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Theory of static quark forces
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Working within the framework of classical algebraic chromodynamics, I develop a theory of the
equilibrium color forces acting between stationary quarks. To identify the equations appropriate to describing
static forces on a fixed time slice, I assume that the "static" color fields (1) appear as the end point of a
most probable tunneling process, and (2) satisfy the principle of virtual work. The resulting equations differ
from the vanishing-time-derivative specialization of the Euler-Lagrange equations. The static equations imply
certain compatibility conditions on the orientations of discrete quark charges relative to the local color field.
Unlike the analogous static equations in Abelian electrodynamics, which take the same form on all time
slices, the static equations for chromodynamics take a simple form only at the instant of tunneling through.
Static forces and potentials calculated on this favored time slice describe the behavior of the system at all
later times because of gluon energy conservation. When the static equations of algebraic chromodynamics for
the qq color-singlet force problem are rewritten as equations for the overlying SU{2) classical Yang-Mills
field, they take the form'of the equations of the 't Hooft-Polyakov model, but with the Higgs field
reinterpreted as the static potential and, of course, with external source charges present. I develop these
equations in a perturbation expansion in the color gluon coupling g. I conjecture that the relevant zeroth-
order solution is the unit-topologica1-charge solution of t Hooft and Polyakov, which appears to behave as a
quark-confining "bag." This solution cbntributes a zeroth-order orientation energy to the quark potential,
which by the principle of virtual work must be extremal with respect to variations in the position and
orientation of the "bag." The orientation energy gives the qj potential a repulsive central core, and also
leads to a zeroth-order (r("„&Q( „& 5 interaction between the quark spina and the "bag" color magnetic field.
The compatibility conditions guarantee that the orientation energy is invariant under changes of gauge of the
zeroth-order solution. Confinement, I believe, comes about in order g, where there are strong distortions of
the quark color flux lines arising from the presence of the background "bag" field. A test of this hypothesis
requires construction of the color gluon propagator in a Prasad-Sommerfield background field. I adapt the
methods of Brown et al. to get an expression for the vector propagator in terms of the scalar propagator and
to give an explicit contour integral formula for the latter, the detailed evaluation of which is now in progress.
Since the compatibility conditions and the minimization involved in constructing the orientation energy make
the source current orthogonal to all normalizable zero modes, all zeroth-order 'degeneracies are resolved and
a consistent order-g ' perturbation theory exists. I conclude with a brief disc'ussion of expected limits of
validity of the perturbation expansion, and of the extension of the methods developed here to nonstatic
problems and to the force problem for three (or more) quarks. In the first appendix, I give technical details
of the scalar propagator construction. In the second appendix, I illustrate in the case of the Abelian Higgs
model the subtleties involved in finding static equations which satisfy the principle of virtual work. I also
sketch an argument which shows that assumption {2) above follows from assumption (1), and give a
thermodynamic interpretation for the equation of energy conservation in processes in which confining "bags"
are being created.

I. THE STAT1C EQUATIONS

In an earlier paper' (hereafter referred to as I)
I constructed an exten'sion of chromodynamics,
called algebraic chromodynamics, which permits
the introduction of classical noncommuting quark
color charges. I now turn to the problem of de-
veloping methods, within the framework of alge-
braic chromodynamics, for calculating the equil-
ibrium color forces acting between stationary
quarks. In the formal developments of this sec-
tion, I will assume the validity of Eq. (I.22) for
color-charge algebras of arbitrary rank ¹ In the
specific application to the qq color force given in
the next section, I use only the rank N= 2 algebras
which were explicitly calculated in I.

Under the assumption of stationary quarks, the
quark source current 4'~ of Eq. (I.17) has time
component

O'= Q Q(„)(t)bs(x —x„) (la)

dq, „,(f) = -tgP(bc(x„), Q(„i(t)) . (2)

Before proceeding further, I generalize Eqs. (1)
and (2) in order to include quark static spin cur-

and vanishing space components

J =0, @=1,2, 3,

with the charges evolving in time according to Eq.
(I.20), '
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rents, by assuming that these are given by the
natural covariant generalization &&/&&x' -D, of the
usual Abelian expression for the spin current

-1
„2m (yf)

with m&„& and 0&„& the nth quark mass and Pauli
spin matrix. In order to simply express the effect
of the spin current on the time evolution of the
quark charges, I introduce the color electric and
magnetic fields

If we attempt to assume that time derivatives of
the potentials are identically zero, then the con-
straint equation D&E~ =gJ' implies an immediate
conflict with Eq. (5). Hence "static" chromody-
namics necessarily involves time dependence. In
order to infer the equations which describe the
color fields of quarks at rest, I introduces two as-
sumptions:

(1) First, I assume that "static" color fields
(and in fact all color fields of physical interest)
appear as the end point of a most probable tunnel-

Ow

Bm L~htmf k)
(4)

ing process. 'faking the instant of tunneling
through to be k= 0, and requiring that the tunnel-
ing probability be extremal with respect to all

Then substituting Eq. (3) into the equation of source
current conservation D J"=0, an'd using Eq. (I.10)
to simplify the spin current contribution, gives
the modified version of Eq. (2),

dQ(„)(t) = ip(u„, (x"),q&„&(f)),
(5)

u„,(x"}= gb, (x")-+
B"(x")(&(~„)

2m(n)

In everything that follows, I will treat spin only
as a lowest-order perturbation, ignoring effects
arising from the noncommutativity of the Pauli
spin matrices (this gives correctly the interaction
energy terms of the form &)&„& and o&„&a& &, m&n).
Then the v&„& coinponents in Eq. (5) can effective-
ly be replaced by their expectations, making Eq.
(5) identical in form to the local algebraic gauge
transformation on the quark charge given in Eq.
(1.18). Equation (5) specifies the time evolution
of the quark charges, starting from the forms on
a fixed initial time slice assumed in I.

I now turn to the-key problem, which is to. find
the equations appropriate to describing static
quark forces on a fixed time slice. In ordinary
electrodynamics this is readily accomplished by
setting all time derivatives equal to zero in the
Euler-Lagrange equations. 'The situation is not so
simple in chromodynamics, where the field-po-
tential relations and Euler-Lagrange equations, -

obtained by expressing Eqs. (I.3'), (I.14), and

(I.15) in terms of E~ and B~, are

Bj ~N) b) ~ igP(bk bl)ex' 7 J

D E~=gJO,

D,.a'= 0,
~kjmD ~m D gk' gJA0 Syin &

~ k)) mD @m+ D~)& 0

—S(X,D)E~ -gZ )]. (7)

I have enforced the constraint in Eq. (7) by the
natural device of introducing a Lagrange multi-
plier A. into the action. ' Expressing E~ and B~ in
terms of potentials, integrating by parts in the
time-derivative terms, and keeping only the end-
point contribution, Eq. (7) becomes

0= — d xS 5b~ x, t=O, E~+D)X (6)

which implies that at the instant of tunneling
through we have

t=O: E~= -D~A.
P

~ X —igP(b~, X)
Bx

(9)

Equation (9) may be interpreted by noting that the
general radiation gauge form of E~ is4

E~= -D)A. —b~, D~b'= 0, (10)

and so Eq. (9) states that at the instant of tunneling
through, the transverse contribution to E~ van-
ishes. This statement is the natural generaliza-
tion of Coleman's "bounce" condition' to the situa-
tion where a source constraint is present.

(2) Second, I assume that the color fields assoc-
iated with quarks held in equilibrium by external
restraining forces satisfy the principle of virtual
work. Recall that the principal of virtual work states
that when a system in equilibrium is subjected to
arbitrary virtual displacements, the sum of all in-
crements of work (energy) is zero. In the present
context, this requires that when the 'quark-gluon
system is subjected to arbitrary virtual displace-
ments, the change in quark potential (which is the
net work done by the restraining forces) must

variations of the color fields at t=0 which are con-
sistent with the constraint D&E~=gJ, gives the
dondition

00:5 g ( ( df d x[pS(E E } gS(B B )
~ OO
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equal the change in gluon field energy; it is hard
to see how the concept of a static potential can
make sense without such a balance holding. To
get this condition in quantitative form, I use Eq.
(I.26) and Eq. (10) to write the radiation-gauge
gluon field energy as

6D~X =Dibs —igP(bb~, X),
gBj ~ jl mD ibm

(12)

gives

OE„„..= d'x S e~, D,Z~ +S ~b~, b~

E„„„= d'x-,' S E~, E~ +S B~,B~

d x- S D~X, D~X +S b~, b~ +S B~,B~

(11)
Making arbitrary small variations in the quark
positions and field strengths, and. using

E~ = -D)X,

D&E~ =gJ

B&=esp' b' ,' -tg-P(bs, b'), DiB&=0, (15)
I

e 'iD, Bi=gal„„+igP(X,D„X),

D&w =
&

w —zgP(b, w) .8

ex
Before proceeding to applications, I pause to

comment on a number of features of these equa-
tions:

(i) It is possible' that quantum fluctuations around
the static background fields lead to a Higgs poten-
tial for X, changing Eq. (11) to read'

D~~ +S b

+S(Bi,B')+ Vs(S(X, X)) ]. (16)

Equation (16) then has an extra term

yS(6b", e '~D, B~ —igP(X, D„X))].

(13a)
AQE „= dxP' S X, X 6X, X (17)

This expression must be equated to the change in
the static quark potential'

Oy„,«, =g d'x S nX, J' +S ab', J,'„. , j.3b

where I have used the fact, apparent from Eq. (10),
that X is playing a role analogous to the scalar po-
tential b, . The variations in Eq. (13) are not in-
dependent on a general Cauchy surface, but rather
are restricted by the condition

0 = 5(D(b~) =D(bb~ —igP(5bi, 5&), (14)

which relates 5b~ to 55~ in a complicated way.
Now, however, let us exploit the fact that at the
instant of tunneling through (f = 0) we have b~= 0,
so that Eq. (14) is a constraint only on 5bi, which,
however, no longer contributes to Eq. (13a). The
remaining infinitesimals 5b and 5X are then inde-
pendent, and equating the left- and right-hand sides
of Eq. (13}gives us the desired equations' of chro-
mostatics

and the second equation in Eq. (15) is changed to
read

DiE~+ V„'(S(X,X))X=gJ's, (18)

but the identity 5E,g 5V, $f continues to hold.
(ii} Equations (15) can be obtained as the condi-

tion that a functional F of the original potentials
b', b~ and of a Lagrange multiplier X be extremal
with respect to independent variations of A. and of
the Cauchy data b', b~, b~ on a fixed time slice. The
functional F is

F,h = dx USE, E -SB,B
S(X,D~E~ -gj-')],

spin 'ststic, spin = -g ~ S B (x„),
2m( ~)

where I have explictly separated off the spin con-
tribution. The variation of V, gggfQ Syf~ is

n (n)

=g d xS 5b~x, J~
f (20)

which justifies the identification of spin current made in Eq. (3). Expressing E and B in terms of poten-
tials by Eq. (6), and varying, gives

5F h~ = d x S E, D~5b + sgP 5b, b —5 —S B,e~™Drab -S 6X,DfE -gJ
-S(h. , -igP(bb E )i—DiPi6b +igDg(5b~, b ) D)bb )]. -
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After doing integrations by parts' this takes the form

56', h~~g,
= d'x[S(bb &D~E'+D~D~X) —S(bb~, EJ+D~X) —S(5X,D~E~ -gjo)

+ S(bb, igP (O', E + D A ) —e '~D, B~+ igP(E", A)) ], (22)

from which it is clear by inspection that equating 66' to zero gives Eqs. (15). This derivation makes it ap-
parent that, while the argument of Eqs. (11)-(14)makes use of the radiation gauge, Eqs. (15) themselves
do not involve a gauge specification. " (For a discussion of the connection between this derivation and the
maximization of tunneling probability, see Appendix B.)

(iii) The static equations imply compatibility conditions on the orientations of discrete quark charges
relative to the local color fields. These are obtained by applying D to the "curl B"equation in Eq. (15),
and using Eq. (I.10) on both left- and right-hand sides,

q~'~D+ B~= igP(B—J, B~)=0=gD j „-igP(X,j )

from which we get

Dg~„, —igP(X, j') = 0

c fll

=ig'P 5'(x x„) P B (x„), '"' '"' -P(~, q, „,),
n (n)

(23)

—Z a x„, '"' '"' -I xx„, ,„& =0, n=~, . . . ,K.
m(n)

(24)

Equation (24) will play an important role in the
subsequent analysis.

(iv) Although X plays a role analogous to the
scalar potential in the above analysis, Eqs. (15)
differ in a crucial respect from what one obtains
by simply dropping all time derivatives in the
Euler-Lagrange equations. This procedure (which
I argued above is inconsistent in chromodynamics)
gives

E~= -D,b

g E~=gJ

+pm +D Em
l ' syfn 0

=gj,"„,—igP(bo, D bo) .

(25)

The difference in sign between the P(b', D b') term
in Eq. (25) and the corresponding P(X,D X) term in
Eq. (15) is not a calculational error, but rather
reflects the fact that Eqs. (25) are obtained by an
unconstrained variation of

2= ~ [S(E~,E~) S(B',B~)]+—
while Eqs. (15) result from either an unconstrained
variation (at f =0) of ,'[S(E~,E~)+S(B~—,B~)J, as in
Eqs. (11)-(13), or a constrained variation of
—,[S(E',E') S(B~,B~)]+,—as in Eqs. (19)-(22).
To complete this comparison, I note that Eqs. (25)
(with X replacing b'). would again result from the
variation' of the following constrained functional
with all Cauchy data treated as independent:

+charge +spin &

ch~ge= (26)

—S(X,D)E~ -gj )]..

Neglecting spin, the variational problem posed in
Eq. (26) is just that of finding, on a given time
slice, the field configuration of minimum energy
consistent with the presence of specified quark
charges. The fact that the ehromostaties equa-
tions do not agree with Eqs. (25) means that static
quark configurations are not absolute minima of
the field energy. This is consistent with the view
that the key ingredient in the analysis of static
quark forces, and of quark confinement, is not'

the absolute minimization of energy but rather
the maximization of probability. Unconfined quark
states may have much lower energy than confined
quark states, but if they occur with only very
small probability, they will not dominate the phys-
ics. See Appendix B for a further discussion of
this point.

(v) I have already stressed that the derivation
of Eqs. (15) applies only at the instant of tunneling

. through, when b& = 0. One can still ask whethe r
Eqs. (15) can be valid at later times, or equivalent-
ly, whether when the solution of Eqs. (15) is used
as t= 0 initial Cauchy data for the time-dependent
Euler-Lagrange equations of Eq. (6), the time-
evolved solution at a time t&0 continues to satisfy
Eqs. (15). I will show below that the answer in
general must be no, by considering the particular
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T,„„=gS(f™„,J"), (27)

which implies that

8 pg
g&uon e&B - g&uon

d xgS(E, J»
( ). (28a)

Hence, dE„„„/dt vanishes at all times in the ab-
sence of spin currents. To study the effect of
spin currents, I note that on the t = 0 time slice
Eq. (28a) can be put in the form

case where the t= 0 Cauchy data are the Prasad-
Sommerfield solution of Eqs. (15), for which a
simple calculation gives d'F,„„/dt'&0 for the
time-evolved solution. Since the functional F,„
has no explicit time dependence, this means that
the time-evolved solution is not extremal, and so
does not satisfy Eqs. (15). Evidently, chromo-
statics behaves very differently from electrostat-
ics. 'The equations of electrostatics take the same
simple form on all time slices. The equations of
chromostatics take a simple form only on a subset
of time slices of measure zero.

(vi) Even though the equations of chromostatics
take a simple form only on special time slices,
they predict the same static forces at all times
because E„„„is (almost) a conserved quantity. To
see this, we use Eq. (1.30},

would be consistent with the fact that Eq. (3) was
not given an a priori justification, but was inferred
from the expected form of the spin interaction en-
ergy by an application of the principle of virtual
work on the t=0 time slice.

II. THE qq STATIC-FORCE CALCULATION

I turn now to a calculation of the qq static force
in the color-singlet channel, for general under-
lying color group U(n). To recapitulate some re-
sults from I, in this case the diagonalized P and S
tables reduce to an SU(2) algebra, over which the
inner product S is a multiple D = n/2 of the unit
matrix. Going over to the natural vector notation
for the overlying SU(2) algebra by the replacements

P(u, v)-i u x v,

S(u, v)-Du v,

(29)

n' —1 ' ' (1+»n'} l
Qq e l(» 8 s (» 8))/» I

the relevant equations from Sec. I take the follow-
ing form:

source currents:

—s„„„=1 as's " "',p(l, (x„),Q&„&)),
0 n ~(n)

(28b)

2
J» Q ~») mD [q 53(~ ~ )~m ]

n=l q

(30)

which by the compatibility condition of Eq. (24)
takes the form

~, ,S ~(~ & (&.}o'(.) &'(~„)o(.)
0 n (n) (n)

=0 (28c)
when noncommutativity of Pauli spin matrices is
ignored [cf. the discussion of spin approximations
which followed Eq. (5) above]. However, an at-
tempt to go beyond first derivatives at t =0 leads
to difficulties. For example, if we try to evaluate

dE (.BEs'ssi s' },ss -
)dt2 I, et ' '~"~~

(28d)

by using Eq. (3) to describe the spin current at
arbitrary times, nonvanishing terms linear in the
spins are encountered. I believe that this indicates
that Eq. (3}, while providing a consistent descrip-
tion of spjn. effects at t = 0, does not correctly de-
'scribe dynamical spin effects. This limitation

principle of virtual work:

5Egyuon 5 d Xz. D E E +B B + Vz D&

=gD d'x 5X ~ +5b J„i

equations of chromostatics:

E~= -D~X,

DqE~+ V„'(DX')X =gJ',
B'=&"' b'+-'gb xb' D B~=O

& "D,B'=gJ„„—gh, xD A. ,

Dpr= ~ w+gb~x w,ex

[D„D,]w=ge" H xw,
compatibility conditions:

(31)

(32)
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B"(x„)x " " —A.(x„)x Q(„)=0, n= 1,2.
2m.

(33)

I will assume that if radiative corrections do pro-
duce a Higgs potential for X, it appears in order
g' of perturbation theory as in the analysis of
Coleman and Weinberg, ' and has the approximate
form

Since whether radiative corrections produce a
Higgs potential for X is an open question at pres-
ent, Eq. (35) should be considered as a postulate
which I make in the purely classical analysis which
follows.

A. Zeroth-order approximation

4

V„(x)=—"—,(x -(x))' (34)
I begin the perturbation analysis by considering

the zeroth-order approximation to Eqs. (31') and
(32'),

with (x) a dimensional subtraction constant. Equa-
tions (32) and (34) are familiar ones —apart from
the presence of the source currents, they are the
static equations of the 't Hooft-Polyakov" model,
with the static potential X playing the role of the
Higgs scalar field.

It will be convenient in the subsequent analysis
to follow the standard practice of scaling out the
coupling constant g by making the replacements
X-X/g, b~ b~/g, E~ E~/g, B~ B~/g in Eqs.
(31}—(34), giving scaled equations [Eqs. (30) and
(33}are unchanged]

Eo= Doggo ~

Do)E~~ = 0,

at br+ box br
o a&A o 2 o o ~ og o

mfa
Dp)Bp Xp x Dp~kp,

Dpywp g
w'p+ bp x wp & Xp fc

ex

(36)

I

Qg -Q dg2 —F E +B B

+ (X'X —K )
2

[D», D»]w= ef™B,x w .
The properties of Eqs. (37) have been discussed
extensively in the literature. They are solved by
the ansatz"

~ ~static

=D dx 5X. 'J+5b 'J, (31')

Bp=+ Ep =+Dp~ko,

since this gives

(38)

fE = -D~A, ,
2

D&E~+ CK—(X' —K')X =g'J',

B =q ' ~b'+ 'b xb' D~B =0
8 k

B~ =g2J —~ X! sPi11 m

(32')

(35)

D&w =, w+ b~ x w, K' = (x)g'/D,

[D,D, ]w=e~™~Bmxw.

The natural thing to do with Eqs. (31') and (32')
is to assume that the coupling constant g2 is small
and make a perturbation expansion. Since we see
that the Higgs potential [assuming Eq. (34}]is an
order-g' correction to the leading terms, it in
fact will be a good approximation to neglect it,
provided (i) we always calculate V„,«, from the
second line of Eq. (31'), where Vz has been elim-
inated by use of the equations of motion, and (ii)
we enforce the boundary condition arising from
the Higgs potential

e '~D B~=+-,'e~'[D„,D„.]X,
= aX, x B, = -X, x D,g, , (39)

It is at this point that the- sign of the outer-
product term in the "curl 8" equation in Eq. (15)
plays a crucial role; had we chosen Eqs. (25) as
the equations of chromostatics, we would have
ended up with the equation e™JD„B~O= X, x D,g„
which is solved, not by Eq. (36) but rather by B~o &

= +iE~ = +iDp)Xp In real space-time, such complex
solutions. are not permitted. The solutions of Eq.
(37) are characterized by a topological index m,
which takes integer values. 'The case m = 0 cor-
responds to the trivial solution ho= E,= B,= 0; the
solution for m = 1, first obtained by Prasad and
Sommerfield, "is known to be classically stable, "
while the soltuions for m& 1 are unstable (if a
Higgs potential is included) against breakup into
m=1 solutions. I conjecture that the m=1 solu-
tion of Eqs. (37), rather than the trivial m = 0 solu-
tion, is th'e relevant zeroth-order solution for the

qq force problem. (A plausible direction in which
to look for an a priori justification of this conjec-
ture would be to try to show that creation of a qq
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x'
V, =v—,(1 —(c coth((v. ),r'

aleX N'

sinhn"

(40)

from which the field strength is readily obtained„

pair by vacuum tunneling is much more probable
when associated with an m = 1., rather than with an
m = 0, background field. ) l will show that this so-
lution has properties which make it plausible that
it behaves as a quark-confining "bag.""

The explicit form of the m = 1 solution to Eq. (37)
is [indices a, b, c, . . . are SU(2)-vector indices; in-
dices i,j,k, . . . are spatial-vector indices]

l gg2 j.
ds~ g D, ) ds~ Kg, Bg

8~2 g2 J 0 0

K= aCD —,
2w

' (43)

and so there may be a relation to the mechanism
for resolution of the U(l) problem proposed by
't Hooft. "

From Eqs. (36), (20), and (29), the contribution
of the zeroth-order fields to the static quark po-
tential is

limits of validity of the perturbation expansion.
From Eqs. (38) and (42), it is also easy to evaluate
the zeroth-order field contribution to the space in-
tegral of the axial anomaly of Eq. (I.55),

/c coshN
sinh'gv x sinhn'

1 g2 c'oshgy
X X 4 + 3 ~~ ~ ~x' sinhn x' sinh'n' x' sinh'gv

2

5VO, ~, , =D Q 5A.o(x ) 'Q(„) —&B"(x ) ~

(44)

= (D/g')4m ((, (42)

which I will interpret as the energy needed to
create the "bag." While E, „„„doesnot contribute
to 5V„„„,I argue below that it determines the

(41)

The zeroth-order fields make a contribution to the
gluon energy

'This equation is valid for arbitrary variations,
but there are two special classes of variations on
which I wish to focus initially. Consider, first of
all, the local gauge transformations"

(45)

5g~geBO e Do(Do~/ Bo x

which are easily verified to be an invariance of
Eo,„„ofEq. (42) and hence are an invariance of
Eqs. (37). From Eq. (44) the corresponding change
in Vo, t t( is

2

6„„,.V„,.„., =DQ $ E,(&„)xQ,„, 5;(&„)x
n=1 h e

(46)

which vanishes by virtue of the compatibility conditions of Eq. (33). Consider next the class of variations
which leave the quark positions and spin orientations fixed, but translate the center of the "bag" [which
was arbitrarily fixed at v= 0 in Eq. (40)] and reorient it in coordinate space. Such variations do no work
against the quark restraining forces, and hence by the principle of virtual work must give ~Vp

Hence, for fixed quark variables, the "bag" orientation is fixed by the condition that

Q [A. (x„) Q(„)—Bo"(x„) Q(„)(r(„)j2m, ]
n=l

be a minimum; this then uniquely determines V, „„,, to be

2

V„„„,=min Q &~(x„) Q(„)—B, (x„)~

(47) .

min = minimum over changes in "bag" origin and orientation,
consistent with maintaining the compatibility conditions

m

O=X,(x„)xQ(„)—50(x„)x '"' '"', n=1, 2.
2m.

(48)

It thus seems natural to regard V, „„;,as a quark-bag orientation energy.
Before evaluating Eq. (48) more explicitly, let me first argue that, for purposes of evaluating V,(.«„ it

makes no difference which sign is chosen. in Eq. (38); The point is simply that the sign of E relative to 5
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can only affect pseudoscalar observables, such as the axial-vector anomaly of Eq. (43), but cannot change
even parity observables, such as the energy. Hence to avoid a proliferation of + signs in the formulas, I
choose for definiteness the upper sign in Eqs. (38) and (40), and use henceforth

o o Doggo
(49)

&; = -(x'/r g)(1 —&&r coth«r).

Having made this choice, I set up the geometry necessary for the minimization in Eq. (48) in the approxi-
mation of regarding the spin terms as a small perturbation on the charge contribution. Thus-, I consider
first the minimization problem

VO static, charge l ~O(Xn) @&air
n=1

min= minimum over changes in bag origin and orientation, consistent with (50

0 = &,(x„)x Q&„), n =1, 2.

2 nl
Q&nio&n&

o static, spin
= ~ Bo (Xn) '

n= 1 e

X„b',=bag potentials determined by Eq. (50),

(51)

Once this problem has been solved, spin effects
linear in o&„&/2m, can be calculated from the ex-
pression

sinn
Sill/

sin

(53)

Denoting by n(a) the minimizing value of c& for
since the reorientation induced by the spins will
change both Vo «' h g which is already extre-
mal, and Vo sgggj0 3pm only to second order in the
quark magnetic moments. In order to calculate
bilinear spin effects of the form v&»o'&»/mg, which
are in principle determined by the formalism
through order g', a careful evaluation of spin-
induced reorientation energies will be required.

To proceed with the geometry, let a be the se-
paration between the q and q and let
g=t& —cos '(—1/n) be the complement of the angle
between Q;" and Q;-" [cf. Eq. (I.44)]. It is obvious-
ly easier to orient the quarks relative to a fixed
bag than the other way round, so taking bag poten-
tials as given by Eq. (49), we must choose q, q
locations x, , x, in the bag with x, x Q;"= 0, x,
x&a)" =0, ~x —x- ~=a which minimize the orienta-

Q c e
tion energy. Since the spatial variation of Xo(x)
is given by

Xq

X- jeffq

K,(x) = «V(«r)x,

V(z) = cothz —1/z = —V(-z),

V(0) =0, V(~) =1,

1 1V'(z)= —,— . , &0, 0&z &~z' sinh'z

it is clear that to get a minimum we must insert
the q, which has the larger effective charge, at
a location where g,'" is antiparallel to x, ." '/his
leads to the minimization problem illustrated in
Fig. 1, and expressed analytically by

FIG. 1. Geometry for calculation of the orientation
potential. The angle & is varied to minimize the orien-
tation energy [cf. Eq. (53)]. The angle 8 and the unit-
normalized effective charges Q&, Q~ are given by

8=.cos ~(-1/n),
2 1 1/ 2

(1 + & ~ 2)
n ' n'+8 ' (n'+8)"2 '

AD/2+8 ~ @2+8)&~2 '

The sides s, t of the triangle are given by the la4 of
sines,

a t s
sin(z- g) sin o' sin(g- &)
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given q, q separation a, the q, q locations are fixed
to be

sino((a) ( ng —1 '~' 3
x = —Q ~0

sing (
' tt'+8 ' (n'+8")n j

(54)

sinjt&)- o((a)] 2 t ng —1 ' ' -(1+gtg')~
sing n ~

' n' +8 ' (ng+8)t g&'

—E&.R'i = —5 5' =0,
et , et

2

—,E' ~ Ei =4(A. x Dtk) ~ (Xx DtX), .
0

2

, B~.B' =4(&t xD, a) ~ (X. xDtA. )

4e» "D,X ~ (D, Ex.D„X).

1

(59)

.which when substituted into Eq. (51) determine
V, ,„-„,,„. . From Eqs. (52) and (53) we immed-
iately see that

0 static, charge( } 0 static rchargr( } ~ (1+ gag) r (55)

showing that the orientation potential gives the

qq potential a repulsive central core.
As a final topic relating to the zeroth-order sol-

utons, I will show that when Eq. (49) is used as
t =0 initial Cauchy data for the time-dependent
equations pf motion, the functipnal

As expected, these equations are independent of
the choice of gauge, even though quantities such
as (S'/etg)R' ~, which appear at intermediate stages
of the calculation depend explicitly on b0 Since an
integration by parts gives'

d'~4m»"D X ~ (D,.Xx D X)

=-8 d'g XxD, X ~ AxD, X, 60

Eqs. (59) give

s,„„.= ( /cs)f s r-', (a' ~'a' —g' ~ g') (56}

2

=(cis')4 f s'r(l xD, r) (rxrr t)&o,
'0

varies with time. I have dropped subscripts zero
denoting the zeroth-order solution so as not to
confuse them with Lorentz subscripts 0. Working
in a general gauge b„b', Eq. (49) gives as the
t =0 initial condition

and also, as a consistency check

82
=0.

et2
' 0 gluon

(0

(61a)

(61b)

5'= E'= —D)X = D~bo ———b'
0

x&= ——(1- ter cothtir}

From this initial condition and the time evolution
equations

—B'=b x5t-et' D E
et 0 j

—E'=b x gt+e"~D Bm
0

(58)

the following results are found for the derivatives
of E~ ~ E' and 5~ ~ 5~ at t = 0:

This analysis implies that the time-evolved solu-
tion does not extremize 5„.h, ,„„and so does not
take the form of Eq. (37) at times later than t =0.

B. Second-order approximation
r

I turn now to an analysis of the order-g2 terms
of Eqs. (31') and (32'}. Writing

X = XO+g2X~,

b' =b'+g b'

Ei = gi+g afJ (62)

gi-]$J+gggJ

and replacing the Higgs potential by the boundary
condition of Eq. (35), the order-g' terms in Eq.
(32') take the form

D„D„f,+ 2b', x D„X,+ (D»brt) x 7, = —J,
Do Do„bit —(rt.c

~ X~)b& + (it.o
~ bit) X~ - 2fho~ x bat - rt, x Doi A~ —Fc x Do~ X, —Do~ (Do„b~) =-J~, ;„,

fag ~as mD
0 Om 0.

(63)

These equations (without the source terms) were first derived and analyzed by Polyakov, "' and I follow his
treatment in a number of important respects. I also will employ many of the techniques pioneered by
Brown et al."in their study of propagation functions in pseudoparticle (instanton) fields. The basic method
for studying Eqs. (63) consists of analyzing properties of the mode functions
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zd' = (x', x&),

which satisfy
'X" = -CO2&,(1)

which is an abbreviated notation for

D» D»x'+2x' x D»x'+(D»xj) x x'=-uPx',

D,»D, x' —(7,, 7.,)x~ + (&, ~ xj )&, —2f»' x x~ —x ' x D„.7, —A. xD,~xo —D,.(Do„x")=-uPx~.

(64)

(65)

d X X1 XP+X1'X2 (66)

where the contraction of two upper Greek indices
indicates a Euclidean inner product. It is easily
checked that the differential operator of Eq. (65)
is Hermitian with respect to the inner product,

It proves convenient to introduce an inner product"
for mode functions,

(x„x,)= fd'xx," x,"

I

Eq. (72), Eq. (73) takes the form

(74)

D(, ) x, =-J
can be put in the modified form

(63')

(2) 1

which is an abbreviated notation for

Dp b, +A.~x X, =O,

a gauge condition on the pe'rturbation x, which
Polyakov calls the "natural gauge. " Using Eq.
(74) to rewrite Eq. (63), the original expression

(+1x (I) +») (+29 o) +1)) (67)
D,,D, X, A,, ~ A.,,A,, + A.,(A., ~ X, ) —2(D, .A.,) x g& =

D 2x(')=O(1)
(69)

Recall also the compatibility condition, which to
leading order takes the form [cf. Eq. (24), and re-
member that g has now been scaled out]

D, J . +X, x JP=O, (70)

and which implies

0= d'g A. x ~ J +D ~ J

with the source four- current defined by

(71)

J =(P, J,'„„). (72)

Thus the gauge modes are orthogonal to the source
current which appears in Eq. (63), and the inde-
terminate components of the order~' perturba-
tion along the gauge modes can be defined to be
zero,

(x„x"')= 0,

x,"= (X„bf).

By reversing the steps leading from Eq. (70) to

(73)

which implies that if x„x', are mode functions with
distinct eigenvalues, they are orthogonal,

(x„x,) =0, (66)

Now we already have found one set of mode func-
tions of Eq. (65), since. the gauge transformations
of the zeroth-order solution given in Eq. (45) sat-
sify Eq. (65) with eigenvalue 0,

x""=7.x $ x"'=D .$p 7 pj

(75)

~2(D»E)x X, +2f,"xbf =-f& . .
Before proceeding with the careful analysis, I

pause to give a heuristic argument, based on Eqs.
(35), (69), and (75), which suggests that the zero-
th-order solution may behave as a quark-confining
bag. An unconfined quark of charge Qef' would
have an asymptotic Coulombic color potential
Q""/(4vr). Can such a potential appear asympto-
tically as a perturbatiOn on the bag solution? Ac-
cording to Eq. (69), any small transverse per-
turbation on &p is just a gauge transformation. of
the zeroth-order solution, and hence can be ro-
tated away, leaving only (asymptotically vanishing)
longitudinal perturbations. Thus it appears that
the inserted q and q cha'rges Q;",@;.

" may be
screeried beyond recognition in the asymptotic
region. This same conclusion is suggested by the
structure of Eq (75), whi.ch is the relevant equation
for nongauge perturbations. If the cross coupling
to b~ is neglected, " the equation for X, takes the
form in the region z- ~,

D .D,.X, —g A., +It gg ~ A., = —J . (76)

The differential operator on the left behaves as
Dpj Dp j & for components of &, perpendicular to
x, and the resemblance of this operator to (8/
&x')'- 8 again makes plausible the conjecture
thai the transverse components of &, arising from
inserted quark charges are strongly damped at
infinity. (Of course, the longitudinal components
of ~, might still carry information about the in-
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serted charges to infinity when studied in a global,
as opposed to a local, manner; this is why the
heuristic arguments are suggestive at best, and
a detailed calculation is required. ) In effect, I
am guessing that the 't Hooft-Polyakov-Sommer-
field-Prasad solution has rigidity properties re-
sembling those of the Schwarzschild solution in
general relativity, with r- in the gauge theory
case playing the role of the horizon and ~ playing
the role of the mass, and that there are decoupling
theorems in the gauge theory case resembling
those familiar for a black hole." If such decoup-
ling takes place, then the quark color flux lines
must be strongly distorted by the background bag
field, and this distortion could be expected to lead
to a confining potential. "

The way both to test for decoupling at infinity
and to calculate the order-g' contribution to V &,t;,
is to calculate the propagator for the perturbation
x, on the bag background field. Fortunately, as
I will now show, the problem of finding this pro-
pagator can be exactly solved, in closed form, by
an adaptation of the methods used by Brown,
Carlitz, Creamer, and Lee ' for calculating prop-
agators in pseudoparticle fields. It proves con-
venient to rewrite Eq. (75) in a Euclidean four-
dimensional notation, by defining a Euclidean co-
variant derivative D~ by

D w= %ox w~. .

(77a)
D~w = D .w = + b~ x

which satisfies

equation

'xf +2f"'x x' =-v'x (80)

The procedure used by Brown et al. to construct
the vector propagator consists of two steps. The
first step, carried out immediately below, is to
relate the vector propagator to the scalar propa-
gator A"(x,y) defined by

D Dnnnnb(x y) — 5nb6 (x y) (8la)

the scalar propagator may be written as a mode
sum

)
p@'(x)4'(y) (81c)

I will now show that a complete set of vector mode
functions x& can be constructed from the scalar
mode functions $. Since the vector index p, takes
on four values, for each eigenvalue v' we must
find four linearly independent mode functions
x'"'f', n=0, 1,2, 3. As already suggested by my
choice of notation, thy n =0 eigenmodes are given
by Eq. (69), which using Eq. (77a) takes the form

x(o)n = Dnp (82)

while the second step, carried out in Appendix A,
is to explicitly construct the scalar propagator.
Defining a complete set of normalized scalar mode
functions Q(x) by

DnDn (t)(x) (dna(x)
(81b)

d'x x x =1,

(D&D" —D"»)w = fan" x w,

fbj —eb) gjm m— ebJmD
0 0 0nt

(77b)

Note that while x("" is a zero eigenmode (a gauge
freedom) or the original operator D(»', it does
not satisfy the "natural gauge" condition (it is not
self-orthogonal), and hence will not be a zero
eigenmode of D&»'. In fact, a simple calculation
shows that

&x" ' &x' o o
D'D'x &" + 2f"'x x ' =-e x0 (83)

The two equations of Eq. (75) may then be com-
bined into the single equation and that the modes of Eq. (82) have the normaliza-

tion
(D 'x )n=D'D'xn+2fn'xx'=-J'.(2) 0

Following Brown et al. , the vector propagator
G'&'"(x y) is defined by the equation

[DnDnl"'v(x y)+ 2f"'(x) x 6"'"(x,y) j '

(x"~ x"')=- jd rb'n" n 5'

(84)

Qan, bv(X y) (79) A straightforward but lengthy calculation shows
that the remaining mode functions given by

Q'"'"(x,y) = ~"6""~'(x-y)- Q x(,")(x)x(',)(y)
zero modes

with Q differing from the unit operator by the de-
letion of the projection of unity on the subspace of
normalizable zero-eigenvalue modes of the mode

x(n)o Dny
On

x(nU —6JnD()$+ eg )nD I$
=6)"A.,x f+e 'D„$), )(=1,2, 3

also satisfy

(85)
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D'D'x("»+2f~'x x("&'=-co2x(")& n=1 2 30 ) ) (86)

and that the x' )&, z =0, 1,2, 3 have inner products
given by

(x ((2 ) x((t)) —(d2 Q(rtt (87)

Taking into account the factor of ~' appearing in

the inner product of Eq. (87), the vector propagator
can thus be expressed in terms of the modes x' )~

by the formula

J' is orthogonal to all normalizable eigenmodes
with zero eigenvalue of the operator D(»'. These
eigenmodes are associated with translations and

reorientations of the bag, and the orthogonality of
J' to these modes is in fact guaranteed by the re-
q~~irement that the quarks be inserted in a manner
which minimizes V, „„,, This is immediately
seen by use of Eq. (36),

orientation 0 static

x(o'os (x)x(o""(y)G" ~ b'(x, y) =
IXp Gi

CO

(88) 3 /g 0 -k
orientation o ' + 6orientation"(( ' spin)

To express Eq. (88) in terms of the scalar propa-
gator, we note that the mode functions of Eq. (85)
are summarized by the compact formula

(93)

It is important to note that although there is a di-
lational mode with zero eigenvalue

X(n)tf, ~(+ )tf. Xng&g
V p

~ (+ )tI, Xn ~ (+ )Xg n
7

~(+ )kin ~kin ~(+ )kpn gkn.
sf

(89)

8 XP 8bp
dil 8~ & 8~ 7

8' x Kf'
cothwy"—

8z x sinh2n' (94)

allowing Eq. (88) to be rewritten asne

Goo y bp(X y)
q(-)nvbs o[L( / (X y)D s]b

with"

8b" &"'x'
0

8IC

1
(1 - (t2 coth(tr) — 0,

sinhI(. ~

D'„w(x) = —w(x)5„" =D'„w( ),x

q(- )y. VXK gu &gvK+ ~(+)p, Xn~(+)vKn (91)

—QP )tQVK + Qg VQ)IK QP, K gv)t ~ g V)LK

)

and with &;b(x, y} the convolution of two scalar
propagator s,

&"(x ) =Q ' ~ fd'zD-(x z)a*'(z,=y) . (92((t(o(x) r( '(

Although the above derivation is heuristic (it par-
allels the Appendix of Brown et at.}, the operator
argument of Sec. III of Brown et al. can be taken
over in its entirety to the case under consideration
here, and gives a direct formal proof that the con-
struction of Eqs. (90)-(92) gives the vector propa-
gator defined by Eq. (79).

Having found ihe vector propagator, I discuss
next how to use it to solve for x, and to calculate
the order-g 2 contribution to the static potential.
First of all, it is evident that the propagator of

Eqs. (90)-(92) does not satisfy the "natural gauge"

condition, since it includes the gauge modes x"'"
These modes can be readily deleted by dropping
the term 5~~5"" in q' '""~", but in fact this is not

necessary, since the orthogonality of the gauge
modes to the source current [Eq. (71}jimplies that

they make a vanishing contribution to the expres-
sion for 5 Vs««c which I give below. A second po-
tential problem is that Eq. (78) for the perturbed
fields x, can be solved only if the source current

2pstatic "0 static g 1 static&

Eqs. (31'), (78), and (79) give for the order-g2
contribution

(95)

(96a)

with x," = (X„b,') given by

«i"(*) = f&'v o"'"(~,v(~'"(v) . (96b)

Equation (96) contains both a q-q interaction con-
tribution and q-q and q-q self-interactions. The
latter, by virtue of the 6's (which indicate vari-

it is nest normalizable, and so does not cause prob-
lems in solving Eq. (78)." A third potential prob-
lem is the fact that, by analogy with the results of
Brown et al. in the pseudoparticle case, the vector
propagato~ of Eq. (90) is likely to have divergences
arising from the convolution integral in Eq. (92).
However, in the pseudoparticle case these diver-
gences are proportional to a sum over normalizable
zero modes, and if (as seems likely) this structure
holds in the case considered here, the orthogonality
of J to the normalizable zero modes implies that
the divergences wi11 make no contribution to the
static potential. My conclusion, then, is that the

conditions imposed on the quark locations in the
zeroth-order perturbation theory analysis are just
the conditions needed for the existence of a well-
defined order -g ' correction. Writing
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X m elf . m e

(97)

III. DISCUSSION

In conclusion I make some brief remarks:
(1) Obviously, the key open question about the

theory of static quark forces developed above is
whether, as conjectured, it leads to a quark-con-
fining potential in order g'. This is a concrete
computational question which, I hope, will soon be
settled. If the order-g' propagator does give con-
finement, then what are the limits of validity of the
perturbation expansion? One obvious criterion is
that the order-g' static poteg. tial must be small rel-
ative to the zeroth-order gluon field energy of the
bag,

g Vy t gg
~+ (D/g )4TfKa (99)

since when g'V~ „,«, is of the order of the zeroth-
order energy, the bag is likely to become highly
distorted. '4 Wheng'V, „,«, & (D/g')4', the bag
will become unstable against tunneling into a state
with two bags and a new light-qq pair. According
to this picture, since ~ is the radius'of the bag,
z should be identified with the Hagedorn energy
=100 MeV; with g'/4m —0.2 and (D), = —, this would
give a bag zeroth-order energy of order 750 MeV,
which would not be unreasonable for the light-qq
35-piet central mass. Of course, the static form-
alism developed here is only expected to be quan-
titatively reliable for heavy-quark systems, such
as charmonium; to do detailed calculations for
light-quark systems. will require a relativistic gen-
eralization of the static equations. In nonstatic
situations, the collective coordinates associated
with bag motions will also begin to play a dynam-
ical role.

(2) In Eq. (49) and the work which follows, I made
an arbitrary choice of sign B~ =+E,', while in fact
zeroth-order solutions with B,'=+K,' are allowed.

ation with respect. to shifts in quark location) have
the Coulombie self-energy divergences automatically
deleted. The self-interactions may well play an
important role in confinement, since they contain
the interaction back on the q, q of the distortions
or polarizations of the bag induced by the q, q. One
final point is that when the order-g q spin-q spin
interaction is calculated, one expects it to have the
same leading short distance (x -x-,) singularity as
in the Abelian case, and so by familiar arguments"
the potential has to be supplemented by a contact
term of the usual form

g2 Sm

4m' 3

The sign choice here is equivalent to a choice be-
tween topological charge +1 or -1 for the zeroth-
order solution. It may be that both solutions occur
with equal probability, but it is also possible that
in the charge-conjugation-asymmetric nine-gluon
version of the theory used here, a, definite sign
choice is tied at some deeper level" to the choice
of sign d+if implicit in the outer product P. It is
interesting. to note in this connection th'at Manton"
has shown that like-topological-charge, widely sep-
arated 't Hooft-Polyakov solutions are noninterac-
ting, a result which may play a role in giving an
algebraic chromodynamic theory of strong interac-
tions the correct cluster decomposition properties.

(3) The generalization of the qq force calculation
to the case qqq will require computation of the N
= 3 color-charge algebra, as discussed in I. It
will also require the SU(3) analog of the Prasad-
Sommerfield solution and the associated propa-
gators, mhieh perhaps can be obtained from the
general SU(3) pseudoparticle or instanton solutiorigu

and associated propagators by an extension of the
contour integration tranformations which I employ
in Appendix A to discuss the SU(2) case. Analogous
statements apply to the computation of static forces
for N&3 quarks.

ADDED NOTES

(1) The equations of chromostatics given in Eq.
(31') possess a full local gauge invariance. given
by

~gauge b

gauge V=V&& &jba V=XaB E Ju

(2) The zeroth-order spin potential of Eq. (51)
is a parity-violating &~„~x„ type potential which
changes sign when the sign of A0 in the zeroth-
order solution is reversed. (The sign change
arises because the minimization procedure re-
quires the relative orientation of Q„and x„ to re-
verse with AD. ) Hence Eq. (51) averages to zero
when the quantum state is an equal superposition
of the tmo signs of A„as would be expected for
the end point of a parity-conserving tunneling
process.

Note added in Proof. Calculations just completed
by R. Gonsalves, D. Neville, and P. Cvitanovi6
show that the ansatz for the color-charge algebra
made in I does not give an algebra with the needed
trace property in the (N„N, ) = (3, 0) case. Hence
while providing a useful model for discussing the
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two-particle color problem, as done in this paper,
this ansatz does not provide the basis for a full
color-charge theory. It now becomes important
to study more general color-charge algebras,
with the aim of finding a definition of color
charges, outer product P, and inner product S,
for which the Zacobi identity [Eq. (I.8)] and the
trace property [Eq. (I.22)] hold over the color
charge algebra. [It is not necessary for the Jacobi
identity to hold as a formal identity, as in the
ansatz used in I; it need hold only over the alge-
bra for the derivations of Sec. I of paper I to re-
main valid. The color-charge algebra constructed
by Giles and McLerran is an example of an alge-
bra (without the trace property) which satisfies
the Jacobi identity over the algebra, but not as a
formal identity for arbitrary noncommuting quan-
tities. ] While it is interesting to study the gener-
al-n, general-color state case, for physical ap-
plications it is of course only necessary that Eq.
(I.8) and Eq. (I.22) hold in the n = 3 case, with the
trace restricted to its expectation(S), in color-
singlet states. It may be that this specialization
will be needed to get a workable recipe. Obvious-
ly, alteration of the color-charge algebra will in
general change the values of (D), and Q;"—, for
the q, q case, but in all likelihood v ill not alter
the SU(2) gauge structure on which the computa-
tions of this paper are based.

Let me suggest one natural generalization of the
algebra constructed in I, continuing to assume
that color transforms according to the fundamental
n-dimensional representation of SU(n):

Color charges:
CK

dABc[ B vc] + 1ifABc( B vc]

1$p= 5[up~ vp]+Ei[u+q v ) E [u v ]

Inner product:

S(u, v) =S(v, u)

= q-,'(u„v,}+c,—,'(u,",VA} +c —,'ju", v") .

Whena=a, 5=0, P, =P =P, y, =y =y, e+—- e

o, =v =o, with all parameters real, this ansatz
gives quark and antiquark algebras which are
simply related by the natural charge-conjugation
operation

The ansatz evidently allows for the possibility
that each color charge may contain two n' -1 plets,
composing under opposite relative rotational
senses +yd" c + if" c, and with a common shared
0 component. More complicated recipes can be
constructed in a similar fashion.
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qA qA IgA qA qA LygA

A. =l, . . . , n -1

Q„=al, Q;p = -a 1

Outer product:

APPENDIX A: SCALAR PROPAGATOR CONSTRUCTION

I construct in this appendix the scalar propagator
&"(x,y) defined in Eq. (81) of the text, which sat-
isfies

D„"D„"&"(x,y) = (D'„D„+D~D&)BVp(x, y)

w =P(u, v) = -P (v, u),

m", =+P,([up, v",]+[u"„vp])

Dp w(x) = Yp(x) x w(x),

Di w(x) =,. + b,'(x) x w(x), (A1)
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V, (x) = —,(1 -r cothr),
xa

DeD n. b(x y)=- 6'6'(x-y), (AV)

~"x'
S (x)=, 1—

we get the desired propagator &'" by transforming
both SU(2) indices with the matrix M,

n."(x,y) =M"(x)M"(y)n.'b(x, y). (AS)

where I have set K =1. To change to general I( one
simply uses the scaling law

= z&"(zx, wy;1). (A2)

P, = x,'= —,(1 —r cothr),

&"~x
(1 —r cothr)+ is".0

(AS)

Introducing a matrix M"(x) given by

The reversal in sign of 7 as compared with Eq.
(49) [which I have made because the sign in Eq.
(Al) corresponds to the convention I used in my
calculations] has no effect on &'b, since D„'D„" is
even in 10. As in the vector propagator calculation
in the text, I make extensive use of the results of
Brown et al."for propagators in pseudop~ticle
fields. The first step of the calculation, following
Manton, "is to make a complex gauge transform-
ation which changes the potentials from &&', h of
Eq. (Al) to P„I&, with

;„o sinhr

~(- )p, va ~(- )v g a

BO
8 . 8BJ

Bx Bx

~(- )kla okla ~(- )kOa gka'l

(A9)

Note that although v(x) depends on x', the potential
A'" (x) depends only on the spatial components x~

of x. Hence if I define a Euclidean time-dependent
propagator n'b(x, y, x', y') by

D'D" &'b(x, y, x', yo) = -5eb54(x —y),
(Alo)

D'„w(x)=,+ j,(x) x w(x),
,

Bx'

then it will actually depend only on the time differ-
ence X=x' —y', and the desired propagator &"(x,y)
is obtained by integrating over the time difference,

(All)

From this point on I will work exclusively with
the gauge-transformed potentials of Eq. (AS). For
notational convenience I will drop all bars, but it
should be kept in mind that I am now constructing
the propagator & in the new gauge, not the final
propagator & given by Eq. (AS). The advantage of
the potentials of Eq. (AS) is that they take the form
used by Brown et al. as the starting point for their
analysis, '

2"(x) =(V S")=-q& & "'s"Inv(x)

M"(x) = coshr
i

5"—

aal X-i sinhr&"' +

M"(x)M"(x) = 6",

it is straightforward to verify that

(A4)

The final observation needed, in order to make
contact with the work of Brown et a/. , is that m(x)
can be written as a contour integral,

e'"0 sinhr
v(x) =

1 "'z
ds8

( )
K)r.

(A12)

Mee(x) &cbees bjMcl + Mee&e&&ct&bj
Bx' 0 0 t

which implies that

D„'M-(x) = M-(x)D„'.

(AS)

(A6)

I now will list a number of results from the an-
alysis of Brown et al. , with occasional small
changes in notation. Brown et al. construct the
general SCalar, iSOVeCtOr prOpagatOr neb(X, y, X', y')
satisfying Eq. (A10) for potentials 4"(x)
= -&I' &""'8"Inn(x) representing a general N-pseudo-
particle (instanton) conf igur ation

So once we have obtained the scalar propagator
&'~(x) satisfying

.p 2

m(x) = (1)+Q;, x, -=x —z,.
S S

(A1S)
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Their result takes the form of a sum of two pieces
(with x, y Euclidean four-vectors)

r ab X (2& Cab(Xs y)
4)(')((x)(((y) '

~ab(X y) ~ab(X y)
(& & + r),ab(X y) (2 & (A14) c, (x, y) = g c„"(x)c„,„„c„(„')(y),

.The first piece is constructed in terms of spin-2
propagators by the recipe

~ab X (1) (Xt y)
4)(2(x —y)2(((x))((y) '

V"(x, y) = —,' tr[7'F ('(x, y))'F"(y, x)],

rb 8282 V

(f)(+)(x) r s (-)(svaxaxvP fl
rsa X2X2 r s&

r s

ra& av (g Z )2 (g g )2

(A16)

F"(x,y) = (1)+ P p '
s s s

Ya =(z, 7'), 7" =( i, 7-'),

(A15)

+ ~s~vh 1

~2=SU(2) Pauli matrices, x,=x-z„y,=y —2,.
«

The second piece has the form
and with the numbers" h, „determined by the
matrix inversion problem

~st tv (A17a)

2

L~„—~sj ~ h~s —~t j
(A17b)

To make use of these rather formidable looking equations, 1 note that Eq. (A13) becomes identical to Eq.
(A12) under the substitutions

(1)-o,
2, - (s, 0), x,' - (x' —s) '+ x'

fds, «, -,—()/2«)e",
' s

(A18)

so that the Sommerfield-Prasad solution is in effect a continuum of complex instantons. Corresponding to
the substitution (1)-0, the terms (1) in Eqs. (A15) and (A17) must also be deleted. The transition from
sums to integrals can be made with no ambiguity in dab(x, y)"', giving (recall that &( =x'-yo)

s'&(«, )&)«'.-=f d| s'&(«, j, x)&"
a OO

1 txl lyl e '"-" —'tr 7'F(+ 'x v F(+) x

(, )( )
1 d, , r ~ x+i(x' —s) f y —i(y' —s)
2)( x'+ (x' —s)2 P+ (y' —s ) '

(A19)

Making a shift s -s+x' in the integration over s in F"(x,y) and a shift t -8+x' in the corresponding in-
tegration over f in F"(y,x), gives

)( )
1 Ixl Iv I

(2(()' sinh I x I s inh I y I

~ & W ~X+it, 7' X —iS r y+i(S+X) b V y —i(t+&()x —tr 2 ~2X'+ f ' X2+ S2 y2+ (S+ )()2 y2+ (f + &( )'

Now make, in the order indicated, the following changes of variables:

(i) &(-2 ——2'(s+ f) =z —w,

(A2o)

(A21)
(ii) w=-2'(s+f), (& = 2(s —f), dsdt = 2dwds .
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This gives as the final result the following symmetrical-looking formula:

lx I ly t

(2tt)4 sinh]x~ sinh]y ~
(%-$)2+ (z —I)'

X»tr»x+ i(u) —v), 7' ~ x- i(tv+ v) 7 y+i(z+v)
x'+ (u) —v)' x2+ (u)+ v )

' y'+ (z+ v)'

Ir * y —t(z —v)
y'+(z —v )'

Turning next to the second piece, I note that
time-translation invariance implies that h, „
=h(s —v). Anticipating the fact that only H
=Z„h(s —v) is needed, I proceed first to extract
this quantity from the matrix inversion problem of
Brown et al. stated in Eq. (Al'l). Because the ex-
pressions of Eqs. (A16) and (AlV) contain singular
factors (z„-z„) ', etcyr it is necessary to sepa-
rate the various integration contours x, s, u, e by
small imaginary displacements. In order to do
this in a way which preserves the validity of
various algebraic operations used by Brown et al.
in getting their solution, " it is necessar'y to sym-
metrize over all possible "stacking orders" of the
contours on the complex p)ane, a procedure which
will eventually lead to the appearance of principal-
value integrals in the answer. Summing over v in
Eq. (A1Va) gives

2/ 2 1 -)
H=- g h(t-v)= g " ', . (A25)(Z„-Z, )2

As a consistency check, note that if we multiply
Eq. (A23) by p, and sum, we get

2 2
gst

p H g Pr Ps—... (~,-2.)
0 P p2 (A26)

but in the continuum limit

1 oo jg
p, '- —— ds e"=0,

2w ~g
(A2V)

so that Eq. (A26) is in fact satisfied. Passing to
the limit in Eq. (A25), and remembering that we
must average over the cases where the z contour
goes over and under s, we get

Q h(t-v) Q " = Q p6, „=p, .
V t Pt v

- cg et(r-s) 1 -1
H ' P dr

( )2 (A26)
1

gst
p g pr ~ps —1

t pt rSs ( r s)
(A24)

(A23)

Dropping the (1) in the expression for g„ in Eq.
(A1Vb) gives'

tl' ""'x x =- x'(r- s)rg sp

we get from Eq. (A16) (again with ][.=xo-y')
(A29)

The final step in the calculation is to make the
transition froms sums to integrals in Eq. (A16),
bearing in mind the necessity of symmetrizing
over the ordering of integration contours. Noting
that

2(x, y) &'& -=j
to

dg t[st(„y ]).)(»

l x1 ly I

(2v)2 sinh[%( sinh[y [

d~e-'~" +~, fj~e'" ds e"2 1
(2)T)' [x'+ (x' —r)'] [x'+(x' —s)'] [y'+ (y' —r)'] [y'+ (y'- s)']

(2tt) 2 (r s) (u —. v)—

1
[x'+(x —'r)'][x'r(x —x) ][y +(y —x)'][y'+(y' —v) ] I

Again it is necessary to make, in the order indicated, the following changes of variables:

(A30)
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First term in ( ]:
(i) x-x+x', s-s+x',
(ii) X-z —,'(r—+s)=z —w,

(iii) w = /~+ s), v = —,'(~- s), deeds = 2dwdv

Second term in f j:
(i) r- x+xo, s - s+x', u-u+xo, v -v+xo,

(il) X Zh —2(u + v)

(iii) z, = 2(r+ s), w = ~(u+ v), v, = -,'-()'- s), v, = 2(u —v),

CA CfS = 2d82CfV~q t&dV = 2dKdV~

After these transformations, the only place where m appears is in

(A31a)

(A31b)

jt dwh(z, —v, +v, —w) = —1/m, (A32)

giving as the final answer

lyl
(2))')4 sinh f%f sinhfy)

OO 00~ fK d'I e d~ eaz

J „„,.r [x'+(w —v)'] [x2+(w+ v)'] „,.x [y'+ (z —v)'] [y'+(a+ v)']

1 CO el v2

+ —P dV2
W V2

- &K dz e"2
2

[x'+ (z, —v,)'] [x'+ (z, + v, )']

e&vj ~ &K dz e"&
1

y2+ Z V 2 y3+ Z +V 2

(A33)

Although it took a more involved argument to extract Eq. (A33) from the work of Brown et al. than was

needed to get Eq. (A22), the evaluation of the contour integrals appearing in Eg. (A33) is relatively easy.
Writing x= )x~, y = ~y), the answer is

a~(2) 1 x
4)T sinhx sinhy

1 1 sinhx sinhyx —coshx coshy —— coshy + coshx
Xy 2 x

1 1 1 sinh x —y

x' y" 1 sinhx
4m sinhx sinhy 2xy, x

sinn(xsy) 1 sinhx sinhy)Icoshx — coshy-
X+y Xyy, X-

sinhy sinhx sinhy
coshy + coshx

y X

1 1 1 sinh(x —X) sinh(x st)
}4 x' y' x —y x+y

(A34b)

The fact that the final term in E(l. (A34a), which
comes from the product of principal-value inte-
grals in Eq. (A33), cancels away the leading large-
y asymptotic behavior of the first three terms is

a check that the limiting argument leading to Eq.
(A28) has been carried out correctly. The evalua-
tion of 6'~(x, y)"', in which x and y'dependences
are highly correlated, involves straightforward
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but very lengthy computations, on which I am now
working.

APPENDIX 8: "STATIC" EQUATIONS IN THE ABELIAN

HIGGS MODEL AND NON-ABELIAN GENERALIZATIONS

this specialization, the Euler-Lagrange equations
and the total field energy are

v'b, = 2e'b, y' —e gq(„,5'(x- x„),

v'y —y = -e'b, 'y+ C y(y2 K'), (82)
I examine in this appendix the question of what

are the correct "s.tatic" equations in a, simple
and relatively familiar case, the classical Abelian
Higgs model, ~ and then discuss non-Abelian gen-
eralizations. The Lagrangian density for this
model is

',f„„f—"—"+d„d*" —2C(14&12 —x2)~

eb„eb„
v exv

d~ = „-ieb~

with (t( a complex scalar field. I study the model
in the special case in which only static source
charges are present, so that one can choose a
gauge in which b, =0 and in which P is real Wit.h

Egg yd d x g Vbo + V' +

+ e'bo'p'+ —,'C(p' —((')'],

and it is easily cheeked, using the equations of
motion, that

(84)dEtce&((/dt = 0

for stationary, time-independent source charges
Q(„&. Note that even though no explicit coupling
to the static source charges appears in Eq. (Bl),
the source charge term in Eq. (82) arises from
the contribution to the variation of the action of
surface integrals over small spheres excluding

the field singularities. To see this, let f dsx
denote a volume integral over the region outside
the small spheres; then

/ I I
d x 2 Vbo = dt & x Vbo V&bo = — d x &boV b + dt d 8„'Vbo&b(}

n

d x gboV'bo- Ck e („)6bo x„
8

d x6bo V bo+ e („)&
n

(82')

I will use the volume 6-function formulation,
rather than the excluded spheres procedure, from
here on. Note that the derivation of Eqs. (85) and
(86) below can be equally well carried out by the
excluded spheres procedure, while as noted in
Ref. 9, the surface integrals over excluded
spheres make contributions to the derivations

of Eqs. (BB)-(813)below which vanish, by virtue
of the variational equations obtained by equating
the volume integrals of the variations to zero. Let
me now examine the question of what conditions
are imposed by requiring that the principle of
virtual. work be satisfied. Making small virtual
displacements in the charges and the fields, we have

d x Vbo V5bo+2V ~ V5 +2 5 +2e'b05bo '+2e'bo' 6 +2C 5 —tP

d'x 6b -V'b +2e'b, ' +2,5 +6 -2V' +2e'b, ' +2C (85a)

which must be equal to

(85b)

if the principle of virtual work is to be satisfied. Taking the particular time slice t=0 to be the one on
which p and p are independent Cauchy data, equating Eq. (85) to Eq. (86) for arbitrary variations
5$, 5bo, 5(t( gives
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f = 0: V'b, = 2e'bop' —e g Q&„&5'(x —x„), V'p = e'bo'p+ Cp(&f&' —2), p = 0 (virtual work). (86)

These equations are not the same as the specialization of the Euler-I agrange equations to the case pf
vanishing time derivatives, which gives for all times

V'b, = 2e'b, p' —e g Q&„&P(x-x„), V'p = —e'bo'p+ Cp(p'- 2), p = 0 (Euler-Lagrange). (87)

The difference between Eqs. (86) and Eqs. (87) is just a change in sign in the interaction term in the p
equation, analogous to the change in sign of the J'(»., D;X) term in the "curl 8" equation found in the text
in the case of chromodynamics.

It is easy to show that Eqs. (86) and (87) are obtained from variational principles on a fixed time slice,
with all Cauchy data treated as independent. Consider first

~~constrained

d'x —,
'

Vb, ' — V '+ '+eb, ' '--,'C ' — '+A. V'b, —2e'b, '+e (n)5' x-xn
n

(86)

which implies the equations

=0

V2x - 2e2».p' = v 'b —2e2b P'

V'P = -e'b, 'g+ 2e'boP»+ CP(P' —8),
v'b, =2e'b, y' e gq&„&63(x-x„) .

(89)

Since the second equation implies b, = X, the final hvo equations become

V 'bo = 2e'bop' —e g Q&„&6'(x—x„),

v'y = e'b, 'y'+ Cy(y' —2),
which are the equations of Eq. (86) which satisfy the principle of virtual work. Consider next

~Ef ield, constrained

(810)

d'x —,
' Vb '+ V '+ '+e'b ' '+ —,'C ' — '+X V'b -2e'b '+e,„)5'x-x

n
(811)

which implies the equations

=0

v'x —2e~».P'= v'b, —2e' gb',

v'y = e'b, 'y —2e'b, y». + C y(y' —8),
V'b, =2e~b, g' —e P Q,„,6'(x —x„) .

(812)

Again the second equation implies bo=X, and so the final two equations give

V'b, = 2e'b, g' —e g Q,„&6'(x—x„),
(813)n

V'g = —e'b,'Q+ CQ(Q' —2),
which are Eqs. (817), the specialization of the Euler-Lagrange equations to vanishing time derivatives.
Thus, the solution to Eqs. (87) gives f =0 Cauchy data which yield an absolute minimum of E«„~ for a
specified source charge distribution, which is why this set of Cauchy data propagates without change in

time. The equations which satisfy the principle of virtual work do not give an absolute minimum of .the
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field energy for a given charge distribution.
Let me next give a simple argument which shows that the virtual work equations of Eq. (86) always have

a solution. To do this, I explicitly separate off the Coulombic piece of the potential, by writing

ho=
eQQ(„)

4m lx —x„l (814)

and define a subtracted energy E«„~,„„in which the infinite Coulomb self-energies of the charges have
been removed, giving

'~ +pcs(„)c,(x„)+ fs x[ (v'-'), +f(u'e)'+e'+8 be*+,'—,'c*(e' —v')*) .
mNn ~ n m n

(815)

Now define a new functional 5 by

2
Q(n)Q(m)

tieldsub 2 n ), ( 2 Q(n) o( n) Etieldsub ~static
mwn ~~ 'xn xm ' n

d3x21 VC02+ v 2+'2+e2b02 3+2C 2 2 . B16

This new functional is of course no longer the field energy, but it is positive-definite, and there is a well-
defined class (' of functions c„(t),p for which 6' is finite. Hence the minimum of & over the class (.'exists,
which implies that the equations of virtual work (which are the variational equations for F) have a solution.

In order to get further insight into the behavior of the two systems of equations, Eq. (86) and Eq. (BV), I
consider now the case when only one source charge Q is present, located at x=0. Making the separation
of Eq. (814) and assuming spherical symmetry, the equations become

1 d, dP, eQr' =e' c,+ (I)+ C()()((t)' —((') (virtual work),x' dh dr ' 4m'

dr dh -o 4'mx

1 d dP eQ= -e' cd+ p+ CP((t)' —)(') (Euler-Lagrange) .r' dr Ch ' 4'

(86')

(87')

Analyzing the indicial equations for cc and (t) around x=0 gives

c, -const (for A, &--,'),
y-jr', (81Va)

Virtual work A. =-—,+ [—,+ (e'Q/4v)']'~'&0

Euler-Lagrange: &e = ——,.+[a —(e'Q/4)()'] '~'

[for e &(e Q/4v) ]

1
X &-2,

—'& g, &0

(817b)

(81Vc)

Q= i(+—exp[ r(2C)(s)' s]

(816)
=c + =~ exp[ &(2e'(( )' ]-eQ b

0 0 4+y y

Assuming that E,-;„d,„b or equivalently is bound-
ed, then the solutions with ~=~ are excluded.
Boundedness of these functionals also implies that
(t) - (( at infinity and that f)c is bounded, giving as
&-~ the asymptotic behavior

The argument of Eqs. (814)-(816) implies that a
solution of Eqs. (86) exists which interpolates be-
tween the & =0 behavior of Eqs. (817a) and (817b)
with & =&, , and the & =~ behavior of Eq. (818). I
do not at this point have an analogous existence
proof for Eqs. (87).

To summarize the above analysis, in the Abelian
Higgs model with an inserted charge, just as in
the non-Abelian case, the principle of virtual work
gives static equations which differ by a sign from
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the zero-time-derivative specialization of the
Euler-Lagrange equations. The solution to the
virtual work eq:"ations has a Q which approaches
zero smoothly as &-0 [~, ~0 in Eq. (817b)],
whereas the so'ution to the Euler-Lagrange equa-
tions has a Q which is singular at & =0 [ &, & 0 in

Eq. (817c)]. The Euler-Lagrange solution re-
mains cons tant when pr opagated forward in time,
while the virtual work equations evolve in time
in a complicated fashion. Which set of equations
should one use~ One's first impulse is to assume
that a static situation demands equations with a
time-independent solution, but one only has to re-
member the «Josephson effect [where the re-
sponse to a constant applied voltage V is an os-
cillating tunneling current] to realize that this
impulse is wrong.

How then do s one decide~ Ny answer is that
the system decides, but its behavior in tunneling"
from a classically inaccessible configuration of
equal energy, such as the vacuum with Q- —& as
&-~, to the vacuum with Q-t& as &-~. The cor-
rect equations are those which describe the state,
of the system (i.e., the Cauchy data for the sub-
sequent classical time evolution) at the instant of
tunneling through to the vacuum of interest along
a most probable tunneling path. I argued in the
text that the requirement of a most probable Nn-
neling path requires vanishing generalized vel-
ocities at the instant of tunneling through; in the
present context this just gives Coleman's original
"bounce" condition Q =0, and does not distinguish
between Eqs. (86) and (87). However, there is
one additional requirement that I did not impose in
the text: the requirement that the tunneling proba-
bility be extremal with respect to variations in the
time of tunneling through (which was treated as

fixed) as well as of the fields. There are two ways
of imposing this requirement. One way is to con- '

sider the phase function used in the text

$' I constrained (819)

c1 g' 2 —QD g& eJO

and to note that the requirement s4/st =0 implies

6'le =L,.„„„,„„[,=0, (820)

which can be satisfied trivially, without any con-
straint on the Cauchy data at &, by an appropriate
choice of an irrelevant constant in the action.
Hence the desired condition appears at the level
of a second variation ~field(SC'/&t ) =0, which gives

constrained (821)

and yields Eqs. (86) as the correct choice.
A better way to make the argument is to re-

phrase i t as the s tatem ent that it is only var iations
in & relative to its end-point value which are phy-
sically significant, so that we can replace @ by

du j(u) —(t —t ) j(t ),
~ OO

sC/st =0.
(822)

Equation (822), when substituted in a functional
integral, gives transition amplitudes which differ
only by a phase from those given by the original
phase function C', and hence yields the same trans-
ition probabilities. Varying @, and noting that the
final state can have no dependence on the arbitrary
choice. ~, of time origin, gives"

t
=0 ~ i "bounce condition, " (823a)

(ii) Euler-Lagrange equations (satisfied along an imaginary-time tunneling path),

tI6'(t ) =0 ~ (iii) Eqs. (86). (823b)

I conclude with the following remarks:
(1) The fact that Eqs. (86) emerge as the most

probable tunneling end-point configuration is con-
sistent with the fact that Eqs. (86) predict a
smooth scalar field Q, whereas the specialization
of the Euler-Lagrange equations predicts a Q

which is singular at & =0. Tunneling to such a
singular field configuration should be very im-
probable.

(2) The argument of Eqs. (822) and (823) applies
to the non-Abelian case discussed in the text just

as to the Abelian Higgs model. " Its relativistic
generalization" should apply even in the case
where the quarks are not heavy, and hence where
the static approximation cannot be used.

(3) The fact that the initial Cauchy data are not
preserved in form under time evolution means
that after tunneling through, the system point in
phase space moves away froin the exit of the path
of maximum probability, providing great stability
to the new field configuration once it has formed.

(4) All of this has a strong resemblance to
thermodynamics. As in thermodynamics, equili-
brium states are determined, not by minimization
of energy, but by maximization of probability.
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Thinking in terms of a thermodynamic analogy
raises the interesting question of whether a dis-
tinction exists between reversible and irreversible
processes, and whether an entropy can be identi-

,
fied." Let me give some speculations along these
lines. As noted in Sec. III, when the two quarks
are pulled apart the bag in which they are embed-
ded is deformed. As long as the bag does not fis-
sion, the process is clearly reversible —the
quarks can be allowed to move back together doing
work against the restraining forces. On the other
hand, if the quarks are pull'ed too far apart, the
bag fissions —i.e., the topological quantum number
& =1 solution tunnels into a topological quantum
number & =2 solution (and an extra light qf pair is
created). According to point Pd) above, the fis-
sioned configuration evolves in time away from
the tunneling path of maximum probability, so
this transformation is essentially irreversible.
Hence if an analog of entropy exists, it must in-
crease in the process; this argument makes plaus-
ible the identification of topological quantum num-
ber & with entropy. The statement of energy con-
servation then reads [for fission processes in-

volving only SU(2) bags]

&E =4ng(D/g2)dn+dV„„;, +pm, (&N, ~&N, ),-

(B24)

4@~
T&$ =K —2~ D(~) C(, ) &+(J) (B25)

with C(z) numerical constants which are deter-
mined by the structure of the SU(p) analogs of the
Prasad-Sommerfield solution. The above argu-
ments make plausible the following conjecture:
In purely strong-interaction processes, probable
transitions between initial and final asymptotic
states are characterized by &S - 0.

with & (as already noted) playing the role of the
temperature, & the role of entropy, V„,.„,. the role
of the mechanical energy, and ~, the role of
chemical potential. When bags in the SU{7) over-
lying Yang-Mills theories with p &2 are involved,
the first term in Eq. (824) should generalize (with
color-singlet expectations of D&;) understood) to
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3Equation (7) is the structure obtained by replacing an
unrestricted path integral

b exp i d4xg
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b 0(D, E~ -gJ )exp i d4xg

= (2m) ~ Qbg)A, exp i d4x -A. (D&E~ -gJ )
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energy balance. When a spin moment is rotated to a
position parallel to the magnetic field, work is done on

S(„)S(A., 5E~) tx: dS(„)S(A,, 5Q(„))

and

S(„)S(E +DNA, 6bp),
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fpf» p for a spiny +&i)et;h Ugpggf ~
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$(s&,&,s~,

&
)), since it could be a different function in

each SU(j) diagonal bloc of the overlying Lie algebra.
SThe surface terms on small spheres surrounding the

charges are
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J. Bekenstein, Phys. Rev. D 5, 1239 (1972); 5, 2403
(1972); C. Teitelboim, ibid. 5, 2941 (1972).
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4It is easy to check that if I had chosen the lower sign
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My sign convention for e, e = —1, agrees with the

convention &~234(=e ) = 1 used by Brown et al.
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principle of virtual work, variations which violate the
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they make the energy integral diverge.
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N. S. Manton (unpublished).

32My h~ are related to the@~ of Brown et al. by h~
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33In particular, they have made use of interchanges of
summation orders and of antisymmetry properties of
summand s.

34The results contained in this appendix were, in part,
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man, in the Proceedings of the 1977 International
School of Physics "Ettore Majorana" (unpublished).
As discussed by S. Coleman in Refs. 5 and 35, the
Abelian case has infinite-volume divergences which
are absent from the physically interesting non-Abelian
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I am again pursuing the analogy, suggested in the text,
between 't Hooft-Polyakov-Pras ad-Sommerfield "bag"
solutions in non-Abelian gauge theories and black
ho].es in general relativity. The thermodynamic inter-
pretation of black-hole processes, discovered by
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