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Comment on scalar-metric-torsion gravitational theories
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The process of minimal extension of a scalar-metric theory to a scalar-metric-torsion gravitational theory,
by replacing the Levi-Civita connection by a general azine connection with torsion, is shown to be
nonunique. Additional parameters, in addition to the usual Brans-Dicke parameter co, may enter the theory
unless physical principals are introduced to constrain their appearance.

Aldersley has introduced' a generalization of
general relativity with torsion (Einstein-Cartan
theory)' which incorporates a scalar field. In a
specific example, he assumes the Larangian for
the scalar-metric-torsion theory to be

Z = Mgyft(I;. , )+—

where g is the determinant of the metric g, , »t» is
the scalar field, a is an arbitrary parameter, and
8 is the scalar curvature constructed from the af-
fine connection with torsion

I'»
~

= (») + ~»i' —~;"» + ~'u

which contains the effect of the torsion

The scalar field equation becomes

—2av(&y ' = T.

The Branp-Dicke scalar-tensor theory results in
the identification &»»

= —(a+ 2).
The purpose of this paper is to show that the

minimal-extension principle, which was used by
Aldersley (and also by others'), is not unique.
However, the minimal. extension of the Einstein-
ian Lagrangian Mg g'»A, .

» does seem to be unique.
The addition of the scalar field term in (1) allows
a much broader class of extensions than that uti-
lized by Alder sley.

Focusing our attention on the scalar field density
term, let us consider the following sequence of
events:

The Lagrangian given by Eq. (1) is obtained by a
minimal extension of the usual Brans-Dicke
Lagrangian in which the I,evi-civita connection
given by f»»J is simply replaced by the general
affine connection I'",~. In addition, he assumes
that the parameter a is a constant independent of
the scalar field. Although this assumption is not
necessary, we will retain it in our discussion
here.

When matter is independent of torsion, the
Lagrangian given by Eq. (1) yields' an equation
for the torsion in terms of the scalar field

The first term on the right-hand side is in the
form of an ordinary divergence and can be elimin-
ated under the integral, so that (7) becomes

'J
—W-gay v&& —;—r-g a ' -av&& y'» .i

The minimal extensionj) -I gives

1
~»y»

=
4 (Q, ig»» 4', »gi» )~ (4)

After expanding the covariant derivative and again
eliminating ordinary divergences, we find

~ (g+ &) 0 0 '» .iJ

„,(„*)(A. »'

4.»
0'

and the field equations

G»J g» vj& y, » gJ v(& @» )
1

(10)

That (1) and (10) are not the same demonstrates
the nonuniqueness of the minimal-extension prin-
ciple. However, the general treatment of scalar-
metric-torsion theories by Aldersley allows such
additional terms.

The variation of the additional term yields (under
the integral)
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2«~gag" e «.~g&')

-2~g [(rag 0' 3&&
—a0' ~ r )~gya

+ aP' 'br bs)„- any S ~ 6$]. (1].)

In the case of matter independent of torsion, the
field equations become

1
(a -2) 4,r;6'i,

6" + 8, (3a' —4a+ 12)(y'y" --,'g" y, (y')
1

( &a~(} ~, i ~,g;a) (12)
Tjk

which has the same contributions to the Euler-La-
grange equations as

Z'," =z, + 2' b(y) y' S„'.
The variation of the second term on the right-hand
side gives contributions similar to Eq. (11) with
a replaced byb. In the case of matter independent
of torsion, the field equations now become

a" + —(g"V, y' —y"")+—[I(b —2)'+ a]

——,'(3a'- 4a)VP y' = T.

Except for the torsion equation, the identification

2(o+ 3 = ——,'(3a' -4a) (1.3)

gives the same contribution to the Euler-Lagr ange
equations as'

reproduces the Brans-Dicke equations. In the pro-
cess, the single parameter a has now become dou-
ble valued, although the final field equations are
the same as Eqs. (4)-(6) with the identifications
(13).

Lest we think that the nonunique extension of the
Lagrangian density always reproduces the same
field equations, the scalar field part of the Brans-
Dicke Lagrangian

—(2a + —,
' b' —3b) &P P' ——,'(b —2) b' y, y' = T .

Although the formal identification

—(2a + 4 b 3b) = 2(d + 3

reproduces the appearance of Nordtvedt scalar-
tensor theory' [or a Brans-Dicke theory when b

W b($)], the analogy is meaningless since both a
and b are arbitrary parameters. It is interesting
to note that for the choice 5 = 2 the torsion vanishes
and the field equations (18) reduce identically to
the Brans-Dicke theory. Thus if the minimal ex-
tension should reproduce the Brans-Dicke equa-
tions for matter independent of torsion, then the
choice of b = 2 in Eq. (17) gives the "correct" min-
imally extended Lagrangian

g,' = Z, - [l:gb(y)y'], z = Mg(ys(r)+ -y, , y'+ 4y's„' (2o)

=~, —Mgb' y, y' —Mg bV&&y'

where b(p) is an arbitrary function of p. The
minimal extension f] -1 leads to

= g, —(Mg b y' ), + Mg by'S„', (16)

Without such additional physical insight, there
does not seem to be any way to avoid the addition-
al 5 parameter in the theory, in which case the
first of Eqs. (18) indicates that b must be a.sso-
ciated with a propagating torsion field.

I would like to thank S.J, Aldersley for helpful
comments.
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