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Can the n m scattering amplitude be represented by any Vene~ano model?
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We propose a general definition of a Veneziano-model amplitude in terms of the support property of its
double inverse Laplace transform. A practical test of this property is then formulated and applied to mm.

scattering. It is satisfied by the nonexotic me amplitudes but not by the exotic m+m+ scattering amplitude.
However there are significant deviations from the explicit Lovelace-Shapiro model and the isovector-exchange
amplitude is better represented by the symmetric-group model of Frampton.

I. INTRODUCTION

The introduction of the Veneziano model' into
high-energy physics has led to the development
of highly sophisticated dual resonance models. '
In these theories, the Veneziano amplitude pro-
vides the Born term in, it is hoped, a weak-
coupling expansion of hadronic scattering amplitudes.
Unfortunately, it has, till now, not been possible
to find a crucial practical test of this basic assump-
tion underlying dual models. There have been a
number of phenomenological applications of the
Veneziano model' but, due to the freedom in the
choice of satellite terms and the necessary unitari-
zation procedure, the resulting fits are rather
inconclusive. The simpler four-point processes,
particularly meson-meson scattering, provide the
cleanest situation for testing the Veneziano model.
It was quickly recognized by Lovelace and Shapiro4
that mz scattering is an especially good case for
study. However the absence experimentally of
odd mn daughter trajectories has cast doubt on the
significance of the Lovelace-Shapiro-Veneziano
(LSV) model. It is, of course, possible to cir-
cumvent this difficulty by the addition of satellite
terms and Frampton' has suggested a specific
prescription based on the symmetric group.

In this paper we suggest a method for testing
the essence of the Veneziano model, without the
necessity of making detailed Veneziano-model
fits to experimental data and varying a large num-
ber of parameters. Also it is not necessary to
consider explicit unitarity corrections, since
our test only involves the absorptive part of the
scattering amplitude. It is based on the observa-
tion that the most general (s, t) Veneziano form
A(s, i) (without loop or other unitarity corrections)
has a tw'o-dimensional inverse Laplace transform
E($„$,) with a very characteristic support pro-
perty. Namely, this transform is only non-

vanishing on the curve

—e"~s/~ —e- 0 ]la, " —0

in the (g„$,) plane, where n.' is the universal
Begge-slope parameter. We take the fact that the
double inverse Laplace transform has support on
the curve (1.1) to be the defining property of a
general Veneziano model without loops. It then
becomes possible, using general amplitude analy-
sis, to test in a very broad sense whether the ex-
periment agrees with any Veneziano model. Of
course, dual-loop corrections could give contri-
butions anywhere in the ($„$,) plane. However,
there should be strong peaking along the support
curve (1.1). if the Veneziano amplitude is to pro-
vide a sensible first-order term in a dual-loop
perturbation series. We therefore take the attitude
that the double inverse Laplace transform of a
scattering amplitude must be weighted strongly
along the curve (1.1), in order that the general
Veneziano model be a viable description of the
process.

The advantages of our method over previous
attempts to compare phenomenological amplitudes
with duality ideas are: (a) our criterion is satis-
fied by any dual-model amplitude and is therefore
not dependent on details of the model; (b) as will
be shown in Sec. III, our analysis only employs
the imaginary part of amplitudes, and therefore
we are presumably rather insensitive to unitarity
corrections.

In the past the study of zero trajectories (as
advocated in particular by Odorico) has, constituted
a popular way of emphasizing the similarity between
dual models and physical amplitudes. However,
physical zero trajectories have considerable de-
viations from the simple straight-line pattern
characteristic of some dual models. This is due
in part to their sensitivity to the real part of the
amplitude (unitarity corrections), and therefore
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it is not possible to make any very precise test
using thexn.

The particle spectrum is of course a central
property to derive for any phase-shift analysis.
As far a,s the daughter states are concerned,
however, conclusions are difficult to obtain. Also,
the particle spectrum changes drastically from
one Venezi. ano model to another. For these rea-
sons our technique appears to us to provide a
cleaner way of testing the basic Veneziano pro-
perties of the amplitude than does a cumber-
some and ambiguous comparison at the level of
the particle spectrum.

In Sec. II, we derive Eq. (1.1) for the universal
support curve and discuss the form of- the weight
function of the double Laplace transform along
its support. %'e illustrate our results using the
explicit I SV4 model of mn scattering. Our test is
expressed in a more practical form in Sec. III.
The test is then applied to nv scattering in Sec. IV,
using recent mn phase-shift analyses as input. A
different approach to the standard p-exchange finite-
energy sum rule (FESR) is also briefly discussed.
We find that the general support property required
of a Veneziano model is quite well satisfied by the
nonexotic mw amplitudes. Significant deviations
from the LSV predictions are found. These re-
sults are discussed in Sec. V. Similar calculations
have been made by Lyberg for mN and KN scattering
amplitudes. '

II. VENEZIANO AMPLITUDE AS A DOUBLE LAPLACE

TRANSFORM

A(s, t) = g a„(s,t)B(-n(s)+ c„,—n(t)+ d„), (2 1)

where B(X, Y) is the Euler beta function and the
a„(s, t} are polynomials. The constants c„and d„
may be interpreted as displacements of th~ in-
tercept o,o of the Hegge-trajectory function

n(s) = n, + n's. (2.2}

The sum in Eq. (2.1) may have an infinity of terms
provided that the orders of all the polynomials
have a common finite upper limit N. All Veneziano-
model amplitudes that have been suggested can be
expressed in the form (2.1).

From the integral representation

B(-n(s), - n(t))

du dv6 j. -u —v u ~&" 'v
0 0

(2.3)

it is easily shown that, for a polynomial p(X, y'),

In order to motivate our definition of a Veneziano
model, let us consider the very general (s, t) Born
term

1 1

P(-n(s) -1, -n(t) -1)B(-n(s), -n(t))= ~) du dv5(I -u-v}P u —,v u e(s~'v e'" '
0 0 eu ' 8v

1 1 N

dudv %' u v 5 1-u-vu "' 'v
0 0 f5&

(2.4)

(2.5)

(2.6)

Here t)/ is the order of the polynomial P(X, I') and W„(u, v} is a polynomial of order m. It follows that the
nth term on the right-hand side of Eq. (2.1) can be rewritten as

N
u

A„(s, t) = Qm(I 'u v)u-e (s)-1ds„v-e ( t) dsn .
0 0 m~

Using this result, it is possible to write the general expression (2.1) in the form

A(s, t) = dudvu '~'v ' "'gf —t)m(1 —u —v).
0 0 mw V

It is convenient to make the change of variables u = e 'B~ '
and v = g «t' ' to obtain

] 00 ()0

A(s t) — d( d~ es4s+u& pf (~ g )gm(I 8-l' /e' &-g&/e')
n o o 95uo

(2.V)

(2.8)

d(s, () =J f e'~ "~is((„(,)d(,d(, ,
0 0

(2.9)

Hence we see that the very general Veneziano
Born term (2.1) can be rewritten as a double Laplace
transform

where F($„g,) is a distribution

F(5., $,) = „gf.($, -h, )~"(I -e ""-s-'s"),
(2.10)

with support on the curve
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1 —e-'s/' '- e-'~' '=0. (2.11) )I $s/n

%e take the fact that its double inverse Laplace
transform has support on the universal curve (2.11)
to be the defining property of a Veneziano-model
amplitude. Equivalently, we require the double
inverse Mellin transform, see Eq. (2.V), to be of
the form

S

(u, s)

(2.12)

In the following we shall refer to both the Laplace
and Mellin transforms, using whichever is the
most convenient. The above definition allows an
infinite number of satellite terms with Hegge tra-
jectories of arbitrary intercept. It is only the
Begge-slope parameter ri' which must be kept con-
stant.

Adopting such a definition, it becomes possible,
using phenomenological amplitudes, to find out
whether the Veneziano model is ruled out by ex-
periment. If there is no peaking of the double in-
verse Laplace transform of the scattering amplitude
along the universal support curve (2.11), then it
can be concluded that the Veneziano model is
invalid. Dual-loop corrections will in general,
of course, give a double inverse Laplace transform
which is nonzero everywhere. [The support of
planar loops is restricted to ($„$,) values greater
than or equal to those on the curve (2.11). For an
amplitude satisfying the Mandelstam representation,
the double inverse Laplace transform can be ex-
pressed in terms of its double spectral function,

F(g„g,)=—, p(s, t)e '" "~dsdt. ]

-&t/
'

FIG. 1. Universal support curve for the double inverse
Laplace transform of a general Veneziano-model ampli-
tude.

in the following. [Here we use a normalization
such that the value of the amplitude at threshold
is given by the s-wave scattering length in pion
mass units. Then f in Eq. (2.13) becomes the pion.
coupling constant. For M, =770 MeV and Fp
=150 MeV, f'/16m =0.72. ]

The LSV formula for n'n scattering

V.- )
f' r(l-n(s))r(l-n(t))
16m I"(1—n(s) —n(t))

(2.13)

where n(s) = —,'+ n's is the p Regge trajectory, pro-
vides a good illustration of the general discussioa
above. It is readily expressed as a double Laplace
transform of the general form (2.10) with

However, if the dual perturbative approach is
sensible, these corrections should not dominate
the Born term. In fact, it might even become pos-
sible to separate the Born term from its unitarity
corrections using this approach.

The above discussion applied to the (s, t) Vene-
ziano amplitude and is appropriate to a reaction
such as m'v -m'm with an exotic u channel. [Note
that in this paper we generally take the variable
u to be e ~~~ '

and it is only used to denote the third
Mandelstam. invariant energy variable when ex-
plicit reference is made to a crossed channel.
Also note that for a crossing-symmetric Veneziano
amplitude A(s, t) =A(t, s), the weight functions
f (t', - $,) are even. ] In general, it is necessary to
add three Born terms in order to treat all three
channels correctly. Ne then obtain three branches
of the universal support curve as shown in Fig. 1.,
where the homogeneous coordinates $Jn',
-g,/a', and (t, —t,)/n' are used. For simplicity,
we shall only discuss the (s, t) term explicitly

—,'sech ' ', for m=0 and 1

f„($,—$,) = (2.14)
0, for m&1,

or, equivalently, as a Mellin representation (2.12)
with

for m=0 and 1

f (r) =

0, for m&1,
(2.15)

where r =u/v
For later use, we also give here the Mellin re-

presentation of the Frampton pion-pion amplitude. '
The Frampton model is constructed so as to have
no odd daughters in the four-point function, a
property enjoyed by the gerieralized Veneziano
model with a, = 1 and the Neveu-Schwarz-Ramond
model. ' The m7t amplitude is- of the general form
(2.1) with an infinite number of terms having linear
polynomials a„(s, t) and integer constants c„and d„.
Consequently, only the first two terms in Eq. (2.12)
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are nonzero and their ratio is a rational function.

f ' r' '(5+ 4r+ 5t )
o 16v (1+r) '(I+r+r')'

f 2 +1/2(I ++++2)1/4

16r (1+r)~/'

(2.16)

(2.1V)

The amplitude is normalized so that the leading
trajectory contribution agrees with the LSV
model.

III. INVERSE LAPLACE TRANSFORM OF A SCATTERING

AMPLITUDE

In this section we consider the practical applica-
tion of Eqs. (2.10)-(2.12) to test whether an em-
pirical amplitude has a strong component of the
Veneziano form. Amplitude analysis of experi-
mental data can provide scattering amplitudes at
fixed momentum-transfer t e[-1 GeV', 0] as a
function of the invariant energy s, but amplitudes
are not available as analytic functions of s and t.

In this section we demonstrate that the funda-
mental support property (2.10), (2.11) is equiva-
lent to a very characteristic behavior of the single
inverse Laplace transforms of the fixed-t am-
plitudes. These can be evaluated accurately from
our data.

Using Eq. (2.10), we define G(g„ t) by

ds e "&A(8, f), (3.4)

provided of course that this integral makes sense.
If, however, the amplitude has an asymptotic
Regge behavior

A(s, t) ~s~ (3.5)

the Mellin formula (3.4) will not converge unless
n(t) & -1 and this inequality is in general not
satisfied for

~

t
~

& 1 GeV'. In fact, for u(t) & -1,
it is possible to deform the integration contour
in Eq. (3.4) along the right-hand s channel (left-
hand u channel) branch cut for positive (negative)
g, to obtain

GeV'), it is possible to check whether Eq. (3.2)
provides a good parametrization of their t de-
pendence with the Veneziano value (3.3) for the
exponent g,. In practice, of course, it will be
necessary to restrict the order N of the polynomial
(we will take linear polynomials) to make such a
test sensible over a finite range of t.

Let us now consider how the single inverse
Laplace transform of a scattering amplitude A(s, f)
may be calculated. Since A(s, f) is not analytic
in the left- or right-half s plane, it is necessary
to use a two-sided Laplace transform. The stan-
dard Mellin inversion formula then gives

A(s, f) = d&,e"~G(„t),
0

'(3 1) G()„f) =— ds e '~~lmA (s, f) . (3.6)

so that

G(g„ t) = dg, e' ' —, gf„(g, -g,)
0

' G"
m

$, = -a'In[1 —e '8/~]. (3.3)
'

At this point we emphasize strongly that although
we are dealing here with only one-dimensional
transforms, the requirement that /i(s, t) is of the
form expressed by Eqs. (3.1)-(3.3) is completely
equivalent to the full requirement expressed in
the double-transform version, Eqs. (2.9) and

(2.10). In principle therefore a study just of the
one-dimensional transforms can give us a com-
plete answer to the question we ask in this paper.

Since the fixed-momentum-transfer amplitudes
are available for a range of f (typically 0&- t&1

x 5 ( m )(I &-48/a' e- 4g/ai')

Partial integrations immediately demonstrate
that this expression is of the form

(3.2)

where the t dependence in P„ is a polynomial of
degree N and where g, is given by the fundamental
duality condition expressed by the 5 function as

For any reasonable amplitude, this integral exists
for Re), o0. Interpreting G(g„t) as a distribution
allows us to take care of any divergence at $,=0
and Eq. (3.6) is then the correct inversion for-
mula for any value of e(t). (This can be seen by
remarking that the Laplace transform of a func-
tion, which is zero everywhere except in an &

neighborhood of $, =0, behaves like a polynomial
and then has no branch cuts for s «1/». So the
amplitude can be split into two parts, one being
the Laplace transform contribution from an q

neighborhood around zero and the other being the
Laplace transform from the rest. ) Similarly we
can define the single inverse Mellin transform

(3 'I)

where, for a Veneziano Born term, we expect

G(u, t) =c/P'„(u, t)e"~. ;(3.8)

It should be noted that the calculation of the single
inverse Mellin transform only requires the value
of the absorptive part of the scattering amplitude
Im/i(s, t) along the branch cuts.

The proposed test consists of expressing the t
dependence of G()„t) at fixed $, in the form of a
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polynomial times an exponential Q(t)e", in order
to obtain the exponential slope factor X. The Vene-
ziano form demands i(.= $,= n'In(1 -u). In order
to make a practical test over a finite t range we
must restrict the order of the polynomial which
henceforth we shall take to be bnear, i.e. , M=1.

By explicit integration of Eq. (2.8) over $„ the
polynomial P,((„t) can be expressed in terms of
the functions f, and f, of E(I. (2.10). In fact, it is
more convenient to use the variable u and introduce
the functions g, and g, defined by

(3.9)

Then we find the polynomial to be

G(u, t) = n'A(t, —t)e"',

with the important condition

X = $, = -o.'ln(1 —u)

and where

4 =g, (u)/(I —u)'.

(3.12)

(3.13)

(3.14)

Again we give, as examples, the results for the
LSV model

g, (N) =g, (u) = — [u(l —u) ]'~',

a' t, (u) = -0.5,
and the Frampton model

(3.15)

(3.16)

g'1(&) = — [&(I -~) ]'"(I-u+ u')'", (3.17)

(I -u)'n't, (u) = -0.5+ (3.18) .

The zero trajectories t, (u) for tbe two models
differ significantly from each other at small u.
However the values for g, (u) differ from each other
by less than 7% at all u. We remark bere that
(s, t)-crossing-symmetric Veneziano amplitudes

—u(1 —u) ' —cx't (u)$du

{.3.10)

Instead of characterizing P, (u, t) by g, (u) andy, (u),
it is more convenient to use g, (u), which is simply
related to the coefficient of t, and the position
of the polynomial zero t, (u) given by

c('t (u) = 0 (1-u) -u(1-u) —1ng, (u) —1. (3.11)g, (u) d

g, (u) du

So our general Veneziano ansatz for the inverse
Mellin transform at fixed u becomes

have weight functions g (M) symmetric about u
1

IV. APPLICATION TO en' SCATTERING

High-statistics data on the reaction 7t p-m n n'
have made possible detailed studies' "of the ment

scattering amplitude from threshold to 1.8 QeV.
These recent phase-shift analyses have greatly
improved our understanding of n7t spectroscopy.
It has been known for some time that the pro-
minent resonances on the leading p-f trajectory
agree well with the LSV model. However, the
structure of the daughter states has now been
determined and it disagrees with the LSV model.
In particular, the first daughter trajectory seems
to be completely absent. The only possible excep-
tion seems to be the (.(600), which may well be
just the tail of the &(1200)." Phenomenologically,
the e(1200) couples strongly to vv and there is no
p'(1250)-2v decay, which is completely opposite
to the LSV prediction. Also there is a strong
p'(1600) -2v signal and a second daughter trajectory
seems to be established. The observed resonance
structure therefore more closely resembles that
of the Frampton model than that of the LSV model.
However, even for the Frampton model, the widths
of the resonances are not in detailed agreement
with experiment. In particular, the predicted
q(1200) is far too narrow to account for the ob-
served behavior of the 71m, I=O, s wave.

The amplitude analysis of Ref. 12 provides an
analytic representation of the m'n elastic-scat-
tering amplitude for fixed values of t=0.0,
-0.2, -0.4, -0.6, -0.8, and -1.0 QeV'. These-
amplitudes are essentially uniquely determined by
data, analyticity, and phase-shift analysis (uni-
tarity) from threshold up to a dipion mass of 1.8
QeV. They correspond to an 1=0 s-wave scat-
tering length a', = 0.3 m, ' in agreement with recent
E,4 experiments'~ and smoothly tend to a Regge
asymptotic behavior above 1.8 QeV. The behavior
below 1.8 QeV is rather insensitive to the pre-
cise Regge parameters, and of course the am-
plitudes are unreliable above this energy. For
negative values of the invariant energy s the
amplitudes describe ~e'm' scattering, which was
used as fixed input (see Ref. 12). As well as
having fixed-t analyticity, the amplitudes have a
high numerical consistency with fixed-s analyticity.
For our purposes then, these amplitudes are the
best available input.

Vfe have evaluated the inverse Laplace transform
for n'm and n'71' elastic scattering at the above t
values using E(I. (3.6). For clarity of discussion,
we take $, to be positive and explicitly refer to the
direct channel process described by the amplitude



18 CAN THE mm SCATTERING AMPLITUDE BE REPRESENTED BY.. . 4099

J(G(fs. t=0.0) ii G{gt=-0.8)

1.0- 1.0-

0.1- 0.1—

+ TT+

0.01
0.1

0.01
0.1 1.0

fs (GeY )
1)0

fs(GeV 2)

FIG. 2. The inverse Laplace transform of the I&= 1 and x+~' scattering amplitudes for (a) g= 0.0 and (b) g= —0.8 GeV2.

The dashed line is the transform of the p Regge amplitude corresponding to the residue function of Fig. 3.

A(s, t) in Eq. (3.6). For small $, &(1.8 GeV) ', the
integral is dominated by the high-energy behavior
of the mw scattering amplitude and hence G(g„ t)
is unreliable. Similarly, for large $, the integral
is dominated by the threshold region, where uni-
tarity corrections to the Veneziano-Born term
must be important. Therefore it is only rea-
sonable to study the amplitudes G(g„ t) or G(u, t)
in a restricted region, which we shall take to be
0.1 &Q & 0.7.

The exotic amplitude G,~,()„t) is nonzero and
gives a measure of the loop modifications required
to correct the Veneziano m Born term. In fact
the exotic amplitude G,~. is typically of the order
of 20/p of the nonexotic amplitude G, ~-, except
near t=-Oe4 GeV', where G,~ has a zero. So it
seems reasonable to hope that the dominant part
of the nonexotic amplitude G„,- is described by
a Veneziano Born term. Since the loop corrections
to ImA. ,~, are presumably mostly due to the
Pomeron, one might expect the isospin I, =1 ex-
change amplitude

Laplace transform should be given by

1 y,(t)I"(1+n, (t))
I =1 sP v w 1+a&(t) (4.3)

ii ay(t)

[For a process with a leading threshold at s = s„
it is more correct to consider the function e'0's
x G((,, t) on the left-hand side of Eq. (4.3).j At
larger $, values, the comparison of the two sides
of Eq. (4.2) provides a good way of illustrating the
phenomenological duality properties of the scat-
tering amplitude. The p Regge residue function

y, (t) extracted from a standard FESR analysis of
the mm amplitudes from Ref. 12 is shown in Fig. 3,
where o.,(t) = 0.5+ 0.9 t and a cutoff at Ws= 1.8 GeV
were used. The right-hand side of Eq. (4.3) con-
structed from these Regge parameters is shown
as a dashed line in Fig. 2. Encouraged by the

(4.I,)G.. .(h. , t)=G,. ($., t) -G, .(h. , t)

to provide the best example of a dual amplitude.
The behavior of the amplitudes GI, & and G,~,
are shown in Fig. 2 for t=0.0 and -0.8 GeV' over
the reliable range of g, values. In the following
we will give our results for both G,~- and Gl,

The imaginary part of the I,=1 exchange ampli-
tude is expected to be dominated at large s by the
p Regge pole

0.5

0.0

-0.5-

—-t
(GeV )

ImA~, ~(s, t) = y,(t)s ~'". (4.2)

The corresponding small-g, behavior of its inverse
FIG. 3. The p residue function calculated from stand-

ard FESR integrals for the amplitudes of Ref. 12.
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1.0

(a ) Tt'TT (b) it= &

0.5 0.5

0.2 0.4 0.6 0.8 1.0
u

I I I.

0.2 0.4 0.6 0.8 1.0
U

FIG. 4. Phenomenological exponential slope factor compared to the Veneziano-model prediction X~ (& for (a} g
scattering and (b) I~ = & scattering.

results, we suggest an alternative method for
determining the Regge residue function y(t) [and
the trajectory n(t)]. The procedure is simply to
fit the inverse Laplace transform G(g„t) in the
phase-shift region to the Regge form on the right-
hand side of Eq. (4.3). It has the advantage over
normal FESR's of having a smooth cutoff at large
s values. Of course, it is necessary to supple-

ment the phase-shift amplitude with a reasonable
smooth high-energy imaginary part but the re-
sults are insensitive to its exact form.

Let us now return to the main point at issue in
this paper. The crucial test of the Veneziano model
is the requirement that, for each value of u=e '~~ ',
the amplitude G(u, t) should conform to the param-
etrization given in Etis. (3.12)-(3.13) of the pre-

~/ P1(u,t)
0.4- i( P1(u,t)

0.2 0.2

0.0 =-t
0 (Gpy2)

0.0 =-t
(GeV2)

-0.2 -0.2

-0.4- -0.4

P1(u,t)

0.1- (t') Tr g'
u=0.4

0.05- &c X X'

0.0
0.2 0.6 1.0 (G~y2)

Ap

FIG. 5. Function P~ (u= 0.4, t) constructed from the phenomenological amplitudes of Ref. 12 for (a) w's scattering,
(4) It= 1 scattering, and (c) m' m'scattering. Linear-polynomial fits are shown for (a) and (b).
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)) -a' to
(a) TT'Tr

0.6-

+
0.4-+ ++

0.2-

0.6-

0.4—

0.2-

(b) tt=1

I

0.2 0.6 1.0 0.2 0.6 1.0
U

FIG. 6. Phenomenological zero trajectory —G.'go(u) for (a) 7t'g scattering and (b) I&= 1 scatteriug compared to the
predictions of the LSV model (solid curve) and the Frampton model (dashed curve).

vious section. We tate the value n' =0.9 QeV '
for the universal Regge slope parameter. The
amplitudes G, „arid C.. . are well fitted by ex-
pressions of the type (3~.12) and we show the
values of X obtained in Fig. 4. The error bars
given in this and subsequent figures have no real
statistical significance but indicate the spread of
results obtained by using various fixed-t amplitudes
generated by the calculations of Refs. 9 and 12.
As can be seen from Fig. 4, both 6, - and C„,
are compatible with the general Veneziano re-
quirement x= $„which is shown as a full curve.
In order to illustrate how well the mm amplitudes
conform to the general Veneziano behavior, we
fix X = $, and plot P,(u, t) of Etl. (3.8) in Fig. 6
for the typical value of u =0.4. The results for
the m'm and I,=1 amplitudes are both well fitted
by a linear polynomial A (t, —t). However, the
relatively small exotic z'g' amplitude is clearly
not of the Veneziano form (3.12)-(3.13). We feel
that these results are positive evidence in favor
of the general Veneziano model, arid we, there-
fore, now turn to a more detailed study of its
properties for mw scattering.

The following discussion will be model dependent,
just like that of the particle spectrum or the
Odorico zero structure, Ref. 15, and should not

be confused with the above fundamental test X
= f(t) of the general Veneziano support property,
Eq. (2.11).

V. DISCUSSION AND CONCLUSION

The structure of the general Veneziano amplitude
is characterized by the weight functions g„(u) of
Eq. (3.9). In the previous section we have shown
that two terms g, (u) and g, (u) are sufficient to re-
produce the dominant behavior of the nonexotic wm

scattering amplitudes. However, as discussed
in Sec. II, such two-term expansions embrace a
very large class of Veneziano amplitudes and,
for example, allow an infinite number of satellite
terms. It is rather difficult to obtain g, (u) and

it is phenomenologically more convenient to use
the position of the polynoinial zero t, (u) and g, (u)
to specify the Veneziano amplitude. The poly-
nomial zero t, (u) is readily obtained from our
phenomenological fits of G to the dual form (3.12)-
(3.13). Our results for the v'v and I,= 1 ampli-
tudes I'e shown in Fig. 6. For comparison we
have plotted the zero position predicted by the
LSV model [solid curve —Eq. (3.16)] and the Fram-
pton model [dashed curve —Eq. (3.18)]. There are
significant deviations from the LSV model and,

(U}

( b) It-1

0.2— 0.2

0.1— 0.1

0.2 0.6 1.0
I

0.2
I

0.6 1.0

FIG. 7. Phenomenological weight function -g~ (I) compared to the LSV model prediction (3.15) for (a) m' 7}. scattering
with f /16'= 0.55 and (b) /&=1 scattering with f /16g=0. 5.
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in particular, the I,= 1 exchange amplitude more
closely resembles the predictions of the Frampton
model.

The weight function g, (u) is also readily extracted
from our fits using Eg. (3.14) and the results are
shown in Fig. 7. The predictions of the LSV and
Frampton models for g, (u) agree within 7% for
all u values and therefore we just give the LSV
curve. .Our results for both the m'm and I,=1
amplitudes are in qualitative agreement with the
behavior predicted by the two models.

In conclusion, recent m~ phase-shift analyses
seem to uphold the general structure of the
Veneziano model. The nonexotic amplitudes G,~-

and G», , both conform well to the expected be-
havior (3.12) with the dual value g, (3.13) for the
exponent X, while the relatively small exotic
amplitude G, , does not. There are significant
deviations from the LSV model. The I,= I ex-
change amplitudes have no Pomeron contamination
and favor the Frampton model over the LSV model,
which presumably reflects the more realistic
spectrum of the former.
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