Signs of baryon-resonance photocouplings

John Babcock*

Argonne National Laboratory, Argonne, Illinois 60439

Jonathan L. Rosner

School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (Received 21 June 1978)

New baryon-resonance photocouplings from an analysis of Barbour, Crawford, and Parsons are analyzed from the standpoint of single-quark-transition selection rules. A previous conclusion is strengthened: The pionic decays of <u>56</u>, L = 2 resonances appear from this analysis to be dominated by $\Delta L_z = \pm 1$ transitions, in contrast to the conclusion that would be drawn from analysis of $\pi N \rightarrow \pi \Delta$. Both P13(1810) and F35(1890) photocouplings are important in drawing this conclusion.

It has been shown that the signs of baryon-resonance photocouplings are sources of valuable information about quark dynamics, both within the context of explicit models¹⁻⁵ and within a more general algebraic context.⁶⁻¹⁰ The present note is intended to update an analysis presented earlier¹⁰ based on single-quark-transition selection rules, in the light of new photocouplings presented by Barbour, Crawford, and Parsons.¹¹

The reduced probable errors for F35(1890)photocouplings quoted in Ref. 11 allow a strengthening of the result of Ref. 10: a particular relative sign of the P-wave and F-wave pionic decays of the 56, $L = 2 SU(6) \times O(3)$ baryon multiplet is favored. This sign now rests on the photocouplings of both the P13(1810) and F35(1890) resonances, and corresponds to a dominance of $\Delta L_z = \pm 1$ transitions in the pionic decays of 56, L=2 resonances. This is in accord with the predictions of a number of explicit quark models.²⁻⁵ By contrast, the less restrictive single-quarktransition approach^{6,8,12} does not predict the relative sign of P-wave and F-wave pionic decays of the 56, L=2 multiplet. From a study of the **F**15(1680) resonant contribution in $\pi N \rightarrow \pi \Delta$ (for the most recent analysis see Ref. 13), it was concluded^{8,12,13} that pionic decays of <u>56</u>, L=2 resonances were dominated by $\Delta L_z = 0$ transitions. Thus, a potential contradiction remains between the photocoupling and $\pi N \rightarrow \pi \Delta$ information, within the context of any single-quark-transition model, ^{1-10,12} unless significant <u>70</u>, L = 2 contributions also are present.

Details and notation are contained in Refs. 9 and 10. The photocouplings for <u>70</u>, L=1 and <u>56</u>, L=2resonances are presented in Tables I and II, along with values fitted to the single-quark-transition picture.

The conclusions are qualitatively similar to those in Ref. 10, which were based on an earlier set of photocouplings.¹⁴ Some of the major differences are quoted in Table III. In Tables I-IV the signs ξ , ξ' are positive or negative depending on whether $\Delta L_Z = 0$ transitions or $\Delta L_Z = \pm 1$ transitions are dominant, respectively. The notable point, and the reason for this note, is the improved distinction between $\xi' = -$ and $\xi' = +$ possible for 56, L = 2 photocouplings on the basis of the new data. This can be traced to the reduced errors in Ref. 11 for the F35 photocouplings, relative to those quoted in Ref. 14.

In terms of multipole amplitudes, the new F35 couplings specify the reduced matrix element E2 (see Refs. 9 and 10) much more closely than before:

F35: $E2 \equiv (1.16)^{-1} (A_{1/2}^{\flat} + \sqrt{2} A_{3/2}^{\flat}) / (2\sqrt{21})$ = $(-4.6 \pm 9.8) \times 10^{-3} \text{ GeV}^{-1/2} (\text{Ref. 14; old})$ = $(-4.2 \pm 3.0) \times 10^{-3} \text{ GeV}^{-1/2} (\text{Ref. 11; new}).$ (1)

Figure 1 of Ref. 10 shows that a small negative value of E2 is compatible only with $\xi' = -$.

The qualitative features of the favored solutions $(\xi = \xi' = -)$ are very similar to those noted in Ref. 10, as shown in Table IV. These include small values of $\overline{E1}/\overline{M2}$ and $\overline{E2}/\overline{M3}$, implying that transitions involving quark spin flip do not give rise to large electric multipoles, and a small $\Delta L_g = \pm 2$ reduced matrix element for 56, L = 2 photoproduction.¹⁵

To conclude, we find that the most recent set of baryon-resonance photocouplings supports signs for *pionic* resonance couplings¹¹ of <u>56</u>, L=2 baryons which would follow from the dominance of $\Delta L_z = \pm 1$ transitions in those couplings. This

4027

© 1978 The American Physical Society

Resonance	Amplitude	Expt. (Ref. 11)	ξ=+	$\frac{\text{Predict}}{\chi^2}$	ed value $\xi = -$	$ \begin{aligned} t &= - \chi^2 \\ \xi &= - \chi^2 \end{aligned} $	
		·				~	
D13	$A_{1/2}^{p}$	-16 ± 8	-18	0.0	-19		
	$A_{3/2}^{p}$	157 ± 7	162	0.4	160	0.2	
	$A_{1/2}^{n}$	-55 ± 14	-23	5.4	-39	1.3	
	$A_{3/2}^{n}$	-141 ± 15	-96	9.1	-124	1.3	
<i>S</i> 11	$A_{1/2}^{p}$	82 ± 19	64	0.9	74	0.2	
	$A_{1/2}^{n}$	-112 ± 34	-17	7.8	-76	1.1	
C O 1	٨Þ	94 + 90	0.5	10.0	100		
<i>S</i> 31	$A_{1/2}^{p}$	34 ± 28	-85	18.2	103	6.1	
DDD	40	100 - 07	50	4 -	107		
D33	$A_{1/2}^{p}$	130 ± 37 ·	50	4.7	107		
	$A_{3/2}^{p}$	98 ± 36	10	6.0	109	0.1	
					10		
S11'	$A_{1/2}^{p}$	48 ± 17	43	0.1		0.0	
	$A_{1/2}^n$	-45 ± 24	40	12.5	54	0.1	
D13'	$A_{1/2}^{p}$	-33 ± 21	-4	1.9	-4	1.9	
	$A_{3/2}^{p}$	-14 ± 25	35	3.8		3.7	
	$A_{1/2}^{n}$	50 ± 42	67	0.2		0.6	
×	$A_{3/2}^{n}$	35 ± 30	54	0.4	-34		
D15	$A_{1/2}^{p}$	22 ± 10	0	4.8	0	4.8	
	$A_{3/2}^{p}$	15 ± 6	0	6.3	0	6.3	
	$A_{1/2}^{n}$	-66 ± 20	-41	1.5	-41	1.5	
	$A_{3/2}^{n}$	-73 ± 14	-58	1.1	-58	1.1	
		Аларанан (тарала) Аларанан (тарала)					
2/DF			05 (0/16	96.9	/16	
χ^2/DF			89.0	110	36.2/	10	

TABLE I. <u>70</u>, L=1 baryon resonance photocouplings in units of 10⁻³ GeV^{-1/2}.

Resonance	Amplitude	Expt. (Ref. 11)	ξ ' =+	$\frac{\text{Predict}}{\chi^2}$	ted value $\xi' = -$	x²
F 15	$A_{1/2}^{p}$	-5 ± 15	-20	1.0		0.0
	$A_{3/2}^{p}$	138 ± 21	118	0.9	138	0.0
	$A_{1/2}^n$	37 ± 10	40	0.1	49	1.4
	$A_{3/2}^{n}$	-38 ± 18	-41	0.0	-28	0.3
P13	$A_{1/2}^{p}$	111 ± 47	-60	13.2	81	0.4
	$A_{3/2}^{p}$	-63 ± 32	-23	1.6	-85	0.5
	$A_{1/2}^{n}$	7 ± 20	5	0.0	5	0.0
	$A_{3/2}^{n}$	51 ± 51	35	0.1	23	0.3
F37	$A_{1/2}^{p}$	-58 ± 13	-55	0.1	-54	0.1
	$A_{3/2}^{p}$	-75 ± 20	-71	0.1	-70	0.1
F35	$A_{1/2}^{p}$	33 ± 18	41	0.2	22	0.4
	$A_{3/2}^{p}$	-55 ± 19	-2	7.8	-29	1.9
P31	$A_{1/2}^{p}$	-35 ± 21	-35	0.0	-24	0.3
χ^2/DF			25	.1/9	5.5	/9

TABLE II. 56, L=2 baryon resonance photocouplings in units of 10^{-3} GeV^{-1/2}.

is in accord with specific predictions of a number of explicit quark models²⁻⁵ and at variance with a conclusion based on $\pi N \rightarrow \pi \Delta$ data in the region of F15(1680).^{13,16} The resolution of this contradition is uncertain, but in view of the widespread success in other areas of the single-quark-transition picture, ^{6-10,12} we suspect that a re-examination of the $\gamma N \rightarrow \pi N$ and/or $\pi N \rightarrow \pi \Delta$ analyses^{11,13} may be called for. An alternative possibility^{11,10} is that a low-lying 70, L = 2 multiplet should be taken into account in the $\pi N \rightarrow \pi \Delta$ and photoproduction analyses. The existence below 2 GeV of this multiplet will be difficult to confirm without even more precise data on inelastic channels ($\pi N \rightarrow \kappa \Lambda$, $K \Sigma$, ηN , etc.) than are available at pre-

TABLE III. Changes in χ^2 values from Ref. 14 to Ref. 11.

$\underline{70}, L = 1$	$\chi^2(\xi=+)/DF$	$\chi^2(\xi = -)/DF$
Ref. 14 (old) ^a Ref. 11 (new)	104/16 85/16	48/16 36/16
56, L=2	$\chi^2(\xi'=+)/DF$	$\chi^2(\xi'=-)/DF$
Ref. 14 (old) ^a Ref. 11 (new)	14.4/9 25.1/9	3.2/9 5.5/9

^aBabcock-Rosner (BR) analysis of Ref. 10 quoted, for comparison with new analysis.

sent, since many of the πN couplings of its states are expected to be rather small.^{17, 18}

TABLE IV. Reduced matrix elements in units of 10^{-3} GeV^{-1/2}. Normalization as in Ref. 9.

and an available of the state o						
Multipole representation						
70, L = 1	ξ=+	$\xi = -$				
$\overline{E}1'/\overline{M}2$	0.69	1.59				
$\overline{E}1/\overline{M}2$	-1.39	-0.08				
$\overline{M}2$	-28.2	-28.2				
	· • / .	¥1				
<u>56</u> , $L=2$	ξ'=+	ξ'=-				
	1.05	1 00				
$\overline{E}2'/\overline{M}3$	1.05	1.80				
$\overline{M}1/\overline{M}3$	0.55	-0.37				
$\overline{E}_2 / \overline{M}_3$	-0.29	0.14				
$\overline{M}3$	-12.6	-12.6				
W, L_z representation						
$\frac{70}{L=1}$	ξ=+	ξ = _				
$\langle D_{+}(W=0, L_{z}=1) \rangle$	-19.3	-44.7				
$\langle D_{\star}(W=1, L_{z}=0) \rangle$	7.8	-18.3				
$\langle \parallel D_{+}(W=1,L_{z}=1) \parallel \rangle$	-47.7	-21.5				
<u>56</u> , $L=2$	ξ'=+	ξ'=-				
$\langle D_{+}(W=0, L_{z}=1) \rangle$	-13.3	-22.6				
$\langle \ D_{+}(W=0, L_{z}=1) \ \rangle$ $\langle \ D_{+}(W=1, L_{z}=0) \ \rangle$	-7.6	-7.7				
	-6.9	-11.0				
$\langle D_{+}(W=1, L_{g}=1) \rangle$		-				
$\langle D_+(W=1, L_z=2) \rangle$	-10.7	-1.3				

One of us (J. L. R.) thanks Tony Hey for a helpful discussion. Part of this work was performed while J. L. R. was at the Aspen Center for Physics. This work was supported in part by the U.S. Department of Energy under Contract No. E(11-1)-1764.

<u>18</u>

- *Present address: Department of Physics, Carnegie-Mellon University, Pittsburgh, PA 15213.
- [†]Operated under the auspices of the U. S. Department of Energy.
- ¹R. G. Moorhouse, Phys. Rev. Lett. 16, 771 (1966).
- ²R. P. Feynman, M. Kislinger, and F. Ravndal, Phys. Rev. D 3, 2706 (1971).
- ³A. Le Yaouanc, L. Olivier, O. Pene, and J. C. Raynal, Phys. Rev. D 8, 2223 (1973); 11, 1272 (1975).
- ⁴M. Bohm, H. Joos, and M. Krammer, Nucl. Phys. B69, 349 (1974).
- ⁵M. Gupta, S. K. Sood, and A. N. Mitra, Phys. Rev. D 16, 216 (1977).
- ⁶H. J. Melosh IV, Phys. Rev. D 9, 1095 (1974).
- ⁷A. Love and D. V. Nanopoulos, Phys. Lett. 45B, 507 (1973); F. Gilman and I. Karliner, *ibid.* <u>46B</u>, 426 (1973); A. J. G. Hey and J. Weyers, ibid. 48B, 69 (1974); F. Gilman and I. Karliner, Phys. Rev. D 10, 2194 (1974).
- ⁸A. J. G. Hey, P. J. Litchfield, and R. J. Cashmore, Nucl. Phys. <u>B95</u>, 516 (1975); R. J. Cashmore, A. J. G. Hey, and P. J. Litchfield, ibid. B98, 237 (1975); P. J. Litchfield, R. J. Cashmore, and A. J. G. Hey, contribution to Oxford Baryon Resonance Conference, edited by R. T. Ross and D. H. Saxon (Rutherford Laboratory, 1976).
- ⁹J. Babcock and J. Rosner, Ann. Phys. (N.Y.) 96, 191 (1976).
- ¹⁰J. Babcock, J. Rosner, R. J. Cashmore, and A. J. G. Hey, Nucl. Phys. B126, 87 (1977).

- ¹¹I. M. Barbour, R. L. Crawford, and N. H. Parsons, Nucl. Phys. B141, 253 (1978).
- ¹²F. Gilman and M. Kugler, Phys. Rev. Lett. 30, 518 (1973); F. Gilman, M. Kugler, and S. Meshkov, Phys. Lett. 45B, 481 (1973), Phys. Rev. D 9, 715 (1974).
- ¹³R. S. Longacre, T. Lasinski, A. H. Rosenfeld, G. Smadja, R. J. Cashmore, and D. W. G. S. Leith, Phys. Rev. D 17, 1795 (1978). The most recent analysis of resonant signs by this group within the single-quark-transition context is given by R. J. Cashmore, D. W. G. S. Leith, R. S. Longacre, and A. H. Rosenfeld, Nucl. Phys. <u>B92</u>, 37 (1975).
- ¹⁴I. M. Barbour and R. L. Crawford, private communication, 1976, as quoted in Ref. 10.
- ¹⁵This matrix element vanishes for free quarks. See Wu-Ki Tung, Nucl. Phys. B121, 121 (1977).
- ¹⁶The $\Delta L_z = 0$ transitions also appear dominant for <u>56</u>, L=2 contributions to $K^- p \rightarrow \pi^{\pm} \Sigma^{\mp}$ (1385): see W. Cameron et al., Rutherford Laboratory Report No. RL-77-119/A, 1978 (unpublished). We thank R. Longacre for a discussion of this point and of phases in $\pi N \rightarrow \pi \Delta$.
- ¹⁷D. Faiman, J. Rosner, and J. Weyers, Nucl. Phys. B57, 45 (1973).
- ¹⁸For a recent discussion of the possibility of a 70, L=2 multiplet, see R. Cashmore, Rapporteur's talk at XIX International Conference on High Energy Physics, Tokyo, 1978 (unpublished).