, according to Eq. (11), so does
(N(y)&. Hence there is a constant and positive con-
tribution to C(y, y'), equal to ((n')/(n&' —1) (N(0))'.
Notice that this long-range correlation is present
if and only if (n') &(n&': SRO is broken because n
fluctuates. Superposing a fixed number of elemen-
tary densities does not produce any long-range ef-
fect. A corollary: the long-range rapidity corre-
lations should be significantly reduced in a sample
of events where the multiplicity within some rap-

Let us also integrate Eq. (8), with respect to y and
y', to obtain

D'= dydy'Bs~ y, y' + n' No „—n No

(15)

Here, D is the dispersion of the multiplicity dis-
tribution: D'= (N') —(N)'.

Consider now the elementary multiplicity (Ã,)„,
It is a function of W: (N,)„,=E(W). We assume
that, in first approximation, one can neglect the
collective motion of elementary densities with re-
spect to the center-of-mass frame. We also as-
sume that E(W) is sufficiently smooth to write

(N,)„=E(W/ln) .

In hadron-hadron collisions, the probability that
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z takes a large value is small: typically, the val-
ues of z which really matter are z= 1 to 4 or so
(this becomes evident when one works with spe-
cific models). Within a finite energy interval,
say for W/4 & W'& W, the functional dependence of
E(W') on W' can be fairly well approximated by a
power law:

E(W') = const x(W')".
(N,(0))„=n ~(N,(0))„,

with

(25)

data on the average rapidity density of charged
secondaries" give

(N(0)) = 0 777(W')'"'

for W'&63 GeV. Repeating the arguments devel-
oped above, "we obtain

(No)„= n "(No)„,.
Inserting (18) into (14) we find

(18)

Of course, the exponent y depends on the energy
interval under consideration. Now, Eqs. (16) and
(17) imply that

P= 0.256.

Equation (25), together with Eqs. (4) and (10),
yields

(N(O)) = (n'-~) &N,(0))„,

(26)

(27)

D2= dy dy'Bs„(y, y') + x(y) (Ã)2. (20)

&N)= &" ")&N.). , (19)

From (15), (18), and (19) we get after straightfor-
ward algebra

and

C(O, O) = C„(0,0)+x(P)(N{0))'.

IV. FORWARD-BACKWARD MULTIPLICITY

CORRELATIONS

(28)

(n' ) = (n)' [1 —o.(1 —u)x(0)/2+ j (21)

This equation is formally identical to the one which
holds in the asymptotic regime, except that x(0)
has been replaced by x(y). The long-range corre-
lation is now controlled by the parameter x(y).

In first approximation,

(29a)

Similarly, N~ is defined as the number of secon-
daries with negative rapidities

In the following, N~ denotes the number of sec-
ondaries with positive center-of-mass rapidities

Nz= ~t dy N(y) .
4y),P

Thus, roughly
N~= dyN y . (29b)

x(o.) =(1 —o')'x(o) . (22)

We shall see in Sec. V that both (n) and x(0) are
expected to be very weakly dependent on W. Fur-
thermore, for charged secondaries and in the en-
ergy interval 19& W'&63 GeV, the data on the av-
erage multiplicity' are well described by the for-
mula

(N) 2 10(Wi)o,cm

where W' is in GeV. Hence, for W=63 GeV, y
= 0.435, and Eq. (22) indicates that the long-range
contribution to D' is reduced (roughly) by a factor
of 4. Qualitatively, this reduction is easy to
understand: the long-range correlation is the
stronger the larger is the multiplicity. However,
the energy conservation reduces the probability of
producing large multiplicity events.

For 5 & W'&30 GeV the data are well described
by' the equation

(N) = l.67( W')" (23b)

Hence, at the lowest ISR energies it is more ap-
propriate to use y= 0.506. The data on multiplici-
ties are quite precise and one can see the decrease
of the effective exponent y.

Consider now the central region, near y= 0. The &Na(N~)) = (Na)+ b(N~ —(N~)), (30)

We are interested in the correlation between N~
and N~. More precisely, we consider the regres-
sion of N~ versus N~, i.e. , the dependence of the
average backward multiplicity (Na(N~)) on the for-
ward multiplicity Nz. " We first derive a few equa-
tions which hold quite generally, i.e. , independent-
ly of the range of correlations.

As is well known, (Ns(Nz)) would be a linear
function of N~ if N~ ~ were normally distributed. "
This, in turn, would be (approximately) true if all
density correlations of order &2 were negligible.
Although this is not really the case, the Gaussian
approximation is presumably not a bad one, as
evidenced by the behavior of the cumulants of mul-
tiplicity distributions (the normalized cumulants
decrease rapidly with increasing order"). Hence,
a rough linearity of (Na(N~)) with respect to N~ is
actually expected. This expectation is borne out
by the data. Let us find now the slope of (NB(N~))
versus N~.

The linear regression is a standard problem in
probability theory We set (N. a(N~)) = a+ bN~, and
we determine the coefficients p and 5 by requiring
that ([Na -(a+ bN~)]') is as small as possible.
The result is



4124 A. CAPELLA AÃD A. KB, ZYWICKI 18

where

b = ((N N ) —(N ) (N ))/((Ã ') —(V )') .
It is obvious that

(31)

(NsN~) —(Ns) (N~& = dy dy'[&N(y)N(y')& —&N(y)& &N(y')&) . (32)

Since y oy', the integrand in (32) can be identified with the inclusive correlation function C(y, y'). On the
other hand,

(N~'& —(N~&' = dy dy' [&N(y)N(y')& —(N(y)& &N(y'))].
+y&0 "y~ &0

(33)

Here, the integrand must be identified with the density correlation function B(y, y ).
Finally,

d)It $0
dy dy' C(y, y') + (N~&

y&0 (34)

We stress that this result is exact and independent of any model.
From now on we shall assume forward-backward symmetry. With this symmetry one further has

rt

y&0 & y~ &0

dy' C(y, y') =f,fy —f dy ~ dy' C(y, y'),
y&O "y' &0

(35)

where f, is Mueller's correlation parameter" (the
integral of the inclusive correlation function)

f.= D'- &N&. (36)

C,„(y,y') exp[ (y y')'/46'],

and 6 =0.6." The normalization for y =y'=0
can be obtained from E(I. (28)

(37)

(38)C,„(O,O) = &N(O)&'[R(0) -x(P)],
where R is the normalized inclusive correlation
function

R(o) =c(o, 0)/&N(o))2, (39)

which is almost constant through the Fermilab and
ISR energy ranges, R(0) = 0.6."

With exact SRO, b tends to zero when (N&- ~.
This is obvious from E(I. (34); the numerator is
of order 0(l), while the denominator increases in-
definitely. The situation changes radically in the
presence of the long-range correlation. Using Eqs.
(12) and (34) one easily convinces oneself that as-
ymptotically, when (N)-~, one expects b-l, pro-
vided x(0) oo. This limit should be approached
from below if the short-range correlation is posi-
tive (this is the case experimentally). In the ISR
experiment, the slope b is about 0.3 at the highest
ISR energy, S'= 62.8 GeV. This value is very far
from the asymptotic one and indicates that the as-
ymptotic regime is far from being reached.

The short-range rapidity correlations have been
extensively studied. The shape of C»(y, y') is often
fitted with a Gaussian

I et us evaluate the double integral which appears
in the numerator of E(I. (34) [the denominator is
easily found using (35)]. The long-range contribu-
tion to C(y, y') is easily integrated and yields
x(y)(N&'/4 Only the. neighborhood of y=y'=0 is
relevant for the integration of the short-range con-
tribution to C(y, y'). Near y=y'=0 one can use
E(ls. (37) and (38). After a straightforward calcu-
lation one obtains

b = e/[(L/(N&)'-~],

where

Q = x(y)/2+ 4(N(0) &'6'[R(0) -x(P) ]/(N)'.

(4Oa)

(40b)

It is obvious that with x(0) =x(P) =x(y) =0, the above
equation gives the value of the slope b expected
when there are only short-range rapidity corre-
lations.

E(Iuation (40), together with the approximate
formula (22), give the slope b as a function of a
few well-known observable parameters and of x(0).
At the highest ISR energies, where the theory is
the better founded, the observed value of b is close
to 0.3. From this value we get (roughly) x(0) = 0.3
to 0.4. The dynamical significance of this result
can only be appreciated in a theoretical framework
where the averaging with respect to ~, involved in
the definition of x(0), is precisely defined. Such
a framework is provided by the Reggeon theory
which gives a relation between x(0) and parame-
ters describing the elastic hadron-hadron scatter-
ing. Anticipating slightly, let us mention that a
correct value of x(0) is obtained in the eikonal
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model, using as the only input the observed values
of the total and the total inelastic proton-proton
cross sections. Our analysis of the data on the
forward-backward multiplicity correlation is pre-
sented in Sec. VB. The reader who is not inter-
ested in theoretical details can skip Sec. VA and
go directly to Sec. VB.

d'(r/dy dy'= p' g g n'(r~ „=p' g n'(r„. (45b)
n= j k&n n=&

In the above equations p denotes the two-Pom-
erons-two-hadrons coupling, integrated with re-
spect to transverse momentum. Defining the av-
eraging with respect to ~

V. BACK TO REGGEON THEORY

A. Generalities

go„,
n=&

(46)

We first recall some of the basic equations of
the Reggeon theory. For simplicity, we neglect
the triple-Pomeron coupling.

Let f~ be the contribution to the forward elastic-
scattering amplitude represented by the Reggeon
diagram where k Pomerons are exchanged between
the projectile and the target. The contribution to
(r„( obtained by cutting fz through n Pomerons is
denoted by ok „. The cutting rules yield'

&, „=(-1}'"( )&... »0

n=&

n
k, n =~m, m~k, m ~

(4't)

one further gets

{n)= (r.../(r„
and

(48)

one easily obtains from (45) the asymptotic equa-
tions (11) and (12) [with CSR(y, y') missing, be-
cause of our 'neglect of secondary exchanges —the
generalization is straightforward j. Using the
identity

and, neglecting the real part of the single-Pom-
eron-exchange amplitude, {n(n —1))= 2(r, ,/(r„. (49)

By definition

0'n =
k-" n

(41b)

(42)

The physical content of the above equations, to-
gether with Eqs. (45), is the celebrated Abramov-
skii-Kancheli-Gribov (AKG) cancellation of ab-
sorptive corrections to inclusive spectra.

In the ISR energy range, o„ increases by about
10'." Hence, in this energy range

Thus, o„ is the cross section for all processes
which are represented by diagrams with ~ cut
Pomerons. The cross section for all "genuine"
inelastic processes (excluding diffraction disso-
ciation) is obtained by summing (r„ from n= 1 to

o g o.~ .|n (50)

&z ( iver 2) n(o)-1 (51)

On the other hand, 0» is the discontinuity of the
single-Pomeron-exchange amplitude. Therefore,

(43)
so we obtain from Eq. (48)

{52)
The total cross section is obtained by summing
o„ from ~= 0 to

(44)

d(r/dy = p g P n(r, „=p g n(r„
n"«& k= n n-" &

{45a)

and, provided y and y' are separated enough,

The calculation of inclusive cross sections rests
on Mueller's optical theorem' combined with the
cutting rules. Neglecting, for simplicity of writ
ing, the exchanges of Reggeons other than the
Pomeron (in the three-to-three and in the four-to-
four forward scattering amplitudes), one obtains

where o.(0) is the intercept of the (bare) Pomeron.
The absence of any energy dependence of {n) cor-
responds to (r(0) = 1.05, which is a reasonable val-
ue for the bare intercept (cf. Ref. 34 and footnote
35). For such a value of n(0), the energy varia-
tion of {n') obtained from Eqs. (48) and (49) is also
mild.

Only the lowest-order moments of yg are relevant
for our calculations and these moments depend
weakly on energy. Therefore, we conjecture that
the probability distribution of n, calculated from
Reggeon theory, can be trusted even at present
energies. More precisely, we shall use the aver-
agirig prescription (46) with (r„computed from the
standard perturbative Reggeon calculus.
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B. The eikonal model and an exploratory data analysis

Of course, B is dimensionless and A has the di-
mension of a cross section. [Using the identity

k/k= fd, xaxp(-x'kw/k), (54)

and (53) one easily rewrites 'Eqs. (43) and (44) in
the familiar form, x playing the role of the impact
vector. ]

A straightforward calculation yields

and

(n) = &Bio„

x(O) = —.'(o „/a)(1+ 2/B) —1.

(55)

An easy numerical calculation enables one to find
A and B using Eqs. (43), (44), and (53) and the ob-
served values of o„and e„,." In the ISH energy
range the value of the parameter x(0) is stable,
x(0) =0.33. The parameters x(P) and x(y) are
found numerically using A and B and Eqs. (42),
(46), and (53)

x(P = 0.256) = 0.166,

x(y = 0.435) = 0.088,

x(y = O. 5O6) = O.O63.

(5'7a)

(5V b)

The value of x(y) given by (5Vb) [(5Vc)] is appro-
priate for the highest [lowest] ISR energy, as ex-
plained in Sec. III. Notice that the approximate
formula (22) would give numbers larger by 15 to
35 /p than those given in (5'7).

We will not drown the reader in the details of
the numerical games we have played. We have
given him all the elements necessary to check our
assertions. Our conclusions are summarized be-
low. The set of parameters qualified as the "stan-
dard" one is the following; 5= 0.6, R(0) = 0.6,

The unknown parameters entering Eq. (40), which
yields the slope 5, are x(P) and x(y). Both x(P) and

x(y) are readily found once a model for Regge cuts
is adopted. In this section we calculate the slope
parameter b within the framework of the most pop-
ular model of Hegge cuts, the eikonal model. For
simplicity, we neglect the real part of the single-
Pomeron-exchange amplitude (we checked that in-
cluding this real part one gets essentially identical
results). We also assume that the single-Pom-
eron-exchange amplitude falls exponentially w'ith

the invariant momentum transfer ~f
~

(in fact our
results are insensitive to the large-

~

f
~

behavior
of Regge residues). With these provisos, the ei-
konal model is defined by the equation

~, ,=~B"/(uu! ) .

(N(0)) and (N) are calculated using the fits (23) and
(24), the ratio D/Ql) is taken from the paper by
Thomas et gl."

(1) In the lowest part of the ISR energy range the
formula (40) for the slope b becomes very sensi-
tive to the choice of input parameters. At W= 23.6
GeV one can get for b any value between 0.2 and
0.5, just playing with the uncertainties associated
with the values of these parameters. With the
standard choice we find 5 = 0.31, to be compared
with the experimental value at S"=23.6 GeV, which
is 5= 0.217 +0.018. In fact, at this energy, the
data are compatible with the absence of any long-
range correlation: setting x(0) = 0 and using the
standard parameters one finds 5 = 0.18. Nothing
firm can be said at this point of the discussion.

(2) At W= 62.3 GeV the typical values of b calcu-
lated from (40) fall around 0.3. With standard pa-
rameters one finds b = 0.2V. The experimental val-
ue is 5= 0-.312+0.014. The results depend weakly
on the choice Of the Gaussian shape for the short-
range component of the inclusive correlation func-
tion. It is excluded that the forward-backw'ard
multiplicity correlation results from the short-
range correlation alone: with x(0) = 0 and using
stagdard parameters one finds 5= 0.10. Now, we
claim that the model is successfull. We could not
expect more precision. And we observe that there
are no free parameters in the game.

(3) In the neighborhood of y=y'= 0 one has [cf.
Eqs. (3V) and (38)]

Qr, ) = (Xo)). (59)

The slope 5 is, in the present case, mostly deter-
mined by the short-range component of C(y, y')
and does depend on the choice of- the shape of
C»(y, y'). With the Gaussian shape and using the
standard parameters one finds 5= 0.39 at 8"=62.8
GeV. With the exponential shape Csa(y, y')

exp(-~y -y'~/X) and choosing X= 26/A (to have
the same average ~y -y'[), one obtains 5 = 0.32.
The experimental number is b= 0.354 +0.009.
Again the model seems reasonable.

(4) Consider now the slope 5 for the "outer"
rapidity region: ~y ~

&1. The calculation is anal-
ogous to that employed to derive Eq. (40). The

C(y, y') = &Xo))'[B(0) -x(e)]
«xp[-(y -y')'/45'] +x(P)(N(0))', (58)

with x(p) given by (5Va). It is not unreasonable to
assume that, at W=62. 8 GeV, say, Eq. (58) is a
good approximation within the whole "central" re-
gion y, y'c(-1, 1). Using Eq. (34) one can calcu-
late the slope b corresponding to the forward-
backward correlation in the central region alone.
Of course, now
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contribution of Csa(y, y') to the numerator in (34)
is negligible. The term, in the denominator, which
involves C»(y, y') is written as the difference of
two integrals: the first is over the region where
y, y'&0 and has been already calculated. The sec-
ond is over the region where one argument is with-
in (0, 1) and the other is within (0, ln(W/W, )). In
computing this second integral we use (58), since
the contribution of the region where (58) fails is
small. Another piece of information necessary to
carry out the calculation is the energy variation of
the outer multiplicity

N, l )= f d3(&40. (60}
lyl&j

In the ISR energy range one has (N,„„,)- W', with
c being (roughly) 0.52 to 0.59. The corresponding
«(c) = 0.043 to 0.061. With the standard parame-
ters, the calculated slope, at W=62. 8 GeV, is 5
= 0.08 to 0.11. The experimental number, at this
energy, is 5= 0.156+0.013.

Below the ISR energy range (N,„, ) falls rapidly
with decreasing W. Thus, «(e) decreases dramat-
ically when one moves from the ISH to the Fermi-
lab energies. Consequently, the multiplicity cor-
relation between the outer forward and backward
regions is expeted to disappear. This expecta-
tion is borne out by the data: at W= 23.6 GeV one
already finds 5 = 0.032+0.015 for the outer region.
This fits nicely with the assertion we made iri

point (1), that the full-rapidity-rarige forward-
backward correlation comes mainly from the
short-range component of C(y, y').

(5) One can wonder what are the implications of
the long-range rapidity correlation, discussed in
this paper, for the earlier analyses of multipar-
ticle data. In particular, in papers using the in-
dependent-cluster-emission model, " it has been
postulated that dynamical long -range correlations
are absent, except for low-multiplicity events. A
thorough discussion of this problem is outside the
scope of this work and we limit ourselves to a few
remarks only.

The most elaborate application of the cluster
model concerns the semi-inclusive data. How-
ever, when the total (charged) multiplicity is kept
fixed, the long-range correlation is suppressed,
since z is no longer allowed to fluctuate freely.
Our tentative conclusion is that the study of sem, i-
inclusive data based on the independent-cluster-
emission model would not be significantly altered
by the long-range rapidity correlation we are dis-
cussing.

Let us consider now the theoretical arguments
which have been put forward to determine the av-
erage rapidity density of clusters.

Consider the tail of the rapidity-gap distribution

in the compound density N(y). It is not likely that
there is a large rapidity gap in all the n elemen-
tary densities at exactly the same place. %hen a
very large gap is observed, then most probably
a=1. Hence, if 4y denotes the length of the rap-
idity gap, one predicts" at large b,y

Prob(b, y) - exp(-p, n,y), (61)

The leading-particle spectrum is now flat for po
=O.V. Applying the correction implied by (62),
one finds that the (compound) cluster density is
close to unity, as conventionally assumed. Notice
that the two arguments sketched above do not give
the same p„as was the case when long-range cor-
relations were neglected.

C. What about inelastic diffraction?

Until now the inelastic diffraction has been neg-
lected. This may appear as a poor approximation,
since the cross section o» for single diffraction
dissociation in a proton-proton collision is o» = 8

where po is the average rapidity density of clusters
in N, (y). Regge theory also predicts an exponen-
tial fall of Prob(by) (apart from a slowly varying
corrective factor associated with the nonvanishing
slope of the Hegge trajectory, cf. the review Ref.
38), but with the exponent equal to 1+ o.(0) -2az(0)
instead of p,. We denote by ~(0) and o.z(0) the in-
tercepts of the Pomeron and of the leading secon-
dary Regge trajectory. Thus, with a(0) =1 and

az(0) = &, one expects p, = 1. A typical eikonal
model value of (n), at least in the ISR energy
range, is Q)=1.56. Using (21), (26), and (2V),
one finds

Qr(0})/(X,(0))= (n)'-'=1.4.
Hence, the average rapidity density of clusters in
real events is expected to be roughly 40% larger
than p, =1. This, in turn, implies that the average
number of the cluster decay products is 40% small-
er than is usually believed. %e do not insist on
this point, since the relevance of the rapidity-gap
argument for the cluster model has been ques-
tioned.

Another argument is due to Stodolsky, "who
identifies the distribution of the energy "left over"
in the process of cluster production with the en-
ergy distribution of the leading particle. The ap-
proximate flatness of the leading-particle spec-
trum (do/d«)„, «„(remember that we are neglect-
ing inelastic diffraction) is used to determine the
average density of clusters. In our model one
writes, following Stodolsky,

(da/d«)„~„, = p, P no„(1 -«)"'o '. (63)
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mb at highest ISR energies. " Therefore, we feel
obliged to discuss the consequences of taking into
account the triple-Pomeron interaction (to the
first order, however). As we shall see, the "im-
proved" theory is not better than the most naive
one (a rather common phenomenon in high-energy
physics). For this reason the following discussion
is not very elaborate: we just summarize the im-
portant. points, leaving aside technicalities (for
more details see the Appendix).

Compared to the preceding sections the theory
involves now a new building block, the so-called
F diagram. We mean the simplest Reggeon dia-
gram, with a single Pomeron emitted at the bottom
(top) and two Pomerons absorbed at the top (bot-
tom). The amplitude corresponding to the Y dia-
gram (the Y amplitude) involves the triple-Pom-
eron vertex function which, in turn, depends on
three momentum-transfer variables. The study
of the inclusive spectra in the triple-Regge limit
provides (some) information on the dependence of
the triple-Pomeron vertex on two momentum-
transfer variables. 4' The dependence of this ver-
tex function on its third argument is unknown.

Consequently, the behavior of the F amplitude as
a function of the overall momentum transfer is also
unkriown.

Define

(slope of the one-Pomeron-exchange ampl)
(slope of the Y ampl)

Slee the behavior of both amplitudes is governed
by the same soft-hadronic dynamics, we do not
expect r to be dramatically different from unity.
Nevertheless, nothing prevents r from being close
to 0.5, to give an example.

Having nothing better at our disposal we stick to
the eikonal model. Compared to the preceding
section, we have now one more observable quan-
tity to fit: g». Unfortunately, there are two new
parameters: the triple-Pomeron coupling and r.
Thus, orie parameter, say r, is left free.

The implications of thy nonvanishing triple-Pom-
eron coupling for the long-range rapidity correla-
tions are twofold:

(i) Taking into account the AKG cancellation, one
has four new diagrams contributing to d'u/dy dy'.
The relevance of these diagrams for the forward-
backward correlation can be estimated by calcu-
lating the ratio

Qr~, )i(Q ) (X,)) = 1+x(O)+ ~x(0)+ O(1/(X, ,)') .
(64)

In the above equation, hx(0) is proportional to the
triple-Pomeron coupling. It turns out that for all
reasonable Values of r the ratio

~
bx(0)

~
/x(0) S 159o.

Hence, the long-range rapidity correlation asso-
ciated with inelastic diffraction is much less im-
portant than the long-range correlation resulting
from the polyperipheral production of multiparticle
states. This result is asymptotic, in the sense
that it rests on the AKG cancellation. Strictly
speaking, we do not know whether this result holds
at a finite energy, but we suspect that it does.
Consequently, we neglect Ax(0) also at finite en-
ergy

(ii) There is also an indirect implication of osn
00. For a given value of r, the eikonal model pa-
rameters A. and B depend on the value taken by 08D.
In other words, the relative weight of multi-Pom-
eron-exchange diagrams (which do not involve the
triple-Pomeron coupling) becomes modified when

osD 40: even if one neglects hx(0), the value of

x(0) one finds depends on the magnitude of o».4'

This effect is, in general, much more important
than the one discussed in (i) above.

Without further ado let us mention a few typical
numerical results: for r=1, one finds (pg)0- W"
and, at W= 62.8 GeV, x(0) = 0.44 and 5 = 0.44 (with
the standard parameters). For r=0.5, one gets
(~)o- W'", x(0)=0.35, and 5=0.29, in agreement
with the data.

In summary: because of the uncertainty on z the
theory loses a part of its predictive power. Values
of r close to unity are unlikely. Nevertheless,
with other, equally acceptable values of r, like r
= 0.5, one obtains results which are close to those
found in the last section with the most naive eiko-
nal model. It is worth mentioning that the results
are weakly sensitive to the choice of r, provided
rs 0.5 or so.

An aficionado of the eikonal model would pre-
sumably turn this last conclusion into a more pos-
itive statement: the analysis of the long-range
rapidity correlations provides precious informa-
tion about the (otherwise) unaccessible slope of
the F amplitude. This, in turn, enables one to
control better the absorptive corrections to the
triple-Regge formula and to reduce the uncertainty
on the value of the "true" triple-Pomeron coupling
(for the relation between the value of the triple-
Pomeron coupling and the choice of y, consult Ref.
42).

VI. VIOLATION OF THE LOCAL COMPENSATION

OF CHARGE

Following Ref. 44, we denote by Z(y) the random
function representing the transfer of the electric
charge across rapidity y. The charge is said to
be locally compensated when the moment functions
(Z(y, )' ' 'Z(y~)) have the short-range order prop-
erties: cluster decomposition and translational in-
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variance.
In the model discussed heretofore one expects

Z(y) = Q Z,"'(y),
j- j.

(65)

where Z,'~'(y), j= 1,2, . . . , n, satisfy the constraints
of local compensation. Notice, that, for symmetry
reasons, the moment functions of odd order must
vanish, provided all rapidities are far from kine-
matic boundar ies:

&Zo{y,}' ' 'Zo(y»„))= 0. (66)

In analogy to Eq. (5} and using (66) we find (in the
central region)

' &z(y}z(y')&= «zo(y)zo(y')»„. (67)

Thus, at the level of two-point functions there is
no violation of the local compensation of charge.
The (observable) function &Z(y)Z(y'}) is expected
to fall rapidly towards zero with increasing dis-
tance between y and y'.

Consider, however, the fourth order zone cor-
relation function

D4(yl 32 y3 34}=&Z(yl)Z(y. )Z(y. )Z(y4}&

—[&z(yl) z(y2) & &z(ys) z(y4) &

+ (2—2}+(2—4) ] . (68)

Limiting, for simplicity, our attention to the as-
ymptotic regime, we derive from (65)

D.(y y. y. y.}=& &D'"(y. y. y. , y.}

(0) [&Z(„,)Z(,)) &Z(,)Z(,))
+(2—8)+(2 4}]. (69)

It is obvious from the above equation that for x(0)

0 there is a long-range contribution to the corre-
lation function D4. An experimental study of a
four-point function requires enormous statistics
and is therefore very difficult. It is, however,
sufficient to set y, =y, =y and y3 yQ

D.b y»'»'}= &~&Dl"(»y, y', y')

+ x(0) [&Z(0).')'+ 2&Z(y}Z(y'))'],

(70)

where we have used the fact that in the asymptotic
regime &Z(y)') = &Z(0)'). Hence, we predict that
there is a constant, positive contribution to
D,(y, y, y', y'), equal to x(0)&Z(0)')'. We observe
that the same parameter x(0} controls the forward-
backward multiplicity correlation and the violation
of the local compensation of charge.

At finite energy one should apply the appropriate
corrections. A very-rough estimate indicates that
the long-range contribution to D,(y, y, y', y') might
be as large as 0.2. The correlation function D4
has never been measured. Its value at y&

—-0 can
be estimated from the observed distribution of tiI.e
charge transfer between forward and backward
hemispheres. Using the data at 200 GeV (read)
from Fig. 100 in Ref. 45, one obtains a rough es-
timate D, (0, 0, 0, 0) =0.7+0.2.

Let us observe that even at very high energies
the central region is not exactly neutral. For ex-
ample, 4' in pp collisions, &Z(0))= 0.07 a 0.02 and
0.02 a 0.03 at p, „=100 and 400 GeV/c, respective-
ly: A small fraction of the leading charge is leak-
ing to the central region. In testing the predictions
of this section it is, therefore, recommended, to
measure instead of D,(y, y, y', y') the correlation
function defined below:

5 (y, y, y', y') = &z(y) z(y') &
—&z(y) & &z(y') &

—2&z(y))[&z(y)z(y') &
—&z(y)& &z(y') &]

—2&z(y')&[&z(y')z(y}') —&z(3 '})&z(y)'&] —2[&z(y)z(y')& —&z(y})&z(y'})l'

+ 4&z(y)& &z(y')&[&z(y) z(y') &
—&z(y}&&z(y') &1 (71)

The functions D,(y, y, y', y') and D,(y, y, y', y') be-
come identical when &Z(y})= &Z(y'})= 0. Equation
(71) can be checked by comparing it with the ex-
pression for the full fourth-order correlation func-
tion, to be found in textbooks. ~'

The rapid fall towards zero of the second-order
corr elation function

&Z(y)Z(y'}) —&Z(y)) &Z(y'))

has been observed. " This behavior is a beautiful
evidence for the short range in rapidity of the ef-
fective hadronic forces. A measure of
D,(y, y, y', y') would be a very interesting test of
the ideas discussed and developed in this paper.

VII. SUMMARY AND CONCLUSIONS

As argued in the Introduction, the short-range-
order dynamics implies, via unitarity, a well-de-
fined pattern of long-range rapidity correlations
in high-multiplicity events. In this paper, these
long-range correlations have been studied in de-
tail. In particular, we paid much attention to the
forward-backward multiplicity correlation, which
has been recently measured in the whole ISR en-
ergy range. " %e summarize below what we have
learned from this investigation.

%e find that, independently of any specific mod-
el, the strength of the forward-backward multi-
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plicity correlation at the highest ISR energies is
incompatible with short-range order alone.

We observe that in order to understand data one
must carefully take into account finite-energy ef-
fects and, in particular, the energy-momentum-
conservation constraints. The use of an asymptotic
formalism at present accelerator energies is usu-
ally mis leading.

We suggest that the long-range rapidity correla-
tions associated with inelastic diffraction are a
secondary effect (at least at the inclusive level)
compared to the long-range correlations resulting
from the (roughly speaking) polyperipheral produc-
tion of multiparticle states.

We extract from the data the normalized disper-
sion (fluctuation, in the language of statistical
mechanics) of the number n of exchanged cut Pom-
erons. A very conservative estimate is

((n/(n) -1)')= 0.3 to 0.4,

but there is an indication from the work with mod-
els that the correct value is rather 0.32 to 0.36.

The value of ((n/(yg) —1)') being (roughly) known

from multiparticle data, we have a nontrivial con-
straint on any model of Regge cuts. It is remark-
able that the good old eikonal model (with inelastic
diffraction neglected) gives ((n/(n) —1)')=0.33 in
the ISR energy range. With this model we obtain
a very reasonable overall picture of the forward-
backward multiplicity correlations (except for the
energy dependence of the effect: the theoretical
uncertainties, inherent of our approach, increase
considerably when one enters into the lower half
of the ISR energy range).

The a priori more realistic theory, taking into
account the triple-Pomeron interaction (to first
order), does not bring any improvement from the
phenomenological point of view. The lack of know-
ledge of the triple-Pomeron vertex, as a function
of all the three independent momentum-transfer
variables, reduces the predictive power of the the-
ory. Nevertheless, the theory is still compatible
with the data.

We predict a very specific violation of the local
compensation of charge: the violation should ap-
pear in the fourth-order zone correlation function,
being absent in the second-order correlation func-
tion. We recall that only the second-order function
has been measured. The observed behavior of the
second-order zone correlation function is a nice
evidence for the short range in rapidity of the ef-
fective hadronic forces. Of course, this evidence
would not be invalidated if the predicted violation
of the local compensation of charge were observed.
On the contrary, such a very specific violation of
the local compensation is a consequence of the bas-
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to a paper by E. M. Levin and M. Q. Ryskin, Yad.
Fiz. 21, 396 (1975) [Sov. J. Nucl. Phys. 21, 206
(1975)]. Like ours, this work is inspired by the
Reggeon theory. It attempts to evaluate the long-
range contribution to two-body correlations. There
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APPENDIX

The contribution of single diffraction dissocia-
tion to the inclusive peak near (Feynman) x=1 is
well represented by the formula

do8D/dx = const/(1- x). (A1)

o„,=A Q (-1/2)' 'B'/(kk! )

—G P (-1/2)'B'/[(k+ r)k! ],
A~o

(A2a)

o„=A Q ( 1)' 'B'/-(kk! )

G P ( 1)'B'/[-(k+ r)k! ), (A2b)

osn= G Q (-1)~B'/[(k+r)k! ] . (A2c)

In the above equations G/r is the contribution of

The right-hand side of (A1) is identical to the trip-
le-Regge PPP term with o.(0) = 1 and a'(0) = 0. In
the following we shall neglect the corrections to
the Y amplitude due to the fact that n(0) is not ex-
actly at 1 and that a'(0) is nonvanishing. This ap-
proximation leads to much more transparent for-
mulas without altering seriously the results. In
the spirit of the inclusive-exclusive connection4'
we also assume that (Al) gives a good (average)
description of diffraction dissociation even at x
very close to 1.

In the eikonal model and to the first order in the
triple-Pomeron coupling one has

)/ In(W/W ) = (Ap/g„) [B —G/(2')]
and

yr~, &/ in'(W/W, )

(A3)

= (Ap'/o, „)(B+B'/2+ 3G/(4rA) —G B/[A(1+ z)]) .

(A4)

Setting r= 1 and with o„~=43 mb, o„=35.2 mb,
and o~D

™6 mb (approximate values of cross-sec-
tions at W=63 GeV), one finds from (A2) that A
= 23.8 mb, 8= 3.43, and 6= 28.4 mb. With these
values of the parameters A, B, and G, Eqs. (64)
and (A3) and (A4) give x(0)+ bx(0) = 0.51. Setting
G= 0 (also in o„) but keeping the above values of
A and B, one obtains x(0) = 0.44. With r = 0.5, but
otherwise with the same input as before, one finds
A. =30.1 mb, B=2.29, and 6=V.05 mb. This cor-
responds to x(0) + hx(0) = 0.36 and x(0) = 0.34.

the unabsorbed Y amplitude to osD (r has been de-
fined in Sec. VC).

We use ihe Mueller-Regge model, taking into ac-
count the AKG cancellation. Exchanges of Regge
trajectories other than the Pomeron are neglected.
The one-particle (two-particle) inclusive spectrum
is represented diagramatically in Fig. 1(a) (Fig.
1(b)). Each diagram represents a particular dis-
continuity of the corresponding amplitude. With a
vanishing triple-Pomeron coupling, do/dy and d'o/
dydy', corresponding to the diagrams in Figs. 1(a)
and l(b), respectively, are, of course, identical to
those obtained from Eqs. (45) and (46). Notice that
with the approximation (A1) all positions of the
rapidity y, of the triple-Pomeron vertex are equal-
ly likely.

A straightforward calculation yields asymptot-
ically
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