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For nondiffractive m p interactions at high energy we find that the dependence of the cross section on
charge multiplicity in each c,m. hemisphere exhibits Koba-Nielsen-Olesen scaling. We use this behavior to
extract a cross section for diffractive excitation of 3.4+ 0.2 mb at 200 GeV/c. We attribute —55% of this
to pion excitation, with a mean breakup charge multiplicity of 2.9, -30% to proton excitation, with
mean charge multiplicity -2.2 and -15% to double excitation. We believe this technique is widely appli-
cable for extracting the diffractive component in hadronic interactions.

It is of interest to determine the cross sections
for diffractive dissociation of different hadrons
in high-energy collisions. One can attempt this
by looking for prominent departures, of diffractive
origin, from smooth regularities of the nondiffrac-
tive component. We report here an application of
such an approach to our 2 00G Ve/c ~ p data. Our
technique, which is a novel generalization of ideas
put forward by Sivers and Thomas, ' is the follow-
ing: We classify all inelastic events by their
charge multiplicites (n~, ns) in the forward and
backward hemispheres. Since the (even, even)
subset requires charge exchange between the two
hemispheres, it is at high energies almost free
of the diffractive component. Using this subset,
and making the entirely reasonable assumption
that the nondiffractive part of the (odd, odd) sub-
set should interpolate smoothly the (even, even)
subset, we separate the (odd, odd) subset into its
nondiffractive and diffractive components. This
separation is greatly facilitated by the important
empirical observation that the (even, even) subset
satisfies a modified form of Koba-Nielsen-Olesen
(KNO) scaling. ' In addition to its conceptual sim-
plicity, the above technique represents a method
for extracting the diffractive component which
provides a useful alternative to the more conven-
tional methods based on Feynman-x, missing-
mass, or momentum-transfer cuts. In all of these
methods it is necessary to estimate the contribu-
tion of a background of unknown form on which
the diffractive component is superimposed; in the

method described here, no such background sub-
traction is required. Possible sources of error
are thus expected to be quite different. Our esti-
mates of errors suggest that this method based
on forward-backward multiplicities should be at
least as reliable as the conventional methods when
applied to comparable data samples. A problem
with the method, which may cause an underesti-
mate of diffractive contributions at high charge
multiplicities, is that some particles from de-
cays of diffractive systems of very high mass may
occasionally cross over into the opposite hemi-
sphere, thus contributing to the (even, even) sub-
Iset which is assumed to represent a purely non-
diffractive component. We note, however, that
difficulties in estimating diffractive contributions
at large mass and high multiplicity are at least
as serious for the other methods cited, since the
signal-to-background ratio becomes quite small
and the errors on the estimated diffractive signal
are very large. In the kinematical region where
diffractive and nondiffractive processes are both
significant, they may even interfere. In such a
situation it is difficult, if not impossible, to a-
chieve a definitive separation with currently avail-
able statistics.

The analysis reported here is based on approx-
imately 17 000 inelastic events of all topologies,
obtained with a hybrid spectrometer composed of
the Fermilab 30-in. bubble chamber and a wide-
gap spark-chamber system. Details of the spec-
trometer can be found in Ref. 3.
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the (odd, odd) subset we fit the (even, even) data
shown in Fig. 1(a) with a fourth-order power series

f(c)=exp ~ s,s'), z =a~~,z~~ (2)

obtaining the best fit (a, = -1.9, 8.0, -9.1,4.1.,
-0.72, for i= 0, . . . , 4), which is also shown in
Fig. 1. The above function is chosen for its sim-
plicity, and has no theoretical significance. Using
this fit as the interpolating function, we then pro-
ceed to estimate the nondiffractive (odd, odd)
cross sections. Here we face a small technical
difficulty. In order to plot the (odd, odd) data in a
fashion similar to that of Fig. 1(a), we need to
know the various nondiffractive (ND) means
(n~ (ns odd)) and (ns" (nz odd)}, and none of these
can be determined directly without knowing the
diffractive admixtures in the (odd, odd) cross sec-
tions beforehand.

This problem can be tackled in several different
ways. A straightforward approach is simply to
assume that the (odd, odd} nondiffractive mean
multiplicities (ns "n(sz)) interpolate smoothly be-
tween(ns(n~ —1})and(ns(nz+1)}. We have chosen
instead to use the following alternative method
based on the assumption of smooth variation and
approximate KNO scaling for the forward-back-
ward multiplicities in the nondiffractive compon-
ent at all multiplicities. From earlier high-ener-
gy experiments, as well as from general factoriza-
tion arguments, we know that the contribution of
double-diffractive processes (i.e. , of processes
where both the beam and the target particles dis-
sociate) into the cross sections c(odd& 1,odd& 1)
is small. Neglecting this small admixture, ' we
may fit the e(odd& 1,odd& 1}data directly to Eqs.
(2) and (2), with the various (n~" (n~ odd& 1)}and

(ns (n~ odd& 1)}as the only free parameters, the
parameters of Eq. (2) having been fixed by the
(even, even) data. [See Fig. 1(a).] For example,
(nz" (ns = 5}) is determined by fitting the data for
p(n~& l, ns = 5) to Eq. (2). We can then deduce
p" (1,5), and similarly the other p" (1,ns & 1)
and p" (nz & 1, I) froin Eq. (2). The resulting
nondiffractive and diffractive cross sections are
given in Table I. To complete the task of deter-
mining the diffractive component, we need
p" (1,1). To this end we use the o„n(&1,1) and

v„D(1,&I) to fit for (nz (nz= 1)) and (ns (nz = 1)) as
above. Putting these in Eq. (2) gives us two inde-
pendent determinations of the nondiffractive coin-
ponent of o(1, 1). It is reassuring to note in Table
I that the two determinations come out quite close
to one another.

Let us consider further the physical plausibility
of this determination of the diffractive cross sec-
tions. In Fig. 2 (solid points) we see that at low

(ny ng) (mb)
a'~(n&, n&)

(mb)
Ogff (n~, n~)

(mb)

(3, 1)
(1,3)
(5.1)
(1,5)
(V, 1)
(1,7)

1.47+ 0.10

1.53 + 0.10
0;94 +0.08
0.71+ 0.07
0.36 +0.05
0.33+ 0.04
0.13+0.05

0.19~ 0.03
0.18 from p(n&, 1)
0.20 from p(1, n~)
0.47 + 0.09
0.44+ 0.08
0.41 + 0.08
0.28 + 0.06
0.20 ~ 0.06
0.11+ 0.05

1.28 +0.10

1.06 + 0.13
0.50+0.08
0.30 +0.08
0.08+0.04
0.13+0.06
0.02 +0.02

Total 5.4V +0.19 2.10+ 0.18 3.37 +0.21

multiplicities the (odd, odd) hemisphere mean
charge multiplicities are consistently lower than
their (even, even) neighbors, This is no doubt due

largely to diffractive dissociation. By contrast,
the nondiffractive mean multiplicities deduced a-
bove (open circles) interpolate smoothly between
their neighbors. It is interesting to note-that the
(odd, odd) mean multiplicities for the nondiffrac-
tive component derived by our method are quite
consistent with those which would have been ob-
tained by straight-line interpolation between ad-
jacent (even, even) mean multiplicities. Any de-

4

(ns)

0

0 '
l 2 5 6
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FIG. 2. The average e.m.-heinisphere charged multi-
plicity as a function of the charged multiplicity in the
other hemisphere (solid points). The open points are
fitted averages for the nondiffrachve component (see
text).

TABLE I. Cross sections for forward-backward multi-.
plicities with either n~=1 or n~ =1. The quoted errors
include statistical errors and contributions from the fit-
ting process but do not include any allowance for approxi-
matioris made in determining the method of fitting.
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viations which occur seem to correspond to slight-
ly higher (odd, odd) mean multiplicities than those

I,
estimated by simple interpolation. The differ-
ences, however, are not statistically significant.
It is clear that an adequate estimate of the dif-
fractive and nondiffractive components in the
cross section can be obtained via the simpler
method of interpolation for finding the nondiffrac-
tive (odd, odd) mean multiplicities.

We have used the calculated nondiffractive mean
heinisphere multiplicities to plot in Fig. 1(b) the
"raw" (odd, odd) distribution in the manner of
Koba, Nielsen, and Qlesen, with the scaling func-
tion f from Fig. 1(a) [fitted from (even, even) dataj
superimposed for comparison. We find that the
same f describes the o(&1,&l) points reasonably
well, whereas the points with one prong in either
hemisphere rise in a striking fashion above f. We

attribute tkis peak to diffractive dissociation, and
the scaling background below it to nondiffractive
processes.

Figure 3 compares the inelastic diffractive cross
sections obtained in the above fashion with the non-
diffractive cross sections as a function of charge
multiplicity. (Data on the total charge multiplicity
distribution from Ref. 7 have been used in this
figure. ) The total inelastic diffractive cross sec-
tion is 3.4+0.2 mb, which is approximately 18%
of the total inelastic cross section. This is quite
close to the elastic cross section of 3.18+ 0.13
mb, ' just as is the case with pp scattering, ' The
diffractive component is concentrated at low mul-
tiplicities, with a mean charge multiplicity of 3.6
+ 0.1, compared to the nondiffractive component
with a cross section of 17.6+ 0.4 mb and a mean
charge multiplicity of 8.8+ 0.1.

Ifwe neglect double diffractive dissociation (see be-
low) the a~«~(&1, 1) in Table Idescribe the diffractive
breakup of the beam w, while g««(l, &I) describe
the proton breakup. But the present analysis does
not tell us how to allocate o««(1, 1) between beam
and target excitation. However, in the case of
2-prong events, it is possible to make a good esti-
mate of the beam diffractive breakup from a plot
of mass recoiling against the proton using a
background-subtraction method. With a straight-
forward (and sma/I) background subtraction, we
find the 2-prong cross section for diffractive ex-
citation of the m to be 0.71+0.05 mb. ' Subtracting
this from our o~,«(1, 1) we get -0.57 mb for the
diffractive breakup of the target proton with only
one charged track. Using these results, we can
compare the cross sections and charge multiplic-
ity distributions for pion and proton diffractive
excitation. We obtain estimates for o~„, and o~„&
of 2.19 and 1.18 mb, respectively. The ratio v~«, /
Hjg f f is then -1.9. We find that the charge multi-
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FIG. 3. The charged-particle multiplicity distribution
for inelastic diffractive dissociation (solid circles) and
for the nondiffractive component (open circles).

o'sn(» I)+sn(1, 1)
0'z)z)P 1 1)

&ei

&so(1, 1)&aD(1 »)
&z)DL1 y )

~ei

(4a)

(4b)

where o» represents a true single-diffractive
cross section. Similar relations may be written
for the o»(odd&1, odd&1) cross sections. From
these relations and the cr««and o««values pre-
viously obtained, it is possible to find a consistent
set of estimateS: o» (all channels) -0.4-0.5 mb

plicity for pion breakup tends to be higher
((nz)'- 2.9) than for proton dissociation '((ns)~
—2.2).

The above values of o~«, and o~«, include pos-
sible contributions from double-diffractive -dis-
sociation channels o»(&1, 1) and ann(1, &1) in
addition tothe true single-diffractive cross sec-
tions. The size of these contributions can be esti-
mated from factorization relations. If we ignore
kinematic t „effects,"which are known to sup-
press double dissociation much more than single
dissociation, we obtain the approximate relations
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(b)

p P

P P P P

FIG. 4. Triple-Hegge diagrams describing (a) pion
diffractive dissociation in gp collisions and (b) proton
diffractive dissociation in pp collisions. The inclusive
cross section is given by a line'ar combination of the
triple-Pomeron and PPf terms.

(5)

(&2(P/o of o«~, ), o~n =1.9 mb, and osn = 1.0 mb. The
ratio of osn/osn remains ™1.9.

Factorization may also be used to obtain an esti-
mate of proton single-diffractive dissociation in
proton-proton collisions. Consider the triple-
Regge diagrams, shown in Fig. 4, describing pion
dissociation in mp collisions and proton dissocia-
tion in pp collisions. Since the Pomeron and f
couplings to the external particles are empirically
known to be proportional to each other, "we get

Using the above value, osD(v p) = 1.9 mb and the
total-cross-section ratio 1.63 we obtain osn(pp)
= 6.2 mb, in good agreement with the various em-
pirical estimates' of 5 to 7 mb.

In summary, we find that Koba-Nielsen-Olesen
scaling describes well the dependence of the non-
diffractive cross section on the charge multiplicity
in each c.m. hemisphere. We exploit this fact to
estimate the cross sections for diffractive excita-
tion of the m and proton by examining the depar-
ture from the scaling background. This method
of isolating diffractive dissociation appears at
least as reliable as standard methods now in use.
We find a total inelastic diffractive-dissociation
cross section o«« = 3.4 + 0.2 mb which is com-
parable to o„. Pion dissociation accounts for
-55/p of this and has mean charge multiplicity
2.9, while proton dissociation accounts for -30%
with a lower mean charge multiplicity 2.2. Double
dissociation accounts for the remaining -15% of
o««. Comparison of our results with pp data are
in satisfactory agreement with factorization.
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