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We present a formalism of overlapping resonances with variable channel structure which is suitable for the
analysis of inclusive and exclusive data in e +e annihilation into hadrpns. We use it in a discussion of the
Q'(3.68) and /$3. 77) states, in a fit to SPEAR data in the range 3.9—4.1 GeV and a fit to DESY
data in the range 4.0-4.3 GeV. Two fits to the SPEAR data are used as examples of various features of the
resonance system. Special attention is paid to the contraint that a very strong channel (D~D~) opens up in
the middle of the resonance structure. Both inclusive and exclusive quantities are displayed and the
correlation between them is discussed.

I. INTRODUCTION

Precision experiments in the resonance regions
of e e annihilation can yield very interesting in-
formation about the structure of the relevant ha-
dronic systems. We present and discuss a meth-
od for the analysis of such data. This problem is
analogous to phase-shift analysis in that an effort
is made to reconstruct scattering amplitudes from
cross sections. It is, however, different from
phase-shift analysis in many respects. Whereas
the latter method is applied to a situation in which
one hadronic scattering channel is investigated
and several partial waves are allowed, here we
are faced with one partial wave (J c= l ), but we
would like to include information from many ha-
dronic channels. The method that we discuss is
based on the idea that a limited number of over-
lapping resonances is produced by the virtual pho-
ton and they decay into all open hadronic channels.
The analysis allows in principle for the most gen-
eral structure in the production and decay of the
resonance system, the only input being the num-
ber of resonances used as a basis for the analy-
sis.

We review in Sec. II the general formalism that
is used to describe the production of two over-
lapping resonances by the virtual photon and their
decay into hadronic channels. This formalism
was described in Ref. 1 and is based on the Weiss-
kopf-Wigner' analysis of overlapping resonances
carried out in Ref. 3. The analysis of Refs. 1 and
3 used the assumption that there is no important
structure in the decay channels within the range
of the resonance system. We relax this assump-
tion in our analysis in Sec. II. We allow for en-
ergy variations such as the opening of a strong de-
cay channel in the energy range which is being

analyzed. The result is that the effective Ham-
iltonian, whose eigenvalues describe the locations
of the resonances, becomes energy dependent.
Using an explicit Schrodinger equation we demon-
strate that the effective mass and width obey a
dispersion relation.

As a first application we discuss in Sec. III the
system of g'(3.68) and g "(3.77). All hadronic de-
cay channels of g'(3.68) are strongly suppressed
and for the purpose of'our analysis it may be re-
garded as a zero-width resonance with an ap-
preciable coupling to the photon. The g "(3.77) has
a much weaker coupling to the photon, but its ha-
dronic width is large since it lies above the DD
threshold at 3e73 GeV. Neglecting this width one
can use the available data to determine the struc-
ture of the mass matrix. We discuss the condi-
tions under which this analysis is valid in light of
the formalism developed in Sec. II.

Section IV contains a resonance analysis of the
available SLAC data in the range 3.9-4.1 GeV.
This serves as a demonstration of the technique.
We regard it, however, premature to use our best
fit—in spite of its impressive y —as a final deter-
mination of the physical parameters. We show,
therefore, two fits which have different charac-
teristics to demonstrate the general features of
possible solutions that can be obtained in a two-
resonance analysis of this region.

Our final application is to recent DESY data in
the (4.0-4.3)-GeV region. We show in Sec. V
that these data can be nicely fitt:ed by incoherent
Breit-Wigner shapes. This fit does not necessi-
tate the whole apparatus developed in Sec. II. We
expect the general form of the resonance analysis.
to be most useful when interference effects are
necessary to explain a complicated energy be-
havior of the cross section.
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A short discussion of our technique and the
physical implications of our results is given in
Sec. VI.

II. GENERAL FORMALISM

The inclusive description of a system of two
overlapping resonances can be most succinctly
parametrized by an effective Hamiltonian, '

H=M- ~il" r

which is a 2x2 matrix in the Hilbert space spanned
by the two resonance states. The two matrices
M and I' are Hermitian. If the interactions are in-
variant under time reversal, the two matrices be-
come symmetric in the proper T-invariant vector
basis. Since, in general, the two matrices M and
I' do not commute, H cannot be diagonalized by a
unitary transformation. As a result, the two right
eigenvectors II) and II», which obey

P'&=,,/, (cosz*l1&+ sinz*l2&),cosh2yj'/'

III') =' „2,/, (-sinz*l1) +cosz*l2)') .1
cosh2y ' '

(10)

It is then easy to check that the orthogonality con-
ditions

&I Ill& = o, (II II& = o

hold, and the overlap (6) is the purely imaginary
number,

1
II) =,

h2 „/, (coszll)+sinzl2)),jcosh2yj

1
III) =,

h2 „/, (-sinzll)+coszl2)),
(cosh2y)

where z is a complex parameter:

z =x+iy .
The other set of vectors will be obtained by using
the antiunitary T operation as specified by Eq. (4):

al» =~, li&, Lfl» =«,I», X
= i tanh2y . (12)

1 ~

1,2 M1,2 217122 r (2)

&I'la = &I'l~„&ll'Iv = &11'I~, (3)

will not be the Hermitian conjugates of the right
eigenvectors. In the T-invariant case we can re-
late these two sets of states by time reversal,

z II& = II'), z li = III') . (4)

Moreover, one can solve for one set of states in
terms of the other and obtain

I» —x I»
&

=
(1 l

l2)1/2

will not be orthogonal to one another. Therefore,
the two left eigenvectors

The six parameters of the complex matrix H
can thus be replaced by the two complex eigen-
values 6g and e, and the two real parameters x
andy. All these parameters may, in general, be
energy dependent. The problem is much simpli-
fied in the narrow-resonance approximation in
which one assumes that all these parameters are
constant (or do not vary considerably over the
small energy range where the effect of the reso-
nances is observed). In this case the energy de-
pendence of any cross section which involves these
two resonances has a structure of two Breit-Wig-
ner distributions interfering with one another.
The overlap X can then be given a simple intuitive
meaning. ' lt can be written as

I» —x* 1»
III & (1 I 12)

where X is the overlap

x=&lll» .

(5)

(6)

X XBwXc (13)

2(I',I' )'/'
XBW

2 1
(14)

where XBw is the overlap of two Breit-Wigner dis-
tributions

The choice of phases determined by (4) and (5)
leads to a purely imaginary overlap X. These re-
sults were discussed at length in Ref. 3. Using
Eg. (5) one obtains the representation of H in
terms of these vectors:

e, I»&I' I e2 lII)(II'I
2

(1 l
l2)1/2 (1 l

l2)1/2

Since we deal with strong interactions we wiQ
assume time-reversal invariance and express the
eigenvectors in terms of T-invariant orthonormal
basis vectors l1) and l2)

IXI Ixsw I (15)

which may also be derived from the physical re-
quirement that I' be a positive-definite matrix,
since the latter leads to the relation

detI
~XBw j

(16j

and X, designates an overlap in the space of decay
channels, i.e., j X, ) represents the degree to which
the decay channels of the two states match one
another. This leads then to the constraint
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ih, (z,) =H,'e(E,)aI&e"s~ "(&"

i()a=+ fp, (E,)e'a, (E,)a, (E.)

)( ~i (Np-Ec)tdz
C

where M, is the eigenvalue of Hp corresponding to
the discrete level R. If we choose the boundary
conditions at t =-~ as

- 0, a,.(z,) —,', 6(z.-z),
g~ oo g~ oo P j K+gl

(18)

then we may follow the time development of the
system and deduce from the coefficients at t =+ ~,

Mp, a, (t =+ ~) = s,,~p, a, (t = -~),

All this formalism follows simply from treating
the quantum-mechanical problem of production
and decay of resonances in the Weisskopf-Wigner
(WW) approximation. ' Let us sketch it briefly for
the case of a single resonance. The generaliza-
tion to a system of many resonances is straight-
forward. In the interaction representation, one
considers the effect of an interaction Hamiltonian
K' on the time development of a wave function de-
scribed by the eigenfunctions of some K, that con-
sist of a discrete level with probability amplitude
as(t) and a continuum with probability amplitudes
a, (z„i). One assumes that H' has nonvanishing
matrix elements only between the resonance and
the continuum. This is the WW approximation. .

Under this assumption one obtains a closed solu-
tion of the resonance problem. In principle there
is no loss of generality in diagonalizing first the
continuum sector and regarding the remainder as
K', but in simple models one includes in K, only
free states. The WW approximation means then
that the interactions between continuum channels
proceed always through resonance states.

The Schrodinger equation turns into the following
set of equations:

r(z) = Q 2s p;(E) IHs;(E) I',

(21)

Finally, the 8 matrix is given by

ir (E)p, , (z)
E-I(z) + 'ir (z-)

where P, , is the projection operator

(22)

P;,(E) =r(z) [i& (E)i&;(E)]'"H,' (E)H', (E) (22)

The connection between this quantum-mechanical
problem arid the S-matrix formalism of overlap-
ping resonances was discussed at length in Ref.
3. Many related discussions exist in the litera-
ture. ' We have indulged in this exercise here in
order to derive the energy-dependent dispersion
relation Eq. (21) and to establish the connection
between the inclusive formalism of the effective
Hamiltonian and the couplings to exclusive decay
channels.

Equation (22) is unitary, as required of an S ma-
trix. Although this S matrix has in principle only
one pole at some complex value of E, one may re-
gard M(E) --,'il" (E) as the effective pole at the en-
ergy E. Similar statements hold for the two-res-
onance systems which we discussed at the begin-
ning of this section. In the narrow-resonance ap-
proximation p(E) and H,'„(E) are assumed to be
constant in the region JE -MI &1'. We cannot use
this approxi. mation in all our applications since
we will encounter situations in which a very strong
decay channel opens up in the middle of a reso-
nance structure. Let us therefore discuss the
mathematical structure that emerges from our
formalism in the. cise in which only one decay
channel has significant energy dependence. If
this channel is a two-body decay channel with ang-
ular momentum l and threshold energy Eth, we
should expect

the value of the S matrix at the energy Z, S,,(E).
Note that E was introduced by the boundary con-
ditions (18). The solution to Eqs. (17) and (18) is
given explicitly by

&(~p-E)C
"''( )'E-~(z)+-'~r(z)

and, in a single-resonance problem,

Correspondingly the mass will be

(24)

(26)

a,.(E„i)=,*,6(z.—z)
p~ (&c~

iH,' (E.)g,o,H', (Z) e«
E —M(E)+ —,'ir(E) i(E, E)+@-

where M(E) and r(E) are given by

(20)

Alternatively it can be represented in the sub-
tracted form

(26)
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(&1II' I
2&)' = &1II' II&&2 II'

I 2& . (28)

I' designates the contribution of the ith channel
to the width matrix which is written here explicit-
ly in the basis introduced above in Kq. (8).

A clear distinction should be made between the
two different Hilbert spaces which we use to de-
scribe a resonance system. One space is that of
their production and decay channels, within which
the S matrix is defined. The other is the basis of
the effective Hamiltonian. The dimension of the.
8 matrix is determined by the number of different
decay channels whereas the dimension of the ba-
sis of the Hamiltonian is the number of resonances
in question. Although the Smatrix is the one which
is directly related to experimental observations,
it is often very useful to discuss the resonance

M(E) =M(E~)
" a""(E')g(a(E'))dE'

(E E')(E E')

In the case of a two-resonance problem both M
and I' will be matrices, related by the dispersion
relation (21). Since only one channel is assumed
to contribute to the variation of I' and M, they will
not have three independent coupling functions g(k)
but only two. The reason is that any single decay
channel contribution to the width matrix factor-
izes:

I'
(E -M)»+-'r» (29)

In this expression it was assumed that the cou-
pling of the photon to the vector meson is (e(f)M'
and the hadronic w'idth I" is much larger than I'„
and, therefore, represents also the total width.
In the case of two overlapping resonances the vir-
tual photon couples to the two states that span the
Hilbert space of 8. Whatever the couplings are,
one linear combination of these states decouples
from the photon. Without any loss of generality,
we will assume henceforth that the state (2) de-
couples from the photon and, therefore, only I 1&

is produced in e'e annihilation. This leads to
the following expression for ~

system in the effective Hamiltoniari Hilbert space.
This is the basis in which the resonances are most
easily described within models such as the quark
model, whose underlying structure is different
from the observed decay products. Moreover,
whenever only inclusive information is available,
one cannot determine coupling parameters beyorid
those of H. Thy inclusive production of hadrons
in e e annihilation lends itself most easily to a
description in terms of the Hamiltonian language.
A single resonance contributes tothe ratio R of the
hadronic cross section divided by the p,'p, cross
section the amount

3s 1 I', I&I'I1) l' »q(~, —e,*)&1III'&&I'll& r, 1&11' ll& ("
f' 1 —ly I' IE —~, I' (E —'ef)(E —e,) IE —e» l' (3'0)

When the narrow-resonance approximation is valid the various parameters are constants and the integral
of the cross section determines the e'e width of the state l1&:

6~' 9~—,~dE=, M=, I"...E - f 2n (31)

In general, however, the various parameters may be energy dependent and should be fitted locally at each
energy Finally, .using Eq. (10) we can rewrite Eq. (30) using the parameters x andy:

377 1 1 1 cos2g szn2x»E» — —,'I, 1+ —tanh'2y + (E-M, ) „2 tanh2yi cosh2y1,. cos2x, sin2x+, »I', 1 — „—tanh'2y —(E -M, ) tanh2y (32)

This is the expression that me mill use to fit the
experimental data. The six parameters deduced
from these fits, i.e. , M, , =ReE'] 2 F ~, =-2Impy 2,
x and y, can be used to reconstruct the six param-
eters which define the matrix elements of the com-
plex symmetric effective Hamiltonian, Kq. (1).
The explicit connections between these two equiv-
alent sets of parameters are given in the Appen-
dix.

III. ANALYSIS OF THE Q'(3.68) - P"(3.77) SYSTEM

The g" state' lies above the threshold of the DD
continuum (3.73 GeV) and below the next continuum
channel of DD* (3.87 GeV). It has a hadronic
midth of I'=28+ 7 MeV and an e'e w'idth of l",+,
= 0.37+ 0.10 keV. The latter is considerably small-
er than I",+, ——2.1+0.3 keV of the g'(3.68). It
seems consistent to think of these two levels as
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mixtures of an S-D charmonium structure. In the
notation introduced above we will then use the
char monium identification

Il} = l2'S,), i2) = il'D, ), (33)
iI) = ig'(3.68)), iIO = iy"(3.77)) .

g "(3.77) is then produced in e e annihilation via
the component i1) in its state vector. Using Eq.
(8} we find that the size of this probability ampli-
tude, which we will denote by sinn, is

)sinz I

(cosh2y)'~'

cos2g
cosh2y

(34)

From the experimental values of F„for the two
states, it follows that'

Q=23 +3 (35)

As explained in the preceding section, .the eigen-
states il) and )II) will stay constant over the en-
ergy range of interest only provided there is no
violent change in the decay structure within that
same region. In this example an important decay
channel opens up in between the masses of the two
states. Let us nonetheless first ignore the F ma-
trix, find out the structure of the M matrix, and
then ask ourselves how stable these results are
once the decay effects are properly taken into ac-
count.

If I' is neglected we may use all the information
stated above to determine M:

system, detl" =0 and

cos2x= cos2Q cosh2y

2M» = (M, -M, ) sin2xcosh2y

+ —,'(I', —1,) cos2xsinh2y,

we find that for small values of y

S kQ

2M» =+(M, -M, ) sin2o. .

(38)

(40)

(41)

(42)

Moreover, the quantity M, -M, obeys the equality
(see the Appendix)

(M, -M, ) (cosh'2y —sin'2x)

= (M» -M») cos2xcosh2y

tanh'2y = IXI'= IX,„I'=( )2 l(p p )2
' (38}

This result follows from Eqs. (12), (13), and (14).
(See also the Appendix. ) I', is the measured width
of f", I', =0.03 GeV, but I', is completely unknown.
I', is the width attributed to the state )I) above
threshold. Since, however, M, is below threshold
it will hardly be a visible effect, producing only a
small variation in the background of the g" Breit-
Wigner shape.

Let us assume, for simplicity, that 1", ~ 1",. In
that case, and if )M, -M, ) does not change con-
siderably from the observed value of 0.09 GeV,
it follows from Eq. (38) that tanh'2y c 0.1. Hence,
y is quite small. Using the equalities [the first
follows from Eq. (34) and the second is given in
the Appendix]

( 3.70 +0.03'
IG.V .—I,+0.03 3.76 l (36)

Fishbane et al. ' have argued that the choice of a
positive sign in M» leads to the conclusion that
the effective tensor force that can cause such an
off-diagonal term has the same strength as the
one deduced from the splittings of the observed
1'P~ levels. We will compare this result of

+ —,
' (I'„—I'„)sin2x sinh2y, (43)

which for small values of y reduces to

M(2 —30 MeV

with the M» matrix elements that we will deduce
from our fits to the resonance structures observed
at higher masses.

The angle Q is measured at the location of
g"(3.77) where I" g0. It is then quite plausible that
M, =Re&, evaluated at E =3.77 GeV. will be different
from 3.68. This can come about either from energy
variation of M over this region or from the explicit
introduction of 1". To find the relative importance
of these two effects let us first estimate the pa-
rameter y. Since we deal here with a one-channel

(M -M)-
cos2Q

(44)

The conclusion is that as long as I", and I', 'are
-—,

'
)M, -M, (, only the variations of Mare relevant

to the evaluation of Q. Moreover, it should be ex-
pected that if 1" is small, its effects an M via the
dispersion relation (21}are small too, and M, -M,
as well as M» will not vary considerably.

The situation is different if I",&F,. As noted
above, we do not have direct physical information
about I", at E = 3.77 GeV. If, for some mysterious
reason, it turns out to be much larger than I"„
the derivation of M» is inoperative. As an ex-
ample, we plot in Fig. 1 the variation of M» vs
I', /I', for the case M, -M, =M&„-M&,. c. was kept
fixed at Q = 23' and the sign of M» was chosen to
be positive. For a qualitative understanding of
what is happening, let us discuss the case in which
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only the state il) is allowed to couple to the ha-
dronic decay channel (DV), i.e., 1» = 1"»——0. Using
n = 23 we find I', = 5.6I',. Using JM, -I, )

= 0.09
GeV it follows that tanh'2y =0.3. As a result the
second term on the right-hand side of Eg. (40)
will be more than half as large as the first term
and the two possible results for M» (correspond-
ing to the two different signs of x) show large de-
viations from 0.03 GeV. Within a conventional
charmonium picture the coupling of the photon de-
pends on the wave function at the origin, and,
therefore, only state ll) couples to it. But the de-
cay into D3 is a nonlocal process, i.e. , the new

qq pair can be produced for arbitrary configura-
tions of the c and c. Therefore, this hypothetical
example with I'» =I'» = 0 is, in fact, unreasonable.
It, furthermore, seems reasonable to assume that
ry will indeed be of the same size as I', and, while
the result My2'= 30 MeV ls not exact, it is still a
reasonable estimate of the magnitude of this ma-
trix element in the ('-g" system.

It should be noted that a recent publication from
SLAC, 'by a different group from Ref. 5, claims
that I,+, ((")=180+ 60 eV. This is —,

' of the re-
sult of Ref. 5 that we used in our analysis, and
should therefore lead to a corresponding reduc-
tion of tan'n. M» is then reduced to 24 MeV.

80-

' 60

&40
N

IV. ANALYSIS OF THE (3.9-4.1)-GeV REGION

The SPEAR data that were obtained in the Mark
I detector' show a very sharp increase in R im-
mediately above 4 GeV. This feature, together
with tbe two peaks at -3.96 and 4.03 GeV, can be
described by an overlapping resonance structure.
An inclusive analysis of these data in terms of
Eg. (30) with constant values of II was performed
by Dothan and Horn. ' lt allows for two different
classes of solutions: (A) Two resonances with

comparable widths (of about 65 MeV) whose mass-
es are close to the observed peaks of R. (B) A

narrow resonance (1 = 20 MeV) located at about
the same mass (-4 GeV) as a broad resonance
(I' = 200 MeV) and interfering destructively with

it. Since this inclusive analysis had been per-
formed an important new experimental fact was
discovered. The D*D* channel, which opens up
at about 4.012 GeV, couples very strongly' to the
resonating system at 4.028 GeV. To be more spe-
cific, the detected events that can be identified
with 9'*3'*production and eventual decays have
a cross section which is of the same order of
magnitude as those events that can be attributed
to O'D'*+7)'O'*. The third available channel,
D3, seems to play a relatively small role at this
energy. This experimental observation leads to
the interesting question whether and how the open-
ing of this strong new channel modifies the analy-
sis of the data and its consequences. In this sec-
tion we address this question.

To establish the mathematical structure of the
needed formalism, let us investigate first the
case of two interfering resonances in the presence
of two decay channels. We use the notation

(2pp ) (lIH'IA) =a,e'", (2vp~)' '(1I&'I&) = b,e'

(46)

(2v pg)"'(2I@'I&& = a.e'", (2v ps)"'(2l&'I&) = b.e",
where A and I3 are the two decay channels in ques-
tion. The matrix elements of I' in the T-invar-
iant basis will then be

20 I';& = a,.a,. + b; b, (46)

0

Since the parameters a, and b,. are chosen to be
real, the diagonal matrix elements of I' are posi-
tive but I'» may have either sign depending on the
relative signs of a, and a, and of b, and b,. Note
also that

detl = (a,b, —b,a,)' ~ 0 (47)
FIG. 1. Variation of M&2 as a function of I"&/I'2 in the

g'-g" system. The fixed parameters are &=23 and
M2-M~ ——0.09 GeV. There exist also solutions in which
the sign of M&2 is negative and its absolute value is
the same as shown here.

and vanishes if there is only a single decay eigen-
channel. The contribution of a particular channel
(e.g. , A.) to the production amplitude is propor-
tional to
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&a~P„&'" „2, Ir&&r'I 12&&2'~I ),)(1 —IXI*)"*

when only the component i 1) couples to the pho-
ton. Using the notation' for the decay amplitude
of the resonance il) into channel A,

(yf)'" =(~(i ii) +a2 (2 ii))e '"
e-5 a.

„2 )„,(a, cosz+a2sinz) (49)

(w'here y,"-=(2 iT iI)), we find that the cross section
of channel A will be

4z2a2 y~i cosa '
y» sins

0'~ =
2 cosh2y E-6g E-6g

(y,"2yn)'i (i sinh2y + sin2x)
(z —e,*)(z—e2)

(50)

x e(z z) (51)

where o, &
are constants and the following values

were assigned to the parameters:

Ep 4 0114 GeV Ej 1 GeV p 0 2 GeV
(52)

Eo is chosen as 2M~+p. " p, is the Blatt-Weisskopf
barrier mass as conventionally used in wN phase-
shift analyses. " This threshold behavior is ap-
propriate for a P-wave decay (into D*D*) starting
at E,& =E,. The exponential damping factor was
used to enforce convergence of the dispersion re-
lations for the mass matrix. Our formulas for B
become

I ]g =a)ay +bgb) +c]ci,
1 aa (z )dz

&f 2~ E E

(53)

where b, , c, , and I,'& are constants.
From experimental data at- E = 4.028 GeV one

can conclude that

o~:0'a:oc =0.48+0.12:0.46 +0.1:0.06 +0.03,

where A, B, and C denote the channels A
=0* D*, B=D D* +D D*, C =D 0 . Using iso-
spin invariance one would expect the same ratios
to hold for the total I =0 combinations of charmed

A similar equation holds for aa. The generaliza-
tion to a three-channel problem is straightfor-
ward: One defines parameters c, in analogy to
a& and b, . I'& will have an additional contribution
of c,c& and iyf i as well as oc can be determined
in terms of c, and the other parameters of the
problem. The sum of all cross sections divided
by v(s'e —g'p. ) =4vn '/SZ' gives the inclusive
result of Eq. (30).

A threshold behavior in p„at Etg will cause y"
and a„ to vanish for E& Et~. This variation will
change the other cross sections too, since. F will
be energy dependent, thus affecting M via Eq. (21)
and making all parameters energy dependent. In
our analysis we have parametrized the energy de-
pendence in the form

(z' -z.')'" exp —[(z —z,)/z, ]
z(z'- z '+4q2)

sR =R —B-~R, -~HM. (55)

I3 is assumed to be a constant background due to
noncharm production. Its value is left free and
gi.ts determined by the fit. bA, represents the
a;mount contributed by v'~ production as e'sti-
mated in Ref. 12:

bR, =0.89i 1 — '
~

1+
E 'r 'r'

m, =1.9 GeV. (56)

9'e have not included the errors of the parameters
in Eq. (56) since they are of marginal importance
to our analysis. ~M is the possible contribution
to the energy region in question from the tails of
resonances located at higher energies. In the fits
presented here we use

3g F
HM f 2 (Z M)2 1 p2

where f and I'... are related by Eq. (31), and

M =4.164 GeV, I'=46 MeV, I',+, =0.45 keV.

(56)

mesons obtained from the decays of the eharmoni-
urn system. There is, however, the problem that
the mass of the D*' is about 4 MeV higher than
that of D*', hence D*'D* production should be
suppressed compared to D*'D*'. Since it is dif-
ficult to estimate the exact value of the D*'D*
contribution, and we do not want to increase the
ei ror on this constraint in order not to lose its
qualitative effect on our fit, we use

~9l'+B = 1 a 0.35 oc oa =0.13+ 0.07 at 4.028 GeV,

(54)

w]&ere A = D*3*, B=DB*+D*D, C =DB. In this way
wie may have overemphasized the role of the D*D*
channel. This is, however, consistent with the
purpose of our discussion in this section, namely,
finding out how the strong opening of a strong
channel affects the resonance analysis.

On the experimental data for R we have to per-
fcrm several subtractions to account for effects
w.hich are not due to the resonances that we study.
We relate dA of Eq. (32) to R that we fit by
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are the parameters of the high-mass resonance of
the DASP data in our incoherent fit in the next
section [ see Eqs. (66) and (67)].

The three terms on the right-hand side of Eq.
(54) amount to a subtraction of a smoothly varying
background from the fitted R curve T.his sub-
tracted curve rises slowly toward the upper part
of the fitted energy region (3.9& Z& 4.1 GeV).

The major part of this rise is due to AA„„. The
qualitative details of our fits are not affected by
this smoothly varying background which we will
display together with our fits to A.

Our fitting program is based on an optimization
technique which involves minimizing the X func-
tion,

aa ~ (ai)-aa-. (ag) f . f.. ' -aa. -aa -)'x=~
i=l ~data fdata

(59)

where K is the number of data points and

f =R(e'e -D*D*)/R(e'e -DD*+D "D)

at F. =4.028 GeV.

g=R(e'e -DD)/R(e'e -DD*+D*D)
(60)

B X

BA)BA~

The error of the parameter A' is defined by

(61)

gAI [()(f I) ] lf2 (62)

The parameters may be strongly correlated by
nondiagonal matrix elements of M;;. For a given
set of parameters (A';] the program finds a better
estimate fAI(] by using the algorithm

The theoretical functions of our fit were discussed
above. They are presented in terms of energy-
independent parameters A, which are changed by
the program to obtain the best fit. The search for
the best fit is based on the error matrix

I

of y'/DF. They are 0.74 and 0.95, respectively.
0.74 was the lowest value of X'/DF which we ob-
tained in our fitting efforts. The values of the
parameters of these two fits are given in Table I.
Although the inclusive distributions of the two fits
look similar, there are some major differences
between them. To understand the differences let
us first study the positions of the eigenvalues of
the effective Hamiltonian. Figures 4 and 5 show
these positions as a function of energy on M-T'

plots. for the two resonances in fit number 1. Fig-
ure 6 presents the same information about fit
number 2. We note that in both fits there is one
eigenvalue which ends up with a very high width.

S I I I I I I I I I

B 2

A,'-=A', --.'(V ')„
BA)

(63)

In the eigenvalue method, "
M, &

is diagonalized,
and only eigenvalues of similar size are used in

Eq. (63) to improve the A parameters. The algor-
ithm steps first along large eigenvalues, and then
along smaller ones. In terms of the structure of
y'(AI) in the A-parameter space, eigenvectors of
U„- with large eigenvalues cor'respond to regions
of X' with large curvature, while eigenvectors with
small eigenvalues correspond to nearly flat re-
gions. Thus, combinations of parameters corre-
sponding to eigenvectors with small eigenvalues
are not well determined by the fit. The eigenvalue
method is capable of optimizing the well-deter-
mined combinations of parameters, and is insen-
sitive to poorly determined combinations. ""

We present two fits to the data in Figs. 2 and 3.
%'e will refer to them in the following as fits num-
bers 1 and 2, respectively. Both have low values

t3

)'.

[3

C3

4-

2( I I I I I I

5,9 4.0
E, m [GeV]

FIG. 2. Fit number 1 to inclusive SPEAR data {Ref.
5). Errors are statistical. {The background function is
also shown. )



RESONANCE ANALYSIS OF e+e ANNIHILATION

I I I I I I I I8 TABLE I. Parameters and results of the fits to the
SPEAR data. The parameters of the fits are presented
with an accuracy which is required to reproduce a good
fit and does not reflect the errors in the parameters.

Fit No. 1 Fit No. 2

R 5-

5.9 4.0
Ec.m. [GeV ]

2 I

1 I

H

4.)

~,', (Gev)

~,', (GeV)

M,', (Gev)

e-, (Gev'~')

~, (Gev'&)

~, (Gev«~)

bp {GeV )

c, (GeV'~')

gp (GeV )

4.4268

0.1024

4.0017

0.5924

0.1258

4.1403

0.0664

4.0174

0.3276

0.1349

0.0321 3.228x10 ~

0.1443 —0.1062

3.0825

0.0488

3.1288

0.0234

0.3780 0.3663

-0.0699 -0.1253

FIG. 3. Fit number 2 to inclusive SPEAR data (Ref.
5). Errors are statistical.

fF

J 4.1
AR dE (MeV)

3.9
258 246

1.19 1.06
This is the result of imposing the constraint on
the D*D* cross section, Eq. (54). Otherwise the
two fits look quite different on the V-I" plots. In
fit number 1 the two resonances are located in
different mass regions. Both resonances perform
a clockwise motion in the Vf -I" plane. Such a be-
havior is expected in a single-resonance problem
-under similar conditions, i.e. , with a strong
channel opening up inside the resonance energy
domain. In Fig. 6 we see that such a clockwise
motion is also true for the behavior of the average
mass vs the average width of fit number 2, but the
individual eigenvalues move differently. This
difference is.due to a strong energy dependence in
the complex angle z which affects the mais and
width differences [see Eq. (A5) in the Appendix]
and spoils the clockwise motion.

Figure 6 looks like a level-crossing effect is
taking place slightly above 4 GeV. This is con-
firmed by investigating the remaining parameters
x and y. It is particularly useful to look at the
combination defined by sin n in Eq. (34). This is
the. probability of state I I) being found in reson-
ance [II). Figure 7 shows the energy dependence
of sin'e and the magnitude of the overlap between
the two resonances for the two fits. We see that
above 4 GeV there occurs a rapid change in the
two resonances of fit number 2 and, when expressed
in terms of the )I ) l2) basis, they switch roles.
Figure 7 complements the Af-1 plots and together
they provide the complete inclusive description of
the resonances. Fit number 1 does not show any

4R& {atE = 4.028 GeV)

ARg-

1.16

0.15

1.43

0.17

500 I I i I I I I I

250-

q) 200—

N
)50-

(00—

50
4.06

E 0—C—8—A

s s I & i I

4.)2 4 )8 4.2
M& [ Gev]

FIG. 4. The energy variation of the eigenvalues I&
and I'& of fit number 1. A, B, ~ ~ ~, I represent the en-
ergies 3.900, 3.925, ~, 4.100 GeV, respectively.
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23.5 ).00
I-H~

G

~ 20.5-
0
ED

A
C~O

0.75-

N

Al4 &9.5-

0.50-

0.25-

) 8.5
3.980

I I

5.98) 3.982
Mp [GeV]

5.985

A-~~ f

000 0.25 0.50 0.75 ).00
tanh (2y)

FIG. 5. The energy variations of the eigenvalues M2
and I'2 of fit number 1. A, B, . , I are as in Fig. 4.

140 I I I I I I I I I

)00-

0)

N

60-

—Q—CM&

20
3.99 4.04

M [GeV]
4.09

FIG. 6. M and I' eigenvalues of fit number 2 which
have level crossing features. A, B, , I are as
in Fig. 4. The curve which shows clockwise energy
behavior is the variation of the average mass and aver-
age width.

surprises in Fig. 7, as expected in view of the
smooth behavior of the M-I plots. The parameter
sin'n is very important in our problem: It
specifies the strength of the production of res-
onance ( II) since we assumed that the photon
couples only to the state i 1). Figure 7 tells us
that slightly above 4 GeV the two resonances of
fit number 2 are produced with the same strength

FIG. 7. Energy variation of the overlap, Eq. (12), and
relative probability, Eq. (34), for both fits numbers 1
and 2. Fit number 2 shows extreme overlap as well as
level crossing features after 4.0 GeV (point E). A, B,

, I are as in Fig. 4.

and overlap very strongly. Hence we expect to
find enormous interference effects. By studying
the individual decay channels we will see that this
is indeed the case.

Figure 8 shows the cross section in the OD*
+D*D channel for fit number 1 and depicts separ-
ately the incoherent sum of the two resonances and
their interference term. Figure S is the analogous
plot for fit number 2 and it shows violent interfer-
ence structure. The values of the resultant cross
section (curve C in Fig. 9) are not very different
from those in Fig. 8. Similar statements, though
not nearly as dramatic an interference display,
hold for the DD channel whose behavior is shown
in Figs. 10 and ll for the two fits. As already
stated above, the strong interference behavior of
fit number 2 should be expected on the basis of
Fig. 7: %hen )yj approaches 1 the individual
terms of the cross sections blow up and only their
sum is small. This is also evident from the analy-
tic expressions of Eq. (32) and Eq. (50). The
D*D* channel, whose main contribution comes at
an energy where the overlap ly I of fit number 2
goes down again, does not show large differences
between the two fits. Figures 12 and 13 display
the contribution to A of the two fits in this channel.
In both cages a strong contribution occurs at 4.03
GeV, as required by the constraint of Eq. (54).

It should be emphasized that the changes in the
structure of the DD and DD*+O*D channels are
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2.4 I I I I i I I I I 0.56 I I I I I I I I I

(.6- 0.42

0.8 0.28

R

0.0 0.) 4

-0.8 0.00

5.9 4.0
Ec~ [G.V]

I

4.0
[Gev]

4.)

80 I I I I ~ I I » 20

60- - ).5

FIG. 8. The contribution to R of the channel DD*
+0*5 for fit number 1. Curve C represents the total
contribution, Curve A represents the incoherent sum
of the squares of the two resonances and curve 8 shows
their interference [see, e.g. , Eq. (50)J.

FIG. 10. The contribution to R for fit number 1 of the
DD channel. Notation is as in Fig. 8.

due only to the variations in the parameters of the
resonances since the coupling to these two decay
channels was kept fixed. One can of course en-
visage a situation where the coupling amplitude
itself varies with energy beyond simple analyticity
requirements at threshold. This is indeed )he
case in the explicit charmonium model of ref. 15.
One may even find nodes in these couplings as a
function of energy. In our analysis we assumed

40-

20;

0 ~c-
B

- I.O

'~-0.5

0.0

I I I I i I I I I6

-40-

-60-
R 0

I I

4.0
E [6 V]

-80 I I I

5,9 4.)

FIG. 9. The contribution to R for fit number 2 of the
channel DM+ D~D. Notation is the salne as in Fig. 8.
The peaked structure in A and B is explained Qy tanh 2p
approaching 1 at this energy, as evident from Fig. 7.
The scale on the left refers to curve, A, 8, C. The
scale on the right refers to the dashed curve which is a
reproduction of curve C in an expanded scale.

I I I I 1 I I I I

4.0
Ec.rn. [GeV]

FIG. 11.The contribution to R for fit number 2 of the
DD channel. Notation is as in Fig. 8.
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).6 I I I I ) I I I 'I 60

(.4-

).0-
50

0.6—

0
4)
& 40

0.4-

0.2-

0.0

—0.2
3.9

I l I

4.0 3.9 4.0
E [GBV]

4.)

FIG. 12. The contributionto R for fit number 1of the
D*D* channel. Notation is as in Fig. 8.

FIG. 14. M~2 values of fit number 1.

that this is not the case, and that the energy range
over which we fit is small enough to justify a con-
stant approximation to the couplings of the re-
sonances to these decay channels. Any other as-
sumption would have to rely on additional infor-
mation derived either from experiment or from a
detailed theoretical model.

Finally we would like to present another aspect
of our fits which connects the system of reson-

ances studied in this section with the one studied
in the preceding section. In Figs. 14 and 15 we
present plots of I» vs energy for fits numbers
1 and 2. It is interesting to note that the values
of these parameters are of the same order of
magnitude as the 30 MBV deduced from the g'-P"
analysis in Sec. III. This adds credibility to the
assumption that both systems are of the same
kind, i.e. , s-d charmonium bound states.

We conclude this section with some critical ob-
Servations regarding the fits that we have pre-

. 5 I I I I I I I I I

).2-
40

0.9-

0.6—

R 0.3-

0.0
ps

0
& 30

-0.3-

-0.6-

—0.9 I I I I I I I

3.9 4.0
Ec.m. [«Vl

4/ 20
3.9 4.0

E [ GBV~
FIG. 13.The contribution to R for fit number 2 of the

D*D* channel. Notation is as in Fig. 8. FIG. 15. M)2 values of fit number 2.
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sented. There is a lot of freedom within the range
of what is considered to be a good fit, i.e. , X' ~
number of degrees of freedom. We do not consider
fit number 1—or any of the many other fits that
we have obtained —to be the final word in the search
for a. solution. More accurate data are needed to
help pinpoint the correct parameters. In the
meantime some ambjguity will prevail and the
choice between the different kinds of fits cannot
yet be made. In our fit we included the SPEAR
data' between 3.9-4.1 GeV but have not used the
two data points from the same experiment below
3.9 GeV. These are quite low and seem at odds
with later SPEAR data. ' If these points are in-
cluded, they drive down the background to 8= 2.4
to 2.5. For comparison, in fit number 1, B=3.08.
The value of 8 has, an important physical signifi-
cance since the area of the function ~.is related
to the I;+,— of the resonance system [see Eq. (31)
for narrow resonances]. An area of 100 MeV cor-
responds to I;, of 0.377 keV. If 8 is reduced by
0.6 then within this region alone the area is in-
creased by 120 MeV and, therefore, the estimate
of I', „-is increased by at least 0.45 keV. The
ambiguity in the value of I',+, may, however, be
much larger than that. Equation (31) holds if there
is no explicit channel structure, i.e. , II is a con-
stant matrix. Otherwise one should use the value
of f to determine I",„=—,

'
w(o, '/f ')M which may

be different from the integral over the cross sec-
tion. Moreover, our fits were driven —because of
the constraint on the P'D* channel —to very high
values of I at E =4.1 GeV; hence the resonance
structure spreads into the higher energies regime.
Both effects lead to a discrepancy between the
I', +, - values determined from f and the areas in
the range 3.9-4.1 GeV (see Table. I). Thus where-
as the latter lead to a contribution to I"...- of the
order of 1 keV in both fits, we find that the proper
values of I'...— (as determined from the parameter
f) are 4.6 and 2.2 keV for fits numbers 1 and 2,
respectively (using M =4 GeV for the resonance
location). We conclude therefore that the estimate
of I'... is subject to quite large uncertainties.

4.1066 0.0645

0.0645 4.1001&

(0.0241 0.0054 )I'=
/

GeV
E0.0054 0.0506 )

(64)

or its eigenvalues

M, = 4.1676 GeV, 7, =0.0421 GeV,

M, =4.0391 GeV, 7, =0.0326 GeV,

~=0.'f622, y =-0.0525, f =33.38.
(65)

The accuracy in the various parameters, although
needed to specify the fit, does not mean that the

6 1 I I I I I I I I i I I I I i t I I t

R 4-

4.03 GeV and a second strong structure at about
4.16 GOV. Although SPEAR data also have an in-
dication of another peak above 4.1 GeV, it lies at
a lower mass and is much less prominent. Since
it is difficult to fit both sets of data together we
decided to present here different fits in separate
sections. The only connection between the two is
the explicit ~sM term in Eq. (55) whose parame-
ters are determined by the analysis of the DESY
data.

There exist two different sets of data from
DES'—one by the DASP" and one by the PLUTO"
collaborations. The DASP data are shown in Fig.
16 together with an inclusive fit in which we used
b,R as defined in Eq. (32) and assumed the back-
ground to be 8+Aft, of Eq. (56). (The background
contribution is explicitly shown in Fig. 16.) The
fit can be specified by the values of the constant
effective Hamiltonian

V. ANALYSIS OF DESY DATA IN THE RANGE 4.0-4.3 GeV

The available 8 data from DESY are not com-
pletely consistent with the 8 data from SPEAR.
The DESY data show lower A values in the neigh-
borhood of 4 GeV; in fact there seems to be a
systematic difference of about one unit in R."
DESY data"'" are not accurate near the energy
of 3.95 GeV and therefore do not corroborate the
structure that we have analyzed in the preceding
section. They do show a prominent resonance at

I I I I I I I I I I I I 1 I I I I I I

5.95 4.05 4.&5 4.25 4.55
~c.m. [«VI

FIG. 16. Fit of Eq. (64) to DASP data (Hef. 17). Er-
rors are statistical.
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M, =4.164 GeV, &, =0.046 GeV,

M, = 4.041 Gev, T; =0.033 GeV,

f =32.6, x=0.757.

(66)

In this fit X'/DF =0.80. The matrix of Eq. (8) is
now an orthogonal real matrix and-cos'x and sin'x
designate the amount of the state I1), which
couples to the photon, in the two orthogonal re-
sonance states. Since in this case there is no

overlap, we can determine from the BW fits the
electronic widths of the two separate resonances:

I,',,—=0.45 keV, I',+, —=0.41 keV. (67)

This fit looks quite similar to the one shown in
Fig. 16, so we do not present a separate figure
for it. The parameters of resonance number 1 in
Eq. (66) and Eq. (67) were used as an input for the
background of Eq. (57).

Qualitatively similar results are obtained by
fitting the PLUTO data. " These data have quite
small error bars which lead to poor values of
X'/DF of the order of 3. We show in Fig. 17 the
data together with a fit of two noninterfering re-
sonances, i.e. , constrained to have y =o. This fit

6 I I I I ( I I I I ( I I I I ( I I I I

parameters are uniquely determined to the last
significant figure. Other good fits can be obtained
in which the matrix elements of M and I' differ by
a few MeV. )t'/DF of this fit is 0.78.

The small value of y in Eq. (65) means that the
overlap of the two resonances, Eq. (12), is very
small. We tried therefore a fit in which y was
constrained to vanish. This results in two inde-
pendent BW resonances which are parametrized by

has the parameters

V, =4.141 GeV, I",=0.082 GeV,

l/I, =4.027 GeV, I; =0.046 GeV,

x=0.681, f =21.2.
(68)

The masses are slightly shifted from the values
quoted in Eq. (66) owing to systematic differences
between the two sets of data. The electronic
widths of the two resonances are

I','„-=0.81 keV, I',,;=0.53 keV. (69)

Af y 4 1623 GeV I ] 0 0796 GeV

V, =4.0383 GeV, I', =0.0386 GeV,

x =0.7217, y = -0.0250, f =28.4.

(7o)

This fit had a value of X'/DF =1.08. Comparing
with Eq. (65) we see that the main qualitative
change is that the width of the higher resonances
is broader in the new fit. This reflects itself in
values for the matrix elements of I' which are
larger than in Eq. (64) whereas the mass matrix
V stays about the same.

These are higher than Eq. (67) because the back-
ground in Fig. 17 lies lower than that of the DASP
fit. This happens because the fit tries to account
correctly for the data points on the tail of the
higher resonance which have relatively small error
bars. We conclude, as in the preceding section,
that the e'e decay width which is given by the fit
is subject to a quite large uncertainty. We note that
there is a large discrepancy between the values of
I'...- obtained here and the I;,,—values obtained
in the preceding section, although both should refer
to the same physical system.

After completion of our work we received the
final version of the DASP collaboration data. "
Fitting these data with our inclusive formula be-
tween 4.0-4.3 GeV we find the values of the para-
meters

R4-
14

~ I

VI. DISCUSSION

I i «s ( s i » (

395 405 4 )5 425 435
Ec.m. [Gev]

FIG. 17. Fit of Eq. (68) to PLUTO data (Ref. 18).
Errors are statistical.

The ideal analysis of any scattering process
would involve the determination of the parameters
describing a fundamental theory from which a cal-
culation of experimental observables can be made.
There would then be a formula for the value of the.
observables as a function of the theoretical para-
meters and the kinematical variables. One could
then determine the best value of the parameters
from a set of experimental observations. In high-

,energy e'e annihilation, the fundamental theory
is thought to be a quark bound-state model, but
the dependence of the observables on a small
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number of fundamental parameters is not avail-
able because of the absence of a favored quark-
interaction potential. One of the goals of.any anal-
ysis is therefore to help pinpoint any systematics
that will control the freedom in choosing the model
of quark dynamics. For example, determining
systematics in the resonance spectroscopy that
would limit the freedom in choosing the power de-
pendence of the effective quark interaction poten-
tial would be a step towards eliminating many
models.

In the absence of a unique set of theoretical
parameters and a well-defined, calculable con-
nection to the physical observables, a two-step
process must be followed. The first step is to
reduce the experimental data to a smaller set of
"physically reasonable" resonance parameters.
The second step is to compare these parameters
to the patterns expected in various models. The
first step is necessary in order to abstract from
the data a finite number of pieces of information
to compare to the theoretical models.

This approach is quite standard. In meson-bar-
yon scattering, resonance parameters are ab-
stracted, and mass patterns are subsequently
identified with SU, or SU, representations. In

annihilation, resonance parameters are also
abstracted (both at low energies and above 3 GeV).
In our work, we have extended these analyses to
the complicated overlapping resonance structures
near 4 GeV.

We presented a method for fitting inclusive and
exclusive cross sections in a region of overlapping
resonances and variable channel structure. This
method is useful when the interference between the
resonances plays a dominant role in the observed
cross sections. If the resonances are well sepa-
rated, or if their overlap vanishes for any other
reason, the resonance system becomes an inco-
herent sum as discussed in Sec. V. The richness
and the usefulness of the formalism becomes evi-
dent when the overlap is large, . as seen in Sec.
IV. Fit number 2 to the SPEAR data shows
violent interference behavior in the various ex-
clusive channels. We have seen how tha, t is
reflected in the inclusive properties of the tmo

resonances, namely in the M-I' and ~x~
- sin'o.

plots. If there were no energy-dependent struc-
ture in the decay channels then those plots would
reduce to points, i.e., constant choices for the
parameters of the problem. Given high-acCuracy
data one could envisage an energy-dependent
search for a smooth best fit which would lead to
such plots independent of any explicit assump-
tions about the structure of decay channels. That
would be analogous to the search for the phase-
shift solution which best fits some scattering data.

The analogy goes even further: M and l" obey dis-
persion relations, and clockwise rotation on the
3f -I." plots has the meaning of a strong local con-
tribution to the discontinuity (I').

Let us turn to the physical implications of our
results. In Sec. III we discussed the g'(3.68)-

. g"(3.77) system and saw that it can be understood
as a combination of cc s-wave and d-wave states.
The s wave lies at 3.70 GeV and its photonic
coupling leads to I",+,- = 2.5 keV. This is the
first excitation above the charmonium 1 ground
state ' g(3.1) which has I',+,- =4.8y0.6 keV. One
higher excitation is known at 4.414 GeV with I',+,-
=0.44+ 0.14 keV. Our analysis in Secs. IV and V
covers the region between this higher excitation
and the lower established ( states.

A charmonium model". ' ' whose potential is
Coulomb+linear predicts that only one cc s-wave
state and two cc d-wave states lie between the g'
and 4.4 GeV. A recent charmonium model with a
logarithmic potential predicts two cc s-mave
states at 4.01 and 4.22 GeV with I',+,- values of
1 and 0.7 keV, respectively, in addition to several
d-wave states, in the same region.

Our analyses have indicated that there are two
resonances near 4 GeV, in addition to the ("(3.77)
and 4.2-GeV resonances. Thus there are at least
four resonances in this energy region, more than
can be accommodated by the Coulomb+ linear po-
tential model.

Our analyses of the SPEAR and DESY data in
Secs. IV and V are not capable of labeling states
as s-wave or d-wave quark bound states, since
the quark angular momentum is a parameter in
the underlying quark model and is not a parameter
of the resonance description. Until cc dynamical
calculations are performed which predict the
complicated experimental distributions in terms
of fundamental parameters, these fundamental
parameters mill not be determined by analyzing
these experimental results. However, our analy-
sis is able to study systematics in the resonance
parameters that might be mirrored in systematics
of the underlying dynamical model.

Using our analysis of the DESY data in Sec. V
one can assign the tmo peaks to either a cc s-d
system or two cc s-wave states. We have seen
that an M» matrix element of about 65 MeV is
needed to understand these two resonance states
[see Eq. (64)]. This is much larger than the
analogous tensor-force term of 25-30 MeV found
in the y'-g" s-d system (as discussed in Sec.
III). Within charmonium models" it seems diffi-
cult to accommodate a tensor force which gets
larger for higher excited states. This suggests
that the interpretation of the two peaks as an s-d
system similar to the g'-(' system is disfavored
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relative to their identification as two cg s-wave
states.

The SPEAR data which we analyzed in Sec. IV
are an example of a possible &z s-d system. The
large observed coupling to the D*D* channel does
not conflict with such an interpretation and does
not necessitate the introduction of the D*5* mole-
cule concept. " If, in spite of the argument pre-
sented above, the two DESY peaks are an s-g
system, then a.nother type" of bound state may be
needed to explain the structure of the SPEAR data.
Qualitatively the results of Secs. IV and V are
consistent with the interpretation of the structure
around 4 GeV as a gg s-d system, and the reso-
nance near 4.2 GeV as an additional s-wave ex-
citation.

We can thus learn three facts about gp spectro-
scopy from our analysis. First, the number of
resonant states is larger than that predicted by
the popular Coulomb+linear potential model.
Second, the systematics of the mass mixing para-
meter fits into a pattern of alternating s-wave and
d-wave states between 3.7 and 4.2 GeV. Finally,
the concept of molecular charmonium introduced"
to understand the strong coupling to D*D* just
above threshold is an unnecessary concept for
understanding that effect, since other features

(inparticular the value of M» in a two-resonance
description of that effect) are not too different
from the $'-$" system. Hence an s-d system in-
terpretation is still viable for understanding the
observed energy dependence near 4 GeV.

Present sets of data are not yet accurate enough

(or consistent with one another) to warrant drawing
definitive spectroscopic conclusions. If future
data continue to show rich structure we expect
the new method of resonance analysis presented
here to establish the spectrum of bound states and

to help decipher their identities.
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APPENDIX

The effective Hamiltonian (1) for the two-resonance system depends on six real parameters. These
parameters can be identified either with the matrix elements of the symmetric real matrices M and I' in

the T-invariant basis or with the complex eigenvalues &, and &, of the physical resonances and the complex
angle z =x+iy of Eq. (9). In this appendix we present the relations between these two sets of parameters.

One can write H in terms of e„e„and z by using Eqs. (7)-(10). The result is

2e& cos g + E~ sin g (ci —E~) sing cosz

E j —E2 slM' coM cg sin z + c2 cos z

Separating the real and imaginary parts of & we get

M~~ =
2 (M, +M, ) + —,

' (M, -M, ) cos2x cosh2y ——,
' (I', —I', ) sin2x sinh2y,

M» =
~ (M~+M2) ——,

'
(M~ -M, ) cos2xcosh2y+ 4 (I', —I', ) sin2x sinh2y,

M» =M» ———,
' (M, -M, ) sin2x cosh2y+ —,

' (I', —1',) cos2x sinh2y,

I'» =
~ (I ~+ I,) + 2 (I'z —I', ) cos2x cosh2y+ (M~ -M, ) sin2x sinh2y,

I"„=—,
' (I', + I', ) ——'(I', —I', ) cos2x cosh2y —(M, -M, ) sin2x sinh2y,

I „=I'„=—'(I",—I', ) sin2x cosh2y —(M, —M, ) cos2x sinh2y .

The six equations of (A2) can be inverted and used
to represent the eigenvalues and the angle in terms
of the matrix elements. To simplify the notation
let us define

A=M„M„, B=2-M„, C=-,'(l„-l„), B=i„,
K = (A'+ C' —B' D')'+ 4(AB+ CD)'. — (AS)

It follows then that
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~1 ~2 ™11~22 &

r, +r, =r„+r„,
2 (M, -M, }'=K'+A'+ B' —C' D'-,

~ (1|—F2)' =K ' -A' —B: + C '+D',

2(BC AD)-
sinh4y =

(A4)

from which it follows that the transformation

2x~ 2x+p

induces the interchanges

Mq —M2, I'j 1 3.

(A6)

(A7)

2(AB+ CD)sin4x =
+2 + C2 gg2 D2

cos4x =
K 2

These equations do not determine the signs of 34~

-I, and p, —I, and the angle 2x is also not com-
pletely resolved. These various ambiguities are
connected with one another. From Eqs. (A2) we
deduce that

2 sin2x cosh2y~j2 cos2x sinh2yI"„
sin'2x + sinh'2y

(A5)
4 cos2x sinh2yM»+ 2 sin2x cosh2yl" ~

sin'2x+ sinh'2y

The various parameters have to obey a con-
straint which follows from the requirement that
l be a positive-definite matrix. Using the equa-
tions (A2) one can obtain Eq. (16) of the text. The
constraint reduces therefore to Eq. (15) which re-
quires that

(r,r",)'~'
y [(M M )2+ 1 (F F )2]1/2

It should be noted that only if this constraint is
obeyed will Eq. (32} be guaranteed to be positive-
definite.
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