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New data showing that the photon-nucleon total cross section increases with energy for v > 50 GeV
invalidate earlier comparisons with dispersion relations. Parametrization of the data are presented and used
in a new formulation of the dispersion relations, in which an assumed asymptotic behavior avoids the need
for subtraction. With this form the fitted amplitude can be compared directly with the Thomson limit. The
experimental uncertainties are shown to have a significant effect upon such a comparison.

I. INTRODUCTION

Recent measurements at Fermilab have shown
that the photon-proton total cross section increases
in the energy range from 30 to 180 GeV.! These
new data, in behaving just like those for purely
hadronic interactions, fulfill the predictions of
models such as geometrical scaling? or vector-
meson dominance,® which assumed such a similar
behavior. The implications of the increase for
photoproduction processes involving charmed
quarks or higher-mass quarks have already been
studied by several authors.!* The consequences
for more “classical” topics, such as the evalua-
tion via dispersion relations of the real part of
the spin-averaged Compton amplitude, have not
yet been as thoroughly explored.?

Damashek and Gilman,5 in 1970, carried out the
first dispersion relation calculations of the real
part of f,(v), the spin-averaged forward yp ampli-
tude, using the equation

Ref,(v)=£,(0) +§ P [c i Vi,;%du' . (1)

The total-cross-section data available at that time,
ranging from the low-energy region up to 20 GeV,
decreased with energy in the fashion traditionally
parametrized by simple Regge-pole dominance.
The real part they calculated, by assuming a
Regge-pole asymptotic form, showed a corre-
sponding decreasing behavior. However, this cal-
culated real part was not identified with the real
part predicted by the Regge-pole amplitude; the
difference between the two was consistent with a
constant value of about =3 pb GeV, in agreement
with the Thomson limit f,(0) =a/My. The presence
of such a constant real term in f;(v) could be in-
terpreted in terms of a fixed pole at angular mo-
mentum J =0. Subsequent calculations using finite-
energy sum rules (FESR)® or continuous-moment
sum rules’ (CMSR) either confirmed the presence
of this effect or reported an uncertainty in deter-
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mining the residue because of lack of precision in
the data. Moffat and Snell® suggested a Regge-cut
mechanism in place of the fixed-pole term, since
the latter violates unitarity. They were able to
show that the cut term was an acceptable alterna-
tive, even though it produced a total cross section
which asymptotically 7ose to a constant (although
their results continued to decrease to beyond

v =100 GeV/c, in contradiction to current data).

The new Fermilab data show clearly that the
Regge-pole form assumed by Damashek and Gil-
man is incorrect. Neither their evaluation of the
dispersion integral nor the theoretical real part
of the Regge amplitude with which they compared
their result is valid for the Compton amplitude.
The dispersion integral can be calculated using
whatever energy dependence one wishes to as-
sume for ox(v) =47Im f,(v)/v; but in order to
evaluate the possible contribution of the Thomson
limit, one must know the real part of the corres-
ponding amplitude. As Eden® has shown, there is
a simple relation, based on analyticity and cross-
ing symmetry, between the phase of the scattering
amplitude and its energy dependence. From this
relationship, it follows that if the total cross sec-
tion rises asymptotically, the real part of the
amplitude must also rise, rather than decrease
to zero as in Damashek and Gilman’s Regge-pole
form. For example, the real part of f,(v) obtained
in Ref. 2 using geometrical-scaling arguments
reaches a minimum with a negative value, then
turns toward zero and increases through positive
values. Similar features for Ref,(v) were obtained
by Weise,!® using an assumed yp total cross sec-
tion which saturates the Froissart bound (but lies
significantly higher than the Fermilab data).

This paper is intended to study yp dispersion
relations in the light of the new data and the need
for a new assumption about the asymptotic form of
the amplitude. Since the results depend to some
extent on the exact form assumed for the asymptot-
ic energy dependence of f,(v), we devote the next
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section to a comparative evaluation of possible fits
to the total cross section. In Sec. III we derive a
modified form of the dispersion relation which
allows us to evaluate directly the magnitude of any
constant real term present in f,(v), using any as-
sumed asymptotic form for the amplitude consis-
tent with Eden’s phase-energy relation.

II. FITS TO THE DATA

The behavior of the total-cross-section data'!
is indicated in Fig. 1. It is clear that o x(v) is in-
creasing for v values greater than about 40 GeV,
although it is certainly not possible to say what
form that increase will take as v—- . We have
considered three fundamental possibilities:

(a) rising to saturate the Froissart bound,
o~ 1Infy;

(b) rising as in the geometrical-scaling model,
o~ 1ny;

(c) rising toward a constant as the effects of an
absorptive cut disappear, 0 ,~0.— oc/lnv.

These basic functional forms have been fitted to
the data for v>2.0 GeV. Because the lower end of
this energy range includes a region in which o ,(v)
is decreasing, we have also included a v™'/% term
in each of our fits. The precise forms we have
used are

v -1/2 v
0s(v) =0, +0, ;—) +o,In(-=), (2)
0

0

(
opv) =0, +0, (;’:—) e +03(1n2(;l;—) - 112/4) , (3)

-1/2
v
ocv) =0, +0, (;—)
0

+0g ln(-V—Vo->/(1n2(l—)V:) +112/4) , | 4)

where v,=0.015 GeV is the energy of the first in-
elastic threshold.

Each of these forms produces an excellent fit to
the data, as shown in Table I. The confidence
levels are high, and the results are essentially in-
distinguishable, although o.(x) is very slightly less
satisfactory than the other two. In Fig. 1 we show
the comparison of these three fits with the data, on
a logarithmic energy scale. The differences be-
tween the three parametrizations do not become
measurable until the energy reaches v= 1000 GeV.

The results of Barger et al.’? for geometrical
scaling in hadronic processes would correspond to
0,/0,~0.077, whereas our best fit has 0,/0,=0.128;
we can obtain almost equally satisfactory fits with
their value, however, and ascribe no great sig-
nificance to the difference.
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FIG. 1. Comparison of the three fitted parametriza-
tions of Egs. (2), (3), and (4) with each other and with
experimental data. The data points shown are a repre-
sentative sample of the 88 points used, -the sources of
which are listed in Ref. 1 and Ref. 11.

III. A SUM RULE FOR £(0)

We next explore the consequences of these fits
for the photon-nucleon dispersion relations. For
all three models, the fact that o ,(v) will exceed
Damashek and Gilman’s estimate for high energies
implies that the value of the integral in (1) will be
larger, i.e., that the value of [Ref,(v) - £,(0)] will
be larger, than they found. Since this dispersion
relation has a subtraction at v =0, however, it is
necessary to assume the value of f,(0) in order to
evaluate it. As a consequence it is difficult to
establish more than consistency for the value
f1(0)==a/M,; to accomplish even that much re-
quires knowing on theoretical grounds the real
part corresponding to the asymptotic amplitude.
Damashek and Gilman’s conclusion is based on the
observation that the contribution of the integral in
(1) differs by about —3 pb GeV from the real part
predicted by the Regge-pole amplitude they used.

To reach analogous conclusions from the analysis
presented in the preceding section, we must know
the real parts of the amplitudes which yield o, o,
and o,. These amplitudes, unlike Damashek and
Gilman’s Regge poles, are not the results of any
firmly based theory. It is known,® however, that
an asymptotic amplitude satisfying the require-
ments of analyticity and crossing symmetry can
be obtained by using a real analytic function of
the variable v/i. By this technique, we could ob-
tain theoretical real parts corresponding to o5, 0g,
and 0., and proceed in the same way as Damashek
and Gilman.

If one assumes such an amplitude, however, it
is possible to do much better than merely show
consistency. Instead, as we show in this section,
one can derive a modified dispersion relation which
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TABLE 1. Best fits to vp total cross sections.

Form [Egs. (2)-(4)] oy (pb) 0, (Hb) 03,4,5 (Hb) X2 CL (%)
oG 58.42 23345 7.446 76.4 74
op 87.98 185.6 0.5201 76.9 72
oc 188.6 510.9 —636.2 78.1 69

yields a direct evaluation of the value of f,(0) for
any assumed form of the asymptotic amplitude.
Since this is possible, and since the fixed-pole
question raises possible doubts about the validity
of using the classical Thomson limit in (1), we do
not carry out such a direct evaluation. Instead, we
calculate £,(0) from each of these fits, and then
compare it to a —a/M,.

Our technique is based upon subtracting the
asymptotic behavior of f,(v), rather than its value
at v =0, in writing the dispersion relation. It
should be recalled that subtraction is necessary
because f,(v) does not vanish as |v|- . Let us de-
fine a function g(v) which has the same analytic
structure as f,(v) (i.e., cuts from +v,=0.15 to +w)
and for which |f,(v) = g(v)|~ 0 as [v|= . Then
we can write a dispersion relation

fl(y) g(V) - 21¥’L L(_Vl:z‘:_f-(—ﬂ av (5)

in the traditional way, and deform the contour so
that it surrounds the two cuts and closes at infin-
ity, where the integrand vanishes by definition.
Thus we obtain, on combining the integrals over
the integrals over the two cuts,

f,0)-gw)=1/7 f N V"Im[fll(/v') gl o

7 _ 2

-5 f Lot o) °(V')] a,

For v=0, Eq. (7)

where o, (') =4nImg(v’ +ie)/v’.
becomes
1 * )
£O=60) 45 [ o) =00, @
Now let us assume that g(v) has been chosen such
that o, (v) is a good parametrlzatwn of o(v) above

SOme energy Vy,, i.e., that f (0= 0,)dv' is neg-
ligible. Then it follows that

fl(o) =g(0) +§-:;T '{(‘)vmax

and, by taking y,,, as the highest measured energy,
we may directly evaluate f,(0) for any assumed -
gw).

We have considered five different functional
forms for g(v), corresponding to the five different
terms making up o5, 05, and o, i.e., to cross

[op(v) =0 (v)]dv',  (9)

sections which asymptotically (1) become constant,
(2) rise like Inv, and (3) rise like In?y, plus cor-
rection terms behaving like (4) a Regge-pole term
yielding v™'/2, and (5) a Regge cut correction
yielding —1/lny. Specifically, the functional forms
we have studied, which yield respectively these
total cross sections, are

a0 =-(222)" (10)
) == (”J%,}f)m : (11)
i N
a0 =- (272 {[( N:"z)m]q
"ng—-u?} (14)

All five of these functions have precisely the same
analytic structure as f(v). They correspond, re-
spectively, to the total-cross-section forms used
in Sec. II, except for a factor (1-vy?/v?)*? which
has no effect on the fits since 1?/v,2>100 is the
range used. [For g,(v), poles in the logarithmic
terms at v* =-N% +y 2 have been explicitly re-
moved.] We shall use them in various combina-
tions to evaluate the sum rule (9).

A. One- and two-parameter representations

The simplest approach to (9) is to assume that
the total cross section for v> 183 GeV is a multiple
of a single one of the g;(v), e.g. g(v) =y,g,(v). Then
the sum rule can be used to determine y,, and its
consistency with the data can be determined. For
simplicity we have taken N? =y 2. Using the data,
we obtain

1 183.0
= f o(w’)dv’ =1079.3 ub GeV ; (15)
0.i5
the integral of o, is
_Lflss.o (Vz_UZ)uzln(Vz_Va)l/z
2% J s Y4 qu Vo

=4743.3y,, (16)
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and g,(0) =0. Consequently (9) yields, for this param
etrization,

£1(0)=(1079.3 - 4743.3y,) ubGeV . 1mn

If we take y,=0.202, corresponding to the ex-
perimental cross sections (0~ 117 ub at v ~150
GeV), then it follows that f,(0) =121 ubGeV, in
drastic disagreement with the Thomson limit.
Conversely, if we require f,(0)=-3 pbGeV, then
v4=0.228, corresponding to a total cross section
which is 13% larger than the experimental data.

1t follows that g,(v) alone does not provide a
satisfactory representation of the photon-nucleon
asymptotic amplitude. Similar results are ob-
tained using g,(v) or g,(v) instead of g,(v). This
result is not surprising. To neglect |o - ogl for
v>183 GeV it is necessary that |0 —0,|<e/v where
€ is small; otherwise the integral will diverge.
Consequently g(v) must yield the correct asymp-
totic total cross section down to order 1/v. We
know, however, that the Regge-pole terms yield
a contribution of order v™*/2, and this contribution
cannot be neglected.

We therefore consider two-parameter forms
such as g(v) =y,g,(v) +y,4,(v), i.e., a logarithmical-
ly rising total cross section plus Regge-pole cor-
rections. In this case one can use the sum rule
(9), plus the requirement that o, agree with the
data at the highest available energy, to determine
Y. and y,, obtaining y,=0.177 and y, =7.66. While
this form for g(v) is not unacceptable, it is gen-
erally quite low throughout the range 2<v< 100
GeV, and it would certainly not be chosen as a
good parametrization of the data. As before,
replacing g, by g, or g; yields a similar result,
Thus we conclude that a reasonable form for g(v)
must involve at least three of the forms listed
above,

B. Fits using three terms for g(v)

Since the results of the preceding section indi-
cate that no simpier parametrization will suffice,
we use fits corresponding to those in Sec. II, in-
volving three of the functional forms g;(v). For

each of these parametrizations we have found the
best fit to the yp total-cross-section data for
2<v <183 GeV. Using this fit, we can calculate
directly from (10) the value of £,(0) implied by the
data. The results are summarized in Table IL

For the fits which have an increasing total cross
section, the best-fit predicted value of f,(0) is
around -7 pbGeV, substantially more negative
than the Thomson limit. Since numerical integra-
tion of both experimental data and theoretical
curves is involved, the uncertainties on this num-
ber are difficult to estimate. Considering that
they involve the difference of the two integrated
cross sections in (16), both of which are of order
1000 b GeV, one would expect considerable un-
certainty. On the other hand, the choice of param
eters is predicated on minimizing |o -0, | for v>2
GeV, so the contributions can differ significantly
only in the resonance region, where each is less
than 20 pbGeV.

In any case, the best test of the accuracy of our
determination of f£,(0) is to see how much the ¥* of
the fit changes if we require different values of
£1(0). For this purpose, we repeated the fits with
the restriction that the coefficient v, be determined
from (9) with £,(0) =~3 ub GeV. The results are
also included in Table I. For the rising total cross
sections, imposing this requirement caused an in-
crease of only about 2 in xz, with a confidence
level decline of less than 5%. For the fit in which
a constant asymptotic cross section is approached
as subtractive cut effects disappear, the predicted
value of f,(0) for the best fit is —=3.65 pbGeV,
much closer to a/M,, and the effect of restricting
/1(0) to the Thomson-limit value is correspondingly
less important. In general, the quality of the fits
is not sensitive to variations in f,(0) of as much as
10 ubGeV.

In all of these fits we maintained the values
N =y, for the normalization energy and o =0.5 for
the Regge-pole intercept. The parametrizations
are generally insensitive to reasonable variations
from these values. Indeed, in a number of cases

. the parametrization is degenerate, in the sense

that a change in v, or o can be absorbed into a

TABLE II. Values of f;(0) obtained using best-fit parameters.

Form of
G, v v, (ubGeV) ¥y (b GeV) i ¥i (UbGeV) x* CL %  £i(0) (ubGeV)
o 0.697 + 0,050 3.95 +0.21 4 0.0889 + 0.0071 78.86 72.4 ~7.26
.. 0.40+0.071 3.70 +0.26 4 0.0825 + 0.0077 78.95 66.4 -3 (fixed)
oF 1.050+ 0,022 3.133+0.150 3 0.00621+ 0,00050  76.38 73.7 —7.53
1,066+ 0.028 2.964+ 0,163 3 0.00579+ 0,00054  78.25 68.4 —3 (fixed)
ac 2.25 +0.12 8.62 +0.90 5 -7.59 +0.95 78.10 68.9 —3.65
2.26 + 0,12 8.58 +0.90 5 701  £0.96 78.82 66.8 -3 (fixed)
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redefinition of the other parameters. For example,
if g(v) includesg,, g,, 2,, and g, any change in N sim-
ply changes the coefficients of the four terms, without
any change in the value of the function, that is,
a+bln(v/N)=a’+b'In(v/N’), with a’=a+b1n(N’/N),
b’ =b, and so on. Only for g; is there a specific
dependence on v, and o, and in fits using g, we
have tested that dependence explicitly. We find
that the fits are not strongly sensitive to variations
of @ within the range 0.4 <« <0.6, or to the choice
of N provided N is less than about 0.5 GeV. Varia-
tions within these ranges will change the predicted
value of f,(0) to an extent comparable to those con-
sidered above.

IV. CONCLUSIONS

One can scarcely doubt the validity of the photon-
nucleon dispersion relations. Their utility in cal-
culating the real part of the spin-averaged forward
Compton amplitude depends, however, on (a) the
asymptotic behavior assumed for the total cross
section, and (b) the confidence one has in the use
of the classical Thomson limit for the required
subtraction.

We have reformulated the dispersion relationina
way that substitutes better knowledge of the asymp-
totic cross section for the assumption of the Thom-

son limit. The resulting sum rule makes it pos-
sible to calculate f,(0) and compare it with the pre-
dicted value. Certain very simple forms of the
asymptotic amplitude are clearly inconsistent with
f1(0)==a/ M,; however, any reasonably flexible
form can simultaneously fit the total-cross-sec-
tion data for v>2 GeV/c and a w1de range of values
for £,(0).

Indeed, the existing cross-section data cannot
distinguish among a wide range of asymptotic
forms. Correspondingly, the dispersion relations
are insensitive to significant variation in the
asymptotic real/imaginary ratio. Furthermore,
they cannot distinguish the value of f,(0) even with-
in several hundred percent, and the real/imaginary
ratio at low energies is correspondingly uncertain,
It appears, therefore, that the dispersion relation
is not significantly better calculationally than
techniques relying on local properties, such as
derivative analyticity relations.'®
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