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Deep-inelastic scattering beyond the leading order in asymptotically free gauge theories
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We calculate the full order-g corrections to the coefficient functions which determine the Q
' dependence

of the moments of deep-inelastic structure functions. The calculation is performed in the minimal-subtraction
scheme of 't Hooft. The results are combined with the recent two-loop calculations of anomalous dimensions
by Floratos, Ross, and Sachrajda to give the full g corrections to the leading order of asymptotic freedom.
We present results for C„(l,g ') relevant for electroproduction and neutrino reactions for both nonsinglet and
singlet combinations of the structure functions. Phenomenological consequences of the full g corrections to
the nonsinglet structure function are discussed. The corrections to the Gross-Llewellyp Smith and Bjorken
sum rules. are estimated to be of the order of 15%.

I. INTRODUCTION

In the last two years there has been considerable
interest' in the comparison of asymptotically free
gauge theories (ASF)' with the deep-inelastic data.
Most analyses so far have concentrated on the
leading asymptotic behavior of the moments of the
structure functions, in which only the [ln(q'/A')]~~
terms are retained. The conclusion has been
reached' that this leading behavior is consistent
with the scaling violations observed in eP, pP, vN,
and PN deep-inelastic scattering' except for a
large ratio o~/vr seen at SLAC. ~ However, at Q'
=few Gev', the leading asymptotic behavior cannot
be the whole effect, and it is of interest to ask
whether mass corrections and higher-order cor-
rections in the effective coupling constant g'(q )
modify these results. Mass corrections when treated
in the manner of Nachtmann-Georgi-Politzer' "
improve the agreement of the theory with the data
for v 8'~, v W," " and give a small but nonvanishing
(Tl/gr ratio.

As concerns higher-order corrections ing',
only the calculation of o~/vr-0 (g') is simple and
the result is well known. " ' These corrections
together with the mass corrections are unable' ' '4

to explain the large value of o~/gr measured at
SLAC at large x.

The analysis of the g' corrections as applied to
vW~2, vW,", and vW,"' is much more involv-ed"" To see this, consider the moments of a
nonsinglet structure function (v W;~ -v W;", v W,"~

—v~2 ~, etc.), which in ASF are given' as follows:
1

~„(q') -=Jt dxx" 'E~, (x, q')

E(Q')
y (~)-

=&„C„(l,g'}exp — dt ", , (1.1)

Here, g'(q'}, y„(g }, and p(g') are the effective

coupling constant, anomalous dimension of the
spin-n operator in the Wilson expansion of the
product of two currents and the standard P func-
tion, respectively. Each of these quantities and
C„(l,g') can be calculated in perturbation theory.
The constants'„are to be found from the data
at some arbitrary value of q'=q, '.

By expanding C„(l,g ), y„(g'), and P (g'} in pow-
ers of g', calculating g' in the two-loop approxi-
mation for P (g'), and inserting everything into
(1.1), one finds'"

f(&) f(2) q2
n( } n

+
ln (q2/A2)+ I (q2/A2) A2

ln(q2/A2) ~n
'

ln(qo'/A')

with f„'", f„'", and d„depending on the parameters
in the expansion of C„, y„, and P. We shall give
explicit formulas for f„'", f„'", and d„ in Sec. II,
Here we only recall' " that in order to find f„'" and

f„'2' the knowledge of y„(g') and P(g') tog' order
and of C„(l,g') to g' order is required. The g'
corrections to C„(l,g') and the g' corrections to
y„(g') deserve particular attention. As pointed out
in Ref. &5, these two corrections are renormal-
ization-prescription dependent and only when both'
are calculated jn the same renormalization scheme
can a physically meaningful answer be obtained.
So far only in Ref. '7 have both contributions in
question been included in a phenomenological
analysis. To this end the results for C„(l,g') of
Ref. 6 together with those for y„(g') of Ref. 16
have been used. Unfortunately, , it is now clear'
that the renormalizatiori scheme used in Ref. 6 is
not the same as that used in the two-loop calcula-
tion of y„(g'}." Therefore the results of Ref. 6
and 15 should not be used together.

In order to calculate C„(1,g'), both the g' cor-
rections to the virtual Compton amplitude and the
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g' corrections to the matrix elements of local op-
erators are needed. " In a general renormalization
scheme both of these quantities are sensitive to in-
frared structure of the theory and are gauge de-
pendent. We show, however, that in the renormal-
ization scheme of Ref. 15 the gauge dependences
of the virtual Compton amplitude a,nd of the matrix
elements of local operators are the same and can-
cel when C„(1,g~} is calculated. Consequently, in
the renormalization scheme in question, C„(l,g')
is gauge independent. Of course, C„(1,g') remains
renormalization-prescription dependent. This re-
normalization-scheme dependence of C„(l,g'}
is then canceled by that of two-loop contributions
to y„(g'). Since y„(g2) in the minimal-subtraction
scheme" used in Ref. 15 is gauge independerit' '
and P(g) to two loops is gauge and renormalization-
pr'eseription independent, """when all corrections
are combined in (1.2) the physical result is ob-
tained.

In the present paper we shall calculate C„(1,g')
to g' order in the renormalization scheme which
has been used in Ref. 15 to calculate y„(g') to g'
order. This we do not only for the nonsinglet
electromagnetic structure functions but also for
singlet structure functions and neutrino process-

es.
Our paper is organized as follows. In Sec. II

we formulate the problem in. greater detail and
state a general procedure for the calculation of
C„(l,g ). We subsequently focus on the renormal-
ization scheme used by Floratos, Ross, and Sach-
rajda. " In Sec. III, we calculate those quantities
necessary to determine the coefficient function
C„(1,g') for nonsinglet operators, and the signifi-
cance of the scale parameter A is discussed.

In Sec. 1V we calculate C„(1,g') for nonsinglet
contributions to neutrino deep-inelastic scatter-
ing and discuss g' corrections to the various neu-
trino sum rules and parton-model relations.

We compare- our results to the recently mea-
sured' moments of the nonsinglet structure func-
tion xI', in Sec. V. %'e find that the order-g cor-
rections do not change the conclusions of previous
analyses'" based on the leading order.

In Sec. VI we extend our calculations of C„(1,g')
to singlet structure functions. %'e use again the
renormalization scheme of the authors of Ref. 15.
Section VII contains a brief summary of our paper.
The contributions to the virtual Compton amplitude
and to the matrix elements from the individual
Feynman diagrams are collected in an Appendix.

H. BASIC FORMALISM

A. Preliminaries

In what follows we shall discuss the spin-averaged amplitude 7.'„; for the forward scattering of a current
O', . In our case J'„will stand either for the electromagnetic current (ep scattering) or a weak current (v,
i7 scattering}. The amplitude T'„'„can be decomposed into invariant amplitudes as follows:

q (q* v)=i fg'x (q(q(e) ()q (O))(px)„„

(2.1)

with v=p q. Here, J'„=(J'„)~ and
~ p) is, for instance, a proton state. The tensors e„„and d„„are defined

as follows:

q„q„
&uv =8'uv

Pu, Pv q2+ Pv, qv+Pvqf
Qv pS p Epv'

Using the operator-product expansion for currents, ' we can write Eq. (2.1) as
ta 2 2

q'„'„(q*, v)= g —e„„+('x"„'—„g' +d„„+C,'„- —,, ge)

c,'

(2.2)

(2.3}

(2 4)

where Q'=-q' and P' is the target four-momentum
squared. Furthermore, x is the Bjorken variable
(Q /2v), g~ is the renormalized coupling constant, p~
is the subtraction scale at which the theory is re-
norrnalimed, andA& are constants specified in Eq.

(2.8). The sum on the right-hand side of Eq. (2.4)
runs over spin-n, twist-2 operators such as"

p-l
0() '"'+=

(
((|)X()y"&5)"'" S+g+permutations), (2.5)
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n- j.
OQa2"'a= (7()y"2~~2 ...Q"ag+permutatienS), (2.6)

peal

2 Q2C„,~ g2 ~,—,g CNs

(2.14)

tl

O
a"2na'= (F "2Z"2 "ID"2-&F "a+permutations).G 2+l

Faa(x q2) Waa(x q2)

Faa(x q2) —
)d Wad(x q2)

F (x, Q') =- vW (x, Q')

(2.10)

as follows: '

r dxx" 'F (x, Q')= QA„' C,"„' —2, g'
0 g

2

1 Q2

J
dxx" '

( Q'F)=2x+d'C,'"' —„d*), (2.(2)
0

02"2"'"2 are the fermion nonsinglet (under physical
symmetries) operators whereas 02a2" "2 'and
O~~"'~ are singlet fermion and gluon operators,
respectively. C&" are the corresponding coefficient
functions of the Wilson expansion. The constants
A'„are related to the spin-averaged proton matrix
elements of 0;"~"'+ as follows:

(P~O,a2 "a~P")'A„'Pa "Pa + trace terms. (2.8)

In our field-theoretical calculations we shall deal
with the matrix elements of the operators in ques-
tion between quark and gluon states rather than
between proton states and therefore it is conven-
ient to generalize (2.8) to

(p;j ~O&& "a~p";j') =A'„&p„p++t"race terms

(2.9)

with i,j =p, (I), G.
The coefficients C,"„', C~"„', and C,"„'as defined

in Eq. (2.4) are related to the moments of the stan-
dard structure functions

with C„"2 (Q'/iL2, g2) being common for all nonsing-
let operators. In what follows we shall directly
work with C„"'„(Q'/p, 2,g2). In addition, we shall
choose the overall normalization of C„"„in such a
way that in the g' order

C(o)Ns jr, n (2.15)

A&0)c
nj (2.18)

As in the case of coefficient functions, the relative
normalization of the Born term and the g' correc-
tions to the matrix element of local operators is
fixed by the minimal-subtraction 'scheme.

We shall now present in simple terms the gen-
eral structure of our calculations. To simplify
matters we shall neglect Lorentz indices whenever
possible and only write formulas for structure
functions which do not vanish in the leading order
(e.g. , vW2). For completeness, however, we
shall comment from time to time on how the for-
mulas change when applied to the longitudinal
structure function which vanishes in the leading
order. We shall keep all Lorentz indices in Sec.
OI.

The relative normalization of the Born term and
the g correction is then fixed by the minimal-sub-
traction scheme used.

Correspondingly, for the coefficient function of
the singlet fermion operator we shall write

—g' r=g2 3 2 j6Q' — Q'
r, n 7'2' ~2 p

where the overall normalization of C„~„ is chosen
in such a wa, y that in the g order

(0)4= 1 (2.17)

Similarly, we shall choose [see (2.5)-(2.7)] the
overall normalization for the matrix elements of
the local operators so that ing' order

~

~

1 Q2dxx" 'F, (x, Q')=2 Qd„' C,"„' —,2 ).
0

(2.13)

In spite of the fact that there is a set of nonsing-
let operators corresponding to various X2, the Q'
dependence of their coefficient functions in the
Wilson expansion is in common since they neither
mix under renormalizat ion with each other nor
with the singlet operators. Therefore it will be
convenient to factor out the dependence on the
SU(n) nature of the operator as well as the cur-
rent involved and write

B. WBson coefficient function to order g2

xd"s(Q )=r dxx" 'F (x Q')
0

=c» q
n 2~g n (2.19)

The Q' dependence of C„"'(Q2/pa, g2) is governed by
the renormalization-group equation'

For the nonsinglet combinations of the structure
functions (e.g. F;2 F'2", F22 F22, etc-), Eqs. (2-.11.)-
(2.13) simplify to the following general expression:
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p—+P(g) —-y„(g) C„—2, g =0,NS Q 2

Bp, Bg p,
(2.20)

which has the following solution:
2 - F&osi n(&) q

CNs —g2 =CNs(1 g2)exp — d7 y
n ~2& n & 2 P(+)

where

yi Piro
tl 2P 2P 2

n 2P 2 Asi
0

(2.80)

(2.31)

dg
dt =gP(g), g(i=0)-g (2.22)

where t=lnQ2/p, 2. y„(g) is the anomalous dimen-
sion of the operator ON~'""~.

In order to find explicit expressions for f„'" and
f„'2' in Eq. (1.2) we follow Ref. 7 and expand first
y„(g), P(g), and C„" (1,g ) in powers of g:

—2 ~2 2
n — n

g'
f k"

(g} y0 16 2+yl 16 2 + (2.23)

P(g) P01 6 2 Pl (] 6 2)2

—2

CNS(1 g2) I+IINS g +.
n ~ n 1~2

(2.24)

(2.26)

For the longitudinal structure function the first
term on the right-hand side of Eg. (2.26) is zero.

We next expandg(Q'), the solution of Eg. (2.22)
with P(g) given by (2.24), in powers of go'(Q'), the
effective coupling constant calculated in the one-
loop approximation with the result

1&r2

where

48m

(33-2f)ln(Q.'/A') (2.27)

with f being the number of flavors.
In Eq. (2.26} and following Ref. 7, the constant

A has been arbitrarily chosen so that there are no
further terms of order g0 . A little algebra shows
that p, ', A', andg' are related to each other by

A = p, exp — 2+—,ln(P2g }2 2 16tt' Pi 2 l

Pog' Po'
(2.28)

Clearly this choice of A is not unique and we shall
discuss in detail in Sec. II D definitions for A
which lead to additional terms of O(g, ') in Eg.
(2.26) .

Inserting (2.28)-(2.26} into (2.21) and expanding
in powers of g, , we obtain'

NS Q 2 NS
2 1n»g n

P 1 (Q2/A2)( n n ~n}
p. 0

~[I (Q'/A')] &""", (2.29)

(2.21)

Here g'(Q') is the effective coupling constant
which satisfies the equation

and C„ is an overall Q' independent constant. In
the case of the longitudinal structure function, P„,
I.„, and the leading term 1 are absent and B„" is
replaced by B„"~.

The parameters yo, Po, and P, are gauge and re-
normalization-prescription independent and are
given for an SU(3) gauge theory with f flavors as'
follows

8 ~ 2 " 1tt ]
3 n(n+1), , j

Pa=11=,f,
P,=102- sssf.

(2.82)

(2.33)

(2.34)

C. Procedure for the calculation of B„

We first remark that in order to find B„as de-
fined in Eq. (2.25) it is sufficient to calculate
C„(Q /p, ,g ) in perturbation theory to order g' and
set Q'= p'. This is obvious from Eqs. (2.21) and
(2.22).

Writing next the nonsinglet version of (2.4) sym-
bolically as

The quantities B„and y", are renormalization-
prescription dependent (and in principle also gauge
dependent). However, as pointed out in Ref. 15,
the renormalization-prescription dependence of
B„ is related to that of y", and when these quantities
are inserted in Eq. (2.29) a physical, renormaliza-
tion-prescription independent answer is obtained.
In other words, the calculation of B„andy", may be
performed in any renormalization scheme but care
must be taken that these two quantities are calcu-
lated in the same scheme.

The y", for nonsinglet operators has been calcu-
lated by Floratos, Ross, and Schrajda, "who have
used 't Hooft's" minimal-subtraction scheme to
renormalize the amplitudes. In this scheme the
Feynman diagrams are evaluated, using dimension-
al regularization, in d=4-& dimensions and singu-
larities are extracted as poles 1/e, I/e', etc.
The minimal subtraction then means that the am-
plitudes are renormalized by simply subtracting
the pole parts 1/e, I/e', etc.

The coefficients B~s existing in the literature'"
have been calculated in schemes which differ from
the one above and cannot be combined with the re-
sults of Ref. 15. Therefore, in our paper we shall
calculate them in the minimal-subtraction scheme.
%'e now outline a method for calculating B„'.
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(2.35)

we see that in order to find C„"2(Q'/i(, ', g') we gen-
erally have to calculate both TN'(Q2, v) and

AN2(p'/i(, 2, g2) Since the coefficient functions do
not depend on the target, we can choose as a tar-
get any state for which calculations can be easily
performed. In what follows we shall choose either
quarks or gluons as targets. '4 In order to be con-
sistent with the calculations of Ref. 15, we shall
deal with massless, off-shell quarks or gluons
with spacelike momenta p2&0.

Having all information at hand, we can now state
the procedure for extracting C„"s(Q'/p, ',g') and
specifically the constants B„.

The procedure is as follows:

(i) Calculate T»(q2, v) (forward amplitude for
scattering off (Iuarks) in perturbation theory to
order g' and expand in powers (1/x)" for 2;». The
coefficients of this expansion will have the form

2 2 2

with yc given by (2.32) and yz being the anomalous
dimension of the quark field. The overall normal-
ization has been chosen in accordance with Eqs.
(2.15)-(2.18).

(ii) Calculate A."„' (P2/(L(', g') by considering the
matrix elements of nonsinglet operator between
quark states with the result

FIG. 1. The Born term for virtual Compton scattering.
Inclusion of the crossed diagram is understood.

ization-prescription-independent result for the
moments of the structure functions is obtained.

In the scheme of De Rujula et al. , ' the matrix
elements of operators are normalized so thatA„'"
=0. Therefore, in that scheme we have simply

Unfortunately, we cannot use this
scheme for our calculations since the only existing
results for y", have been obtained" using the mini-
mal-subtraction scheme. As we shall see in the
next section, in the latter scheme, A„(" '&0 and
must be calculated in order to extract the coeffi-
cient function.

III. C„(Q /pm, g ) TO ORDER g FOR ELECTROMAGNETIC
CURRENTS (NONSINGLET CONTRIBUTIONS)

For electromagnetic currents, the calculation
of the nonsinglet contributions using Eq. (2.4)
simplifies to

ANs f+ g n ln ~ & ln P +A(2)Ns2y0 2 ~yE 2
p,

(2.37) + d„„C,"'„—„g' A'. n' —„g' .

(3.1)
(iii) Insert (2.37) and (2.36) into (2.35) to obtain

Q2 g2 Q2
gNs +2 j + yn ln +T (2)Ns A (2)Ns

$6~2 2 o ~2 n n

(2.38)

(iv) Finally, evaluate (2.38) for Q'= p,
2 and com-

pare with (2.25) to find

T» is the forward spin-averaged amplitude for
scattering of photons off off-shell massless quarks
with spacelike momentum p2&0, andAN2 are the
matrix elements of the nonsinglet operators of Eq.

gNS T (2)NS A (2)NS
n n n (2.39)

This equation applies to the nonsinglet components
of the structure functions E„E„andE,. In the
case of the longitudinal structure function, which
vanishes in g' order, the corresponding expression
is

~NS g (2)NS
I,n Ln (2.40)

The above procedure applies for any renormaliza-
tion scheme. However, as we already stated
above, different renormalization schemes lead
generally to different values of 8„. If B„and y,n

are calculated in the same scheme, a renormal-

4 DD 4 DDDDD4

(|-) (d)

FIG. 2. Diagrams contributing in order g to the virtu
al Compton scattering. Inclusion of the crossed diagrams
is understood.
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(2.5) between the quark states in question. Cps„

and C, '„are the coefficient functions which we want

to calculate in perturbation theory to order g2. To
this end, according to the procedure of Sec. IIC,
we begin by calculating T» to order g'.

T~("N' = 0, 7,(""'= 1 (n even}. (3.2)

The calculation of 7"„„in g' order involves dia-
grams of Fig. 2. %'e use an arbitrary covariant
gauge a where the gluon propagator is given by

A. Calculation of the virtual Compton amplitude to order g2
k„kv(l ~) l4 v

k2 Pv k
(3 3)

%'e first recall that the calculation of T„, ing
order involves diagrams of Fig. 1 and when the re-
sult is expanded in powers of 1/x we find in the
normalization of (2.15)-(2.18)

Using the minimal-subtraction scheme and
dropping terms of order p' we obtain the following
results for the coefficients T„'"N defined in Eq.
(2.36):

T(2)Ns —C I) 3 8
1 1 6 4 4

, , j . , j' n+1 n' (n+1)'

1 1 1 I

-1—-+(ln4w —y )+(1—Qt) —+ —.-1-ln4((+y, n even
n 1Z

g (3.4)

and

(3.5)T(2)Ns -C (R) C (R)—A

The contributions from individual diagrams are collect ed in the Appendix. The gauge dependence and the
presence of the term (in4((-y~) where y~ is the Euler-Mascheroni constant are due to the normalization
procedure and will be discussed in Sec. IIID.

B. Matrix elements of nonsinglet operators to oder g2

The calculation involves the diagrams of Fig. 3. Using again the minimal-subtraction scheme, we deter-
mine the constants'„(2&"s defined in Eq. (2.37) with the result

4 2 2 4 1 2 1 ". 1 1A(""'=C,(R) 8-—+ +~-,-4 —., +
n n+I n (n+I)' &, j' n(n+1), j, s &, j

2 1 1 1
+ (In4(( —yz) -4 —. + (1—n) —+ .—.-1-In4((+yz, n even.n(n+I), j n ~., j

Details of the calculation are given in the Appendix.

(3 6)

C. Finalresult for CL „(1,g ) and C& „(1,g )

~2
CNs(1 g2)=1+ g BNs (3.7)

(3 8)

where

1 1 3 4 2+4 — —.+ -+ + —2-9
s= s g g, ++1 g

+yo(ln4((-yz), n even (3 9)

Inserting (3.4)-(3.6) into Eqs. {2.39) and {2 4o)
and using the definition (2.25), we obtain the follow-
ing results for C"' (1 g') and C,"'(1 g') to order g':

2 1
yo =1- + 4 --. =+Syo.n(n+1), j (3.10)

The result (3.8) is well known. "" On the other
hand, the result for BN~~„ in the particular renor-
ma1ization scheme considered is new;

Notice that the gauge dependence of A„'" 'can-
celed that of T„'""~ leaving B~Ns„gauge independent
in the minimal-subtraction scheme. Numerical
values of BN2'„ t ogether with those for y", andyo
are collected in Table I.

There are only two calculations of B",„ in the
present literature: one by salvo" and another by
De Rujula, Georgi, and Politzer. ' None of these
results for B2s„can be directly compared with
Eq. (3.9) because the renormalization schemes
used in Refs. 6and11. are different from ours. On
the other hand, we can directly compare our re-
sults for T,"„'"'with that obtained by De Rujula
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(b)

FIG. 3. Diagrams contributing in order g to the ma-
trix elements of the nonsinglet operator between quark
states.

et al. ' Setting a=0 in Eq. (3.4), we obtain their re-
sult except for the numerator of the term 1/(n+1)
which in our case is 6 and theirs 10.

D. Discussion of the results for nonsinglet structure functions

In this section we discuss some technical aspects
of our calculations including infrared sensitivity,
gauge dependence, and normalization dependence.
We defer discussion of phenomenological aspects
to Sec. V.

In the previous sections we have calculated the
coefficient functions C„, using 't Hooft's minimal-
subtraction scheme. This normalization procedure
is insensitive to the infrared structure of the the-
ory for large Q'; corrections are of order p'/Q'
or nt, s/Q' for the coefficient functions. The am-
plitudes T„andA„, which were used for our cal-

culation of C„, are sensitive to the infrared behav-
ior since they involve matrix elements in particu-
lar states, free quarks in our case. Although our
states are only logarithmically off shell (p'-0,
lnp' finite), numerator factors of order p' may
still contribute as the Feynman integrals can yield
terms of order 1/Pa. Therefore, one must be
careful when dropping p' terms. Such terms are
responsible for the gauge dependence of the ampli-
tudes T„(3.4) andA„(3. 6).

The question of gauge dependence involves a num-
ber of aspects. We have noted that the spin-aver-.
aged matrix elements of the correlation function
T„and the local operators A„are found to be gauge
dependent. On the other hand, the coefficient func-
tions C„(3.9) are found to be gauge invariant. This
result is expected as the C„appear as coefficients
in the Wilson expansion involving gauge-invariant
operators. The coefficient functions are not auto-
matically gauge invariant as the local operators
~y be given a gauge-dependent normalization in
some renormalization schemes.

The gauge dependence of the theory also affects
the renormalization-group equations which are
used to convert the perturbation-theory results
into the true asymptotic behavior of the theory.
Except in the Landau gauge, the usual renormal-
ization-group equations involve a derivative with
respect to the renormalized gauge parameter. "
The solution of the renormalization-group equa-
tions usually requires full knowledge of the gauge
dependence of the renormalized group parameters.
However. , the two-loop anomalous dimensions have

only been computed in the Feynman gauge. " The
renormalization-group equations for amplitudes
in the Feynman gauge must be modified by the in-
clusion of inhomogeneous terms. The Feynman-
guage amplitudes for T„andA„will satisfy renor-
malization-group equations of the forms

TABLE I. The values of various quantities which enter
Eq. (2.29) for f=4. B2 n=B2 „-+2&o(ln4r-p@). The val-
ues for odd + contribute to B2 „ in &, & reactions.

lP ~i+ ~4')eg Yz~Tn=~Tn~

[p, g+ P (g)8~+y„-2y~]A„=&A„.
(3.11)

1
2
3
4
5
6
7
8
9

10
11
12

BNS
2, fl

0
7.39

14.08
19.70
24.53
28.77
32.55
35.96
39.08
41.96
44.63
47.12

BNS
2, tf

0
0 44
3.22
6.07
8.73

11.18
13.44
15.53
17.48
19.30
21.01
22.63

Y|
2Po

0
4.28
6.05
7.21
8.09
8.82
9.44
9.99

10.46
10.91
11.31
11.68

74'
2P 2

0
-2.63
-4.11
-5.16
-5.98
-6.66

7+23
7073

-8.17
-8.57
-8.93
-9.27

The inhomogeneous terms result from the varia-
tion of the bare gauge parameter as we change the
normalization scale while remaining in the Feyn-
man gauge. In the minimal-subtraction scheme,
these terms may be computed for the relations in
(3.11). However, the analogous, relations for the
coefficient functions C„will not involve inhomo-
geneous terms. . Hence the naive renormalization-
group equations used in (2.20) for the coefficient
functions are correct for Feynman-gauge calcula-
tions in the minimal-subtraction scheme.

We now turn to problems associated with the
solution of renormalization-group equations which
relate to the significance of the parameter A and
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the presence of terms such as ln4r andy~ in our
expressions for the coefficient functions. The co-
efficient functions for nonsinglet operators satis-
fy homogeneous renormalizatiori-group equations
in the form

8(i "ls II I I )
n o~g

InQ'/Ao -y~ "
Inp /Ao (3.16)

2

tv~. + p(z)a. -r.(zN&. „—„r') =o, (3.12)

C„—,g =C„(l,g )exp &' d7'y"( )/P( )

(3.13)

=', ln, = dv [ I/P(~)]. (3.14)

As noted in Sec. II, C„(l,g') is simply evaluated
in perturbation theory by computing C„(Q'/p, ',g )
at the normalization point Q'= p, ', as the exponen-
tial factor in (3.13) is 1 if g is defined as in (3.14).

The leading-order results are obtained by eval-
uating C„(l,g') in zeroth order and truncating y" (g)
and p(g) in one-loop order. Using the expansions
in Eqs. (2.23) and (2.24), Eqs. (3.14) and (3.13)
may be integrated to obtain

16'' 1 l&ro 1 Qo Qo—2+in—2-=ln—2
po g po g

(3.15)

where p, is the normalization scale andg the re-
normalized coupling constant. These equations
may be solved in a standard manner by introducing
a renormalizatiori-group-invariant coupling con-
stant g(Q'/p, ',g). The result (2.21) and (2.22) may
be expressed as

For asymptotically free theories (Pp0), this re-
sult represents the true asymptotic behavior of the
coefficient functions as Q'~. If the full theory
were precisely given by the truncated theory, then
the parameter A would have significance as the
scale of strong interactions. However, in the full
theory there are corrections of order (1/lnQ').
These corrections cannot be uniquely specified in-
dependent of the scale A, as changes in the value
of A may also be represented as order (1/lnQ')
for large Q'. This fact becomes more apparent
when considering the first systematic corrections
to the behavior of the coefficient function.

This next-order calculation requires the know-
ledge of the one- and two-loop contributions to the
anomalous dimension y" and the P function as well
as the entire one-loop contributions to the coeffi-
cient functions. As discussed in Sec. II, the cal-
culation of these quantities must be done in a con-
sistent manner. The two-loop P function'" and
the two-loop anomalous dimension for nonsinglet
operators" have been computed using 't Hooft's
minimal-subtraction scheme. " We have present-
ed our results for the full one-loop coefficient
function using this same scheme in Sec. IIIC.

These results may be combined to obtain a solu-
tion to the renormalization group consistent to
second order. One such solution is discussed in
Sec. II Eqs. (2.26)-(2.29) with the result

(3.18)

Q 1 1 yn p yn) yn p Qo @o -yo/2oo

Cn
—

o g' =C. +p I„Q./Ao n +2 p
—p:]I-2p ~ IninA—o (3.1V)

The Eq. (3.1V) is exact through order O(l/lnQ'/A') in the expansion for large Q2 with the scale A. Asymp-
totic expansions of this type are also possible for some other choice of scale, say A, . To be specific, take
A,= 1 GeV and reexpand (3.1V) in powers of 1/lnQ'. to find

1 n p n np—g =C I+ fl +—' «InA + - —'- "' ' — '"'lnlnQ' (InQ'). &o/'oo
n 2& n

P hQ« n &yo 2 P P
2 2P 2

through order O(1/lnQ'). An important observation
is that the effect of the change of scale is equiva-
lent through order 1/lnQ' to the shift of the con-
stant B„" by an amount proportional to the one-
loop anomalous dimension y", . This may be seen
in (3.18) explicitly. Thus any term proportional
to y", in B"„canbe absorbed by the redefinition of
the scale A. In particular, the term ln4m-y~ in
(3.9) may be absorbed by choosing the new scale
A exp[-,'(In4m-y~)].

From the point of view of the renormalization-

Q2 g 1
=~ ln—2+5 = dv'v'; p(~)

(3.19)

With this normalization, g(Q ) is equal to the re-

group equation, the ambiguity of g' corrections in
terms proportional to yo as well as in the redefini-
tion of A are related to the freedom of defining the
effective coupling constant in solving the renormal-
ization-group Eq. (3.12). In fact, a new solution
for g may be obtained by adding a constant 5 to the
left-hand side of (3.14), yielding
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normalized coupling constant g at Q '=
p, 'e "(= p,")

and not at Q2= p,
' as defined in (3.14). Since A is

proportional to p, [see (2.28) and (3.15)], we ob-
serve that any redefinition of the scale A corre-
sponds to redefinition of the effective coupling
constant. If the new renormalization scale p,

' is
used, the solution of the renormalization-group
equations takes the following form:

C„—2, g =C„2,g exp dT

(3.20)

withg(p, ") g. Although the expression of
C„(Q'/p, ', g') in terms of g and p, in (3.20) is dif-
ferent from that in (2.21), the physical result is
identical.

It is clear that the addition of the constant b in
the definition of g' (3.19) just reproduces the effect
of shifting A to absorb terms proportional to yo in
B„. The complete second-order contributions to
the coefficient function given in Eg. (3.18}are, of
course, independent of this redefinition, as would
be full all order calculations. However, if we
truncate the calculation in second order ing', dif-
ferent choices for b correspond to different esti-
mates of the higher-order terms ing2 for the co-
efficient functions. The choice for b must give
results consistent with the asymptotic perturba-
tion expansion and the normalization scheme used.

This fre'edom in choosing b can be exercised
separately for each n when solving the renormal-
ization-group equation. One possible procedure,
therefore, involves the introduction of a b„ in Eq.
(3.19) such that in Eq. (3.20)

with p, '„= p.e '~ and g„' depending on n through

A„=A exp(Bgs/yo),

so the n dependence of A„ is calculable. This pro-
cedure has the nice property that the relative n
dependence between B„' andy"„ i.e., the differ-
ence in n dependence between order g2 and lead-
ing order, is isolated in A„and in the two-loop
anomalous dimensions (the effect of the latter is
small for n&12). This procedure is similar to one
proposed by Bace." The phenomenological impli-
cations of our calculations are discussed in Sec.
V.

IV g2 CORRECTIONS TO v AND v SCATTERING
(NONSINGLET CONTRIBUTIONS)

A. CalcuIation of g2 corrections

The evaluation of g2 corrections to v and v deep-
inelastic scattering proceeds as in Sec. D and III

y' P+g8 (4 .4)

The remaining structure functions for scattering
off neutron or nuclear targets can be directly ob-
tained from (4.1)-(4.4) using charge symmetry.
For instance,

pVP y VP @VS @VS pVn pVn pVP y Pn
2 2 2 2 2 2 2 2 (4 .5)

In order to calculate g' corrections to E„one
considers again the diagrams of Fig. 2 except that
now diagrams with both vector currents replaced
by axial-vector, currents also contribute. But
since we have put masses to zero the axial-vector-
tor-axial-vector contributions are equal to vec-
vector contributions. Obviously, calculation of
the g' corrections' to the combinations (4.1) and
(4.2) corresponds to subtracting and adding cross-
ed diagrams respectively.

The structure function F, corresponds to the vec-
tor-axial-vector interference and therefore the
diagrams contributing to it are obtained from Fig.
2 by replacing one of the vector currents by an
axial-vector current. Again the calculation of the
g~ corrections to the combinations (4.3) and (4.4)
corresponds to subtracting and adding crossed
diagrams, respectively.

By inspecting the diagrams directly or by con-
sidering the decomposition (2.1) and taking into
account known properties of various structure
functions under the transformations p,-v, x -x,
one can easily find whether even or odd spin op-
erators contribute to each of the combinations
(4.1)-(4.4). It turns out'" that to F,' " and F,"'"
only odd-spin and to I'2'" and E," " only even-spin
operators contribute.

Finally we have to determine which combinations
are independent of gluon operators and therefore
satisfy simple renormalization-, group equations as
given in Eq. (2.20). The combinations (4.1) and
(4.3} transform obviously as nonsinglets under
flavor symmetry and therefore satisfy equations
like (2.20). FP'+FP is a singlet combination which
cari be seen, for instance, by writing it in terms
of quark distributions. Therefore, because of
mixing between gluon and fermion singlet opera-
tors this combination will satisfy more compli-

except that now we must also deal with axial-vec-
tor currents. It is convenient to consider certain
combinations of the v, v structure functions which
have simple properties under crossing. These
are

(4 1)

(4 2)

(4.3)
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C,"„"(1g')=C2' (1,g'), n odd (4.6}

C~ „"(I,g')=C~'„(I,g'), n odd

where C,"'„and Cg'„a re given by Eqs. (3.7)-(3.10),
On the other hand, we find

g 4n+2 n odd
1&r' '

( +1)' n even'

(4.7)

(4.8)

B. Corrections to sum rules and parton-model relations

It is well known' that in the leading order of
asymptotic freedom parton-model relations and
sum rules are satisfied. The g' corrections cal-
culated in this section can generally introduce
violations of the sum rules and relations in ques-
tion.

Evaluating the formulas (4.6)-(4.8) for n =1 and

cated renormalization-group equati. ons, which we
shall discuss in Sec. VI. On the other hand, E,"'"
still satisfies Eq. (2.20) in spite of having contri-
butions from singlet fermiog. operators. This is
because the gluon operators of odd spin" trans-
form differently under charge conjugation than the
corresponding singlet fermion operators and there-
fore there is no mixing. "

In this section we shall restrict the calculation
to the combinations (4.1), (4.3), and (4.4) and
come back to the combination (4.2} in the next
section.

For E2~-E,"~ the calculation is exactly as in Sec.
III and we obtain for the corresponding coefficient
functions defined in Eq. (2.4) the following final
result:

recalling that y„,=0 due to current conservation,
so that, except for B"„calculated here, all contri-
butions in Eq. (2.29) vanish, we 'obtain

12
(33-2f)ln(Q'/A')

(4.10)

8
-2f}ln(Q /

These results disagree with those obtained by
Calvo. " Notice that the Adler sum rule" (4.9) is
exactly satisfied, whereas both the Gross-
Llewellyn Smith'9 sum rule (4.10) and the Bjorken
sum rule'0 (4 11) are violated. In Fig. 4 we have
plotted predictions of (4.10) and (4.11) versus
Q'/A'. We observe that the deviations from the
two sum rules in question are predicted to be non-
negligible and accurate measurements should de-
tect them.

Equations (3.8) and (4.1) imply violation of the
Callan-Gross relation 2',=E,. Previous investi-
gation' "4 has shown, however, that the violations
of the relations in question seen in the data at
large x are larger than predicted by the theory.

V. PHENOMENOI. OGY OF THE ORDER~ 2 CORRECTIONS

We discuss in this section the phenomenological
application of our calculation. The theory predicts
directly the Q' dependence of the moments of

-OO-

I 1
t I I I I I I I

t
I I I 1 I I I I I I I I

VP VP
F +F =-6

s a

-5.0-

-6.0-

Bjorken Sum Rule

l.O—

09-
VP VP—F, =l

ill
2 5 lO 50 IOO

Q /A

l 000 IO,OOO

FIG. 4. Order-g deviations from the Gross-Llewellyn Smith and Bjorken sum rules. The dashed lines are parton-
model predictions. The solid lines follow from Eqs. (4.10) and (4.11).
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M„(l}'}=A„(ln~,) (5.2}

where the A„are related to matrix elements of
the relevant operators between target states and
are taken as free parameters, y", and Po are de-
fined in Eqs. (2.32) and (2.33), and ALo is the scale
parameter defined by the leading-order expression
(2.27) for g'(Q').

The second and third schemes include the order-
g' corrections which multiply (5.2) by an addition-
al term, yielding

M„(Q')=A„1+» (B„+P„+L,„)
1

0 in Q AMS

(} )-y,"l s,

MS

where

rl p2ro
tl 2P 2P

Q'
L„= 2~ ', lnlnA

Po MS

(5.3)

and B„ is obtained for xF, from Eqs. (3.7}, (3.9},
and (4.8). This expression uses a scale parame-
ter AMS (MS for minimal scheme) corresponding

structure functions; we will use in our analysis
the combined Gargamelle-BEBC data' for the non-
singlet structure function xE,(x, Q') to obtain the
experimental values of the moments, thereby
avoiding the somewhat. involved problem of invert-
ing the moments. Bosetti et a/. ' have already
analyzed the moments of xI', using only the lead-
ing-order effects of asymptotic freedom. It is our
purpose .here to investigate the effect of including
the order-g' corrections in the analysis.

The moments of xI', most appropriate for com-
parison with our calculation are the Nachtmann
moments'

M„(l} }=I Ck, xF,(x, l} } 1+ 2(——
2)

(5 .1)

with

$=2x/[1+(1+4M x /Q3)'i']

and M the nucleon mass. The moments are ob-
tained by straightforward numerical evaluation of
the integral using the data of Ref. 10.

In order to investigate the effect of the order-g'
corrections, we have chosen four different
schemes with which to compare theory and experi-
ment. The first scheme, denoted LO, uses sim-
ply the leading-order prediction of asymptotic
freedom, which for the nonsinglet moments is

to the definition (2.26) of g'(Q') introduced in Ref.
7. As discussed in Sec. IIID, however, B„ is
actually determined only up to a term proportion-
al to yo, corresponding to an arbitrariness in the
normalization involved in introducing g when solv-
ing the renormalization-group equation. For the
purposes of illustration, therefore, we will also
use (5.3) with B„replaced by B„=B„=,"y 0(ln4w-y a)

and AMS replaced by A~M, thereby defining the
scheme MS. It is easy to see that the schemes
MS and MS are equivalent (through order g') pro-

ded

A A e(in4~-y~)la (5.4)

Finally, we introduce a fourth scheme which, as
discussed in Sec. IIID, treats the n dependence of
y", exactly but absorbs the n dependence of B„ into
A. Thus using Eqs. (2.23) and (2.24), we evaluate
the integral in Eq. (1.1) to obtain

1ar' P, 1a}'+(P,/P, )g2 Q'
(5.6)

A Aea„!yg
n (5.7)

This fourth scheme, which we denote as the A„
scheme, is clearly equivalent (through order g' }
to the schemes MS and MS. This scheme has the
particularly nice property that if Eq. (5.5) is used
to determine "experimental" A„'s separately for
each n, then the resulting A„'s should follow the
pattern of n dependence predicted by Eq. (5.7).
As a corollary to this scheme, we remark that
the second factor in Eq. (5.5) is always very near
unity (see Table I) in the region of interest, hence
Eq. (5.5) has essentially the same form as the lead-
ing order Eq. (5.2), and therefore this scheme is
quite similar in spirit to one proposed by Bace. '

%'e have used each of the four schemes LO, MS,
Ms, and A„discussed above to determine the un-
known scale parameter in each scheme (the con-
stants A„are also fitted but their values are unin-
teresting and are not given). We find

ALp=O. V3 GeV,

AMs =0.40 GeV,

A»=0. 52 GeV,

A=0.40 GeV.

These values are obtained using P„P„y"„y",appro-

(5 .5)

where g' is the exact solution of Eq. (2.22) appro-
priate to our choice af A„



18 DEEP-INELASTIC SCATTERING BEYOND THE LEADING. . . 4009
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FIG. 5. Naehtmann moments of xF3(x, Q ) vs Q . The data are from Ref. 10. The solid lines represent the LO, MS,
and P3 schemes; the dashed lines represent the A„scheme.

priate to four flavors (using three flavors shifts
each A to a slightly larger value). The fitting
program estimates the errors on each A at about
ten percent. In each case we used moments for
II ~8 and Q'&1 GeV'. The results of the fits do not
change significantly if we restrict our considera-
tions to Q'&2 GeV'. In all cases the quality of the
fit was very good (y'/D. F.cl).

%'e now proceed to discuss several important
points related to the phenomenology: (1) Our fits
for the four schemes are shown in Fig. 5. Some-
what suprisingly (and disappointingly), we find that
the LO, MS, and MS schemes are virtually indis-
tinguishable for Q'&l. 5 GeV'; thus they are repre-
sented by the same (solid) line in the figure. Of
course, the fits differ for Q'&1 GeV' but then g' is
large and the perturbation theory is meaningless.
The fit using the A„scheme does not fit quite as
well as the others, but the quality of the fit is still
fairly good. The similarity of the LO, MS, and
M3 fits simply indicates that it is possible for the
A„'s and A in each case to conspire to mask the
combined n and Q' dependence of the order-g'
corrections. This is in spite of the fact that the
corrections in question are not necessarily small
for low values of Q' and II&3. For instance, for
Q'=10 GeV' and n=5 the second factor in Eq. (5.3}
is roughly 1.2 and 1.5 for MS and MS, respective-
ly, as compared to l in the leading order. The
situation is much worse for higher moments since
for fixed Q' the corrections in question grow due

to ~ like (inn)' [see Eq. (3.9)] and perturbation
theory breaks down.

(2) The most important result of the analysis of
Bosetti et al. 'o is the quantitative verification of
quantum chromodynamics (QCD} based on the lead-
ing-order prediction

d lnM„y~
dlnM yo

' (5 8)

It is demonstrated in Ref. lo that the experimental
values of the left-hand side of (5.8) agree remark
ably well with the QCD predictions for the ratios
y Jyo. We find that the agreement between theory
and experiment is not disturbed even when the or-
der-g2 corrections are large, i.e., as discussed
in point (1) above, the schemes LO and MS, MS
are indistinguishable (except that the A„'s and A

are very different in each case}.
(3) Finally, we have fitted the moments for each

n separately using the ~„scheme, and the "experi-
mental" results for A„are shown in Fig. 6, along
with the prediction of Eq. (5.V) using the value A

=0.4 GeV determined previously in the A„scheme
by fitting together all moments with n&8. The
"data" points do not seem to follow the theoretical
prediction, but we cannot claim that the disagree-
ment is significant since, after all, the A„scheme
is equivalent (through the order g' we have com-
puted) with the MS, MS schemes, and the latter fit
the data quite well. We believe, however, that the
A„scheme is particularly well suited to compari-
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2.0

1.0—
0)

&06

I
I

&

I
1

h hh~= Ae—A=0.4 GeV——A=0.5 GeV

'l
I

I operators, higher-order gluon corrections to twist-
2 operators, or perhaps even nonperturbative (in-
stanton) effects. It will be very helpful to isolate
these effects phenomenologically, since the theo-
retical calculations are apparently rather difficult.
Finally, it should be apparent by now that due to
the fact that B„ is determined only up to a term
proportional to y"„any attempts to extract the
scale parameter A of the theory from the experi-
mental data must be viewed with a certain amount
of reservation.

I i I i I i I i I i I

2 4 6 8 10 12

FIG. 6. The n dependence of A„ in the A„scheme, The
"data" points come from fitting each n separately. The
curves are the predictions of Eq. (5.7).

son with experiment because the n dependence
predicted by the theory is strictly enforced in the
fit (thus prohibiting the kind of conspiracy between
theA„'s and A which occurs in the MS, MS
schemes}.

(4) We have also shown (as a dashed line) in Fig.
6 the prediction of Eq. (5.7) for A=0. 5 GeV. This
value of A gives good agreement with the A„"data"
for n-5 and isolates the disagreement at large n.
%'e are motivated here by the conjecture of De
Rujula et al. ,

' which claims that the effect of high-
er twist operators in the operator product expan-
sion is most strongly felt at large n, or more
specifically whenever

MoI,' -o(1},

P (Q /p g ) TOORDERg FOR SINGI-ET

OPERATORS

A. Preliminaries

In Secs. III and IV we have calculated the coeffi-
cient function to order g' for nonsinglet operators
relevant for ep and v scattering. Here we extend
our analysis to singlet operators. We begin with

electromagnetic currents.
The Q' dependence of the Wilson coefficient func-

tions C„and Cn corresponding to singlet fermion
O~ and 0„operators is governed by'the following
renormalization-group equations':

P Q2
I +P(g-) C.*——.,g' = gr", (g'}C„' —.,g',

(6 1)

where i,j=(, G andy;~ is the anomalous-dimension
matrix.

The solution to (6.1) is given as follows:

C„2 g = Tg exp + dg

with M22-0(A2) an appropriate (but unknown) scale.
Mainly as a curiosity, we have included a term of
the form

M1+n

as an additional factor in (5.5) and redetermined
the "experimental" A„'s. With M,'--0.16 GeV',
the resulting A„"data" do in fact follow the trend
predicted by Eq. (5.7), i.e., A„ increases with n.
Owing to large theoretical uncertainties in the
higher twist corrections, it is not appropriate to
pursue this farther.

We conclude this section with the following words
of caution and recommendation. If the n depen-
dence of A„as predicted by Eq. (5.7) is not even-
tually found in higher-statistics experimental data,
then one must conclude (short of abandoning QCD)
that certain possibly strong effects not included in
the analysis are present in the data. Possible
sources for these effects would be higher-twist

xC ~(1,g'), (6.2)

with C„(l,g ) having the expansion in powers of g'
—2

Cf(1 g) C(0) i+ Bi + 0(g~)n & n n 16+2 (6.3)

C„'"~=1 C(') =0n

we obtain

(6.4)

C„( 2, g'(=1+
~

——y221n —,+B2 (6.5)

and

Q2 2 Q2

Here &2„ is equal to Z,
" of Eq. (2.32). &2~ is the

nondiagonal element of the anomalous-dimension
matrix given by'

It is instructuve to expand C„'(Q'/p, ', g ) as given by
(6.2) in powers of g. Recalling that in the g' order
in the normalization of Eq. (2.17)
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Pl +A+2
n(n+ 1)(n+ 2) ' (6.7)

f being the number of flavors. In order to calcu-
late B„' in perturbation theory we consider the two
forward Compton amplitudes

(c)

(6.8)

)'(2', ~) = (f~'*~"'«;P Irl)(~))(0)l lt:;()
(6.9)

where p'&0.
Using the operator-product expansion for the ap-

propriate currents, we obtain the following gener-
alizations of Eq. (2.35):

FIG. 7. Diagrams contributing in order g to the vir-
tual photon-gluon scattering.

Consequently,

n4

T(»(- ~&»2
flG

(6.16)

(6.17)

(6.10)

and T~2~~ are the constant parts o
der g in the Compton amplitudes (6.8) and (6,9).
For longitudinal structure functions which vanish
in zeroth order only the first terms on the rhs of
Eqs. (6.16) and (6.17) are present.

Equation (6.16) is equivalent to (2.39) and using
(6.3) we obtain to order g

(6.11)
and

C', ,.(1,g') = C"' (1,g') (6.18)

The reduced matrix elements A„'& defined in Eq.
(2.9) can be calculated in perturbation theory and
the result can be written as

2 2 2
i ~ M (0)i g n P (2)iA') —2, g =An~ '+

16 2 2 i) 1 2 +An16' 2 p

(6.12)

where A(P' in the normalization of Eq. (2.18) take
the following values:

C() (1 g)=C"() (1 g) (6.19)

with the nonsinglet structure functions calculated
in Sec. III C.

Qn the other hand, Eq (6.17) tells us that in or-
der to calculate B„we have to find the forward
Compton amplitude for a photon scattering off a
gluon and subtract from it to the matrix element
of the fermion singlet operator (2.6) between gluon
states. .

0nQ C & ng . nG (6.13)
B. Calculation Of T ~ &

Inserting (6.5), (6.6), and (6.12) into (6.10) and
(6.11), and using (6.4) and (6.13), we obtain in an
obvious notation

2

'The calculation of T'„" involves diagrams of Fig.
7. We use again the dimensional regularization
scheme and keep the gluons offshell with space-
like momentum P'&0. Both gluons and quarks are
kept massless. The diagrams separately are div-
ergent but when they are combined the divergences
cancel and no renormalization is needed. The re-
sult for T"' and T"' js

and

T" =
16 '(2 g 1 ~ Q 0 (2)()
16m 2

(6.15)

T(2)G 16
z „=16+ T(R)

( 1)( 2), n even (6.20)

and
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g 2 6 6 2 4 4'"* 16m' n+( n+2 '
( 1)' ( 2)')' (6.21)

where T(R) =f/2, f being the number of flavors.

C. Calculation of Ag@~

'The calculation of A„'~ ~ involves diagrams of Fig. 8. Using the minimal-subtraction scheme we obtain

At""=,T(R)4„——— + —,— a +16'' " n+ 1 n n+ 2 n' (n+ 1) (n+ 2)'

s +0+2 tt

+ 1+ —. + yt",o(ln4v —ya), n evennn+1 n+2 . j (6.22)

where

'PP+ 'fI, + 2

n(n+ l}(n+ 2) 4f
(6.23)

D. Final result for CL „(1,g ) and C2 „(1,g~)

From Eqs. (6.20)-(6.22) we finally obtain, using (6.11) and (6.3), the following expressions for Cz „(l,g )
and C, „(1,g ) to order g' calculated in the minimal-subtraction scheme:

and

G 16
16 ' (n+1)(n+2) ' (6.24)

g' 4 4 1 n'+n+2 tt

Ca „(l,g 16a T(R)4
( 1) ( +2) + '

( +1)( +2) 1+ + —. -y()o(In' —ya), n even. (6.25)

The treatment of the ln4w —y~ term is exactly the same as in the nonsinglet case.

E. Results for v, v scattering

The results (6.18), (6.19) and (6.24) and (6.25)
apply also to the structure function E",'". On the
other hand, I'3" does not receive contributions
from gluon operators by the discussion of Sec.
IV. The result for C,"'"(l,g') is given in Eq. (4.9).

F. Discussion of results for singlet parts

At present we are not ready to apply (6.25) to
phenomenological analyses because the anomalous
dimensions of singlet operators to order g' are
not yet available. However, the longitudinal coef-
ficient function (6.24) does not involve two-loop
contributions and hence may be used directly in
phenomenology. Such analyses have been per-
formed in Ref. 14. It should be remarked that in

(6.24) and (6.25) the g' corrections are small and

vanish as n -~. Therefore, for large x the gluon
contributions and their mixing with quark opera-
tors are of little importance.

To compare our results with those of other
groups, we first note that the calculation of virtual
photon-gluon scattering is equivalent to that of vir-
tual photon-photon scattering if one replacesg'T (R)
by e4. Accordingly, the coefficients of the expansion
in 1/x, T~o „and Tao „, are equal to moments of

the imaginary part of the virtual photon-photon
scattering amplitude. Our result for T~~ „,(6.20)
agrees with the results of Refs. 14, 31, and 32,
but disagrees in minor respects with Refs. 11, 12,
13, 33, and 34.

Special care is needed in comparing our result
for T~„with others. In the calculation of T,„
there exists an infrared divergence coming from
mass singularities, while no ultraviolet diver-
gence appears owing to the gauge invariance. We

(c) (d)

FIG. 8. Diagrams contributing in order g to the ma-
trix elements of the quark operator between gluon states.
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have kept the gluon mass P' finite (spacelike) to
circumvent the mass singularities. Another way
of avoiding the mass singularity is to introduce
the quark mass m while p'=0. This latter method
has been used by other group&, "'' ' ' Natur-
ally, the results for T,„are different in these two
methods and should not be directly compared. "
On the other hand, the coefficient function C,„
should be insensitive to mass singularities which
depend on the particular gtuon or quark matrix
element considered. Calculations of the coeffi-
cient function must agree in two methods up to
the normalization scale. Our normalization
scheme of the operator matrix element is dif-
ferent from that of other groups where the opera-
tor matrix element is normalized on the mass
shell so that T,„=C,„. In order to translate our
C,„ into theirs we must simply add to our C,„
the operator matrix element A~2„ in the minimal-
subtraction scheme with m+0 and p'=0. We find

g ~ 4gp,
A,„=, ,T(R)~,. In, -"r,)n 4& m

(6.26)

or equivalently,

'1 —x)F, (x, Q') = 4, T(R)x (1 —2x+ 2x') ln

—1+ 8x(1 —x) (6.28)

This result agrees with that of Witten'4 (if we cor-
rect the factor 4 and Kingsley, "but disagrees with
the result of Hinchliffe and Llewellyn Smith. "

VII. SUMMARY AND CONCLUSIONS

In this paper we have presented a general pro-
cedure (see Secs. II and VI) for the calculation
of the Wilson coefficient functions C„(Q'/p. ', g') to
order g'. An important step in this procedure, not
previously discussed in the literature, involves
the necessity of calculating both g' corrections to
the virtual Compton amplitude and g' corrections
to the matrix elements of local operators in order
to find C„(Q'/p2, g') in a general renormalization
scheme. Using this procedure we have calculated
quark and gluon coefficient functions as predicted

We can now recast our result (6.25) into the form
obtained by other groups

1 g2
' ~2 ft

dxx"-'F', (x, Q')=, T(ft) y"„ In~, -1 —g
4 4 1

+ +—2n+1 n+2 n2

(6.27)

by asymptotically free gauge theories. This we
have done for both nonsinglet and singlet structure

. functions (F„F„F~)relevant for electromagnetic
and v processes. Our results when combined with
renormalization-group equations give g' correc-
tions to the functions C„'(1,g') (i = q, 6) which en-
ter the solution of the equations in question. The
results may be found in Eqs. (3.7)-(3.10),
(4.6)-(4.8), (6.24), (6.25). We have emphasized
following Ref. 15 that the functions C'„(1,g') rele-
vant to vW, and vR', are renormalization-prescrip-
tion dependent and that this renormalization-pre-
scription dependence is canceled by that of two-
loop anomalous dimensions Z", when the full g'
corrections to the moments of various structure
functions are computed. Of course, in order for
the cancellation to occur, both C„(1,g') and y",
should be calculated in the same renormalization
scheme. As a renormalization scheme we have
chosen 't Hooft's minimal-subtraction scheme
since the only existing results for y", have been
obtained in this scheme. The longitudinal struc-
ture functions to order g' do not depend on two-
loop anomalous dimensions and therefore
C„~(l,g') is automatically renormalization-pre-
scription independent.

In the course of the calculation of the quark co-
efficient function C"„'(1,g'), we have found that the
relevant Compton amplitude and the relevant ma-
trix elements of local operators were separately
gauge dependent. We have demonstrated however
that in the renormalization scheme considered
these gauge dependences cancel each other leaving
C„(l,g') gauge independent.

Another feature of the g' corrections to C„(l,g')
concerns the ambiguity of these corrections in the
term proportional to y,". This ambiguity and cor-
responding ambiguity in parameter A is related
to the freedom of defining the effective coupling
constant when solving renormalization-group equa-
tions. We have discussed it in detail in Sec. III D.

In Sec. V we have combined our results for non-
singlet structure functions with those for two-loop
anomalous dimensions of Ref. 15 and two-loop P
function of Ref. 21 to obtain the full g' correction
to the leading-order formula for nonsinglet struc-
ture functions. We have compared our results
with the recently measured" moments of v%3 ' ".
In order to demonstrate the ambiguity of g' cor-
rections mentioned above, we have considered
various schemes corresponding to various defini-
tions of the effective coupling constant. All
schemes gave a good agreement with experimental
data although, using one of them (A„scheme) which
is particularly suited for testing the n dependence
of g' corrections, we have found that for n& 5
some indication of other effects (e.g. , higher
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twist operators) not included in our analysis may
be present in the data. It is important to check
for these effects in experiments with high statis-
tics.

Our results for singlet structure functions can
be combined with two-loop singlet anomalous di-
mensions calculated in the minimal-subtraction
scheme once such a calculation is completed. "

Finally we have calculated g' corrections to the
Gross-Llewellyn Smith and Bjorken sum rules.
Our results for these sum rules disagree with those
of Calvo. " It turns out that the violations of the
sum rules in question are of the order of 15% at
prese'ntly available values of Q' and experiments
with high statistics should detect them.

Note added in Proof. The results in Eqs. (6.22),
(6.25}, (6.26}, (A20), and (A22) differ from our
results in Fermilab-Pub-78/42-THY (unpublished)
by the replacement y~- y~ —1. This is due to the
fact that in our previous paper we have applied the
minimal subtraction scheme to the spin averaged
matrix elements of the local operators whereas
the authors of Ref. 15 applied the scheme in ques-
tion directly to the operators. To be consistent
with the result of Refs. 15 and 16 we have modi-
fied our previous results as indicated above. We
thank the authors of Ref. 16 for pointing out the
discrepancy between their procedure and ours.
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APPENDIX

The details of our calculation of the coefficient
functions in electroproduction and neutrino reac-
tions are presented here. The results of the cal-
culation are given for the minimal-subtraction
scheme in the dimensional regularization. The
calculation is performed in an arbitrary covariant
gauge, and the gauge term is given separately.
The nonsinglet Born amplitude is normalized to
1. 'The following projection tensors are used to
project out invariant amplitudes:

P&v 2 PDv+Pvqu
(P 'q)' P 'q (A1)

9'f Cv
flv pv 2 (A2)

A. Electroproduction: Nonsinglet

1. Current correlation functions

The constant y~ appearing in the text is the Euler-
Macheroni constant y~ = 0.5772. . . , and g is a di-
mensionless renormalized coupling constant in the
minimal-subtraction scheme.

We thank Chris Sachrajda for sending us the
corrected values of two-loop anomalous dimen-

The internal self-energy diagram [Fig. 2(a)]
gives

C,(}4} g (
—
) d„„(y +ln, —1 —g-+ —

)
— " ",4'

The vertex-correction diagrams [Fig. 2(b} and 2(c)] give

C (}4} g (-) d„„(-4g -(n —2(yn+ln ) +-+4/ - —8g —
)

pupv 2 2 2 2

(P 'q)' n —1 n ""n

The box diagram [Fig. 2(d)] gives

g' - 1 ~ 4 2 @2 6 6 4
C,(R) — e„„+d„„ 1n, --+ '+ —,-

16m ' „2, x ""n+ 1 ""n(n+ 1) -p' n n+ 1 n' (n+ 1)')

~ pp ~ 2-1 2
(p'q)'q n n 1~""n—

The gauge term for the whole amplitude is

g2 1 "1 1 -p'~
(1 n), C,(R—)d„„——+ —'. —1+ys+ lnx g ., j ~ 4wp']

The definition of the gauge parameter u is given in (3.3). The whole expression is

(A3)

(A4)

(A5)

(A6)
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g2 1 ~ 4 - „q' -p' 1 6 4 4
16,C,(R) — e„„1+d„„-y,"1n, -yz —ln4, -1 ——+ 1+—,—,

,g, ~ ~. & 8+ -p 4Fp tl 6+ 1 8 (0+1

where

2 1
yn +4

n(n+1) . j '

1 1 1 1 -p~
+ 3 —. - 8 —.,+ (1 - o.) —+ —. —1+ye+ ln

n . g
~ 4m', ' (AV)

(A8)

2. Operator matrix element

We present the product of the operator matrix element and the lowest-order coefficient function. The
triangle diagram [Fig. 3(a)] gives

2 -P' 2 ~ 1 4 2 2 4, C,(R)d„„ y~+ ln + +16V' ' ""„. x n(n+ 1) 4v p, n(n+ 1) j n n+ 1 n' (n+ 1)'

The vertex-correction diagram [Fig. 3(b)] gives

,C,(R)d„„(—) 4 g-. (y + ln
)

+ 4 —4 g —,—. 4 g-
The gauge term for the whole amplitude is

(1 —n), C,(R)d„„g (-) (-+ g--.l+yn+ ln )
The whole express~. on is

(Ae)

(A10)

(All)

C,(R)d»„— (y, —1}ye+in, +8-—+ +

(A12)

3. Coefficient functions

The coefficient functions are given by

2 1 n

, C,(R) Q — (e„„C~„+d„„C,„)= (AV) —(A12),

4
CLn

(A13)

Q' 3 4 2 1 1 2 1 1 1
C, =-y, y +ln, -9+-+ + —,+3 —. -4 —., — —. +4

4vp, n n+1 n' . j j' n(n+1} . j ~ s ~ j' (A14)

where C~„and C,„are related to C~s and C",~ defined in (3.7) and (3.8) such that Cga = (g'/16m'}C, (R)C~„
and C2s =1+ (g'l16m')C, (R)C,„at Q'= p, '.

B. Electroproduction: Singlet

Since the quark contribution to the singlet part is exactly the same as that of the nonsinglet case, we
discuss here only the gluon contributions.

1. Current correlation functions

The contributions of diagrams Fig. V(d)-7(f) are equal to those of Fig. 7(a}-7(c), respectively, and Fig.
7(b) is a crossed diagram of Fig. V(a). The contribution of 7(a)+7(b)+7(d)+7(e) is

4
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g,-T(R) g
tf=2g 4e ~ ~ ~

d„„~—ln, ——+ —, — " "„4(' —— +,T(R) -4e„„+2g„~l-ye —in4, )
(A15)

The contribution of 7(c)+7(f) is

4)T ~ ~g j ""(n+ 1)(n+ 2) "" (n+ 1)(n+ 2) jj) n+ 1 n+ 2 (n+ 1) (n+ 2)

+ " ",q' 1--[ +4, T(R) 4e„„—2g„„~(l-ye-ln4, )
The whole expression is

(A16)

47)' „~2,4 &xj ""(n+ 1)(n+ 2) ~" n(n+ 1)(n+ 2) -p

2 6 6 2 4 4
n n+1 n+2 n (n+1) (n+ 2)

(A17)

The contribution of Fig. 8(a) and 8(b) is

,T(R)d„„-~ -- y, +in
2y oooo

The contribution of Fig. 8(c) and 8(d) is

2, Operator matrix element

2 1 1 1 n'+g+ 2
n+n' n, g n(n+1)(n+2) (A18)

2 2 f' -p' 'I 2 2

(x (n+1)(n+2) &
47)'p'j n+1 n+2

g, TR)d„„ ye+ in, +

4 4 2

(n+ 1) (n+ 2) (n+ 1)(n+ 2)g j
The whole expression is

Ã +A+2 p
, 2'(j()d„, P ( I n(n+1)(n+2) ( 4nn') n n+1 n+2

(A19)

4 4 n'+n+2 1'l

n (n+1) (n+2) n(n+1)(n+2) j j, ' (A20)

'The coefficient functions are given by

3. Coefficient functions

4, T(R) g ~&

—) (e„„C~„+d„„C,„)=(A17)—(A20),
g2

4
C

(n+ 1)(n+ 2) ' (A21)

n'+n+ 2 Q' 4 4 1 n'+n+ 2 " 1(
C, = ye+1n, + — + —,— 1+n(n+1)(n+2) e 4vp' n+1 n+2 n' n(n+1)(n+2) j j '

where C~„and C,„are related to Cg„and Cen„ in (6.24) and (6.25) such that C~„=(g'/47)')T(R)C~„and Ce2„
=(g'/4~')T(R)C, „at q'= p,'.

(A22)

C. Neutrino reactions

For the combinations T",+ T", and T~ + TI, defined in Sec. IVA the results are exactly the same as in the
case of electroproduction with even n for T", ~+ T", ~ and with odd n for T", ~-T2 I, . 'The operator matrix
elements are also the same as (A12) with n even and odd, respectively.

For T",+ T"„which correspond to the VA interference terms, we obtain
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g' &V" - q' -p' 3 4 4
,C, R) .

~

— -y",ln, -ys-ln, —1-—+ + —,—
16m' ' „,, (x) ' -P' s 4w y,

' n n+ 1 n' (n+ 1)'

1 1 (l 1 -p' )
+ 3 —. -6 —.,+ (1 —o}~ —+ —. —1+ys+ ln

ag 2 mg &n ., j (A23)

The corresponding operator matrix elements are identical to (A12) with n odd or even. Consequently, the
coefficient function is given by

16m' ' ' 4w p.
' n n+ j. n'

(A24)

with n odd for v+ v and n even for P -v.
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