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%e show that the color-charge algebra in the three-quark sector generated by the matrices of the
fundamental representation of U(n) does not have the trace properties required in Adler's extension of
chromodynamics. We also discuss a diagrammatic representation of algebras generated by quark and
antiquark charges in general, and an embedding of the N-quark algebra in the symmetric group $„+,.

Let Q'„. . . , Q'„, a=i, . . . , n'-1, be a system
of N SU(n) charges which satisfy the commutation
relations

S (u, v ) = —,
' tr,(u, v),

and demands that the condition

S(u, P(v, m)) =S(P(u, v), w)

(6)

(7)

where f'"' are the. structure constants of SU(n).
Such a system has been considered in connection
with the problem of determining the potential due
to N static quarks and antiquarks which act as
sources for colored fields."

Adler' introduces the following representation
of the commutation relations (1):

QN. =] 8 ~ ~ e1 s ~ s —( g-~)go ~ og)1

where the mth particle is a quark and the mth
particle is an antiquark. ~' are the n xn matrices
of the fundamental representation of U(n) ob-
tained by adjoining Ao = (2/n)' '1 to the standard
SU(n) A, matrices. They obey

trX'X =25'

Pa ~a] 2iyancgc

(~a ~~], 2d.~c~c

Now, let us define'

hold over the algebra. He found' that (7) was
indeed satisfied by the two-quark algebra. In the
quark-antiquark and two-antiquark sectors he
found that (7) could be made to hold by rescaling
the zeroth component of the antiquark charges
Q'- (1- In')Q .

We find, by expl. ieitly constructing the algebra,
that (7) is not satisfied in the three-quark sector.
This construction, which is described in the next
section, is most efficiently carried out by ex-
ploiting an isomorphism of the 1V-quark algebra
with a subalgebra of the group algebra of the
symmetric group 3&„. This isomorphism is,
however, special to quark charges. In the final
section we describe a useful diagrammatic rep-
resentation of the algebras which has a much
wider range of applicabil. ity.

3&+& Isomorphism and results for three quarks

Consider 6 quark charges represented by the
matrices (4). Using the completeness relation

Q„-=A.08@', m =1, ... , 1V.

The N-particle color-charge algebra, as defined
by Adler, ' is the minimal al.gebra which contains
the matrices Q„and is closed under commutation.
This is a Lie algebra, and Adler's outer- or P-
product is simply a commutator

pa)i pa)A

we have

6&0 6&m
[ [ 6&v

&m &g VP P~ fft

(6)

P(Q~ V) = g[Q~ V] i

P (u, v ) = 4 tr, (A.O 1,S ~ ~ ~ S 1„~[u, v ]),

where u and v are any two elements of the algebra
and trp denotes the trace with respect to the
"zeroth" matrix in the direct product. Adler
further introduces an inner- or S-product

This implies that we can represent the matrix
Q„by the permutation (Om) (in cycle notation) on
the numbers 0, 1, . . . , 2V, and that there is an
isomorphism between matrix multiplication and
the usual. composition' of permutations. For
example, the product Q, Q2 is represented by
the permutation (02)(01)=(012). Thus Adler's
N-quark color charge algebra is the minimal
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subalgebra of the group algebra of S„„generated
by commuting the transpositions (01), . . . , (ON)

with one another.
To construct the three-quark algebra we de-

compose the group algebra of S4 into mutually
orthogonal subalgebras corresponding to each of
the irreducible representations of S,. This
decomposition is a standard exercise in Young
symmetrizers'; it yields five subspaces with
dimensions 1, 3', 2', 3', and 1.

The projections of the charges Q„on the 2'-
dimensional subspace give rise to an SU(2)
algebra. Perhaps the easiest way to see this
is to use Table 7-3 of Ref. 4 which gives explicit
irreducible matrix representations of S~; thus

(01)-o3,

(02)- ——,c ——c1
3 2 lt (10)

(03)- —2 o', + —o', ,
1

where 0', and 0, are Pauli matrices which generate
SU(2) under commutation.

&4 has two irreducible representations by 3 && 3
matrices. It turns out, however, that the min-
imal subalgebra generated within the correspond-
ing subspaces is a single SU(3) algebra. This is
a consequence of the fact that each charge can be
represented in the two subspaces by matrices that
are conjugate [i.e. , that belong to 3 and 3 of
U(3)]. Since conjugate matrices have identical
commutation relations, the sums of the pro-
jected charges in the two subspaces generate
a single SU(3).'

The center of the group algebra is spanned by
five Abelian elements which are simply the sums
of permutations within each of the five classes of

Since these elements cannot be generated
by commutators, the on1.y one which belongs to
the minimal algebra is the sum of transpositions
(which contains the charges one started out with).

Thus the structure of the three-quark algebra
is SU(3) SU(2) U(1). Tables I and II give a
basis which diagonalizes the minimal algebra,
and the S-products are listed in Tables III and IV.
From our construction, it is obvious that S-
products between elements of the SU(2) and ele-
ments of the SU(3) must vanish. ' Furthermore,
the Abelian element x has zero projection on the
2'-dimensional subspace' and hence the S -products
between it and elements of the SU(2) vanish.

We note that the trace condition (7) is violated
by nonvanishing S-products between x and the
elements of the SU(3) algebra. It is also systemat-
ically violated within the SU(3) itself since Table
IV shows that

TABLE I. The 12 elements of 84 that belong to the
three-quark algebra.

@(= (01);
Q2 = (02);
Q3= (03);

&q = (23);
x2= (31)
x3 = (12);

sp = (321) —(123)
s, = (023) —(320)
s2 = (031)—(130)
s, = (012) —(210)

ti = (0312) + (2130) —(0123)—(3210)
t2 = (0123) + (3210)—(0231)—(1320)

TABLE II. A basis which diagonalizes the three-quark
algebra.

SU(2):

SU(3):

~ =@&+&2+&3+~&+~2+~3

1
y, = (Q, —@,+x, —~2+t))8'

1
y2 = (sp+ s&+ s&+ s3)843

y3 =
24 (Q&+ Q2- 2@3+&&+ &~ - 2&3+ t&+2t2)

b'

zj = —
4 (@3—t3)

2
z& =—(sp- s& —s&+ s3)

8

z3=8 (@~-@2+&~-&2-«)

2
(sp+ sg —sg —s3)

8

(Q —x )

Z

(sp —sg + s2 —s3)
8

fz, zg] =if~(3) z

The matrix elements of S-products in the color-
singlet channel for n =3 can also be read off
Tables. III and IV. We note that the trace condi-
tion does not hold with this restriction to color
singlets except in certain SU(2) subalgebras. We
have also verified that these violations cannot
be removed by rescaling the zeroth components of
the charges.

We conclude that the ansatz (2) for the color
charges is unsatisfactory, at the three-particle
level, for the purposes of Ref. 1.

Isomorphism to diagrams

The color charges (9) can be conveniently
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TABLE III. Operator s in the three-quark Hilbert space
which provides a basis for the S-product table. For + = 3,
their expectation values in the color-singlet state are

ni) 1 and (P i~ 0

ni =1

n) = —
3 [(12) + (23) + (31)]

n, =, [(123)+ (321)l

a, = ~ [(»)-(31)l12'
Pp

= ~ [(321)—(123)J2'
P3 =", [(23) + (31)]-&(12)

[n;, n, J= [n;, p, ]=0

[pi p&] =a&i&~p&

drawn as "duality diagrams" by representing each
Kronecker 5 by a directed line. I et us illustrate
this by writing all indices in (4) for the N = 2

quark-antiquark algebra:

(Q )&0 1 2 (g~) 0(a/~) 15 2
2() Q Jg 20 ~]. J2

One way of drawing the duality diagram for Q,
is given in Fig. 1(a). Another way, more con-
venient for carrying out multiplications, is given
in Fig. 1(b). The multiplication uv is carried
out by placing the diagram for u to the left of
the diagram for v and joining the corresponding
lines. Each closed loop gives a factor 5& =n. For
example, from Fig. 1(c), Q;Q; =-nQ;.

I'- and 8-products can be quickly computed this
way. Tro in the S-product (6) is accomplished
by looping the outgoing zeroth line back into the
ingoing zeroth 1.ine.

The generalization of the color-charge algebras
proposed by Adler' can similarl. y be cast in
diagrammatic form. We describe two special
cases of this generalization briefly using dia-
grams. In each instance, one has two charges
Q; for each particle, and two types of outer
product,

P = a[u, v], » = a [ ~, a],
where u = A.'u' and W =- (-X+~)u'.

« the first alternative, the P product (5) is
replaced by a weighted average

P(u„v,)- (-,'~ y, ) P( u„v, ) + (-,'+ y, )[*P(*u„*v„)],
= 5'.o6'~5'2

~1 ~0 ~2
(12)

(15)

(q )'0'i'2 -= (g')'05'i(- a A. *~)',~
10+ d2 )0 Jy &2

0$ 1$ 2
'fl ~0

TABLE IV. S-product table for the diagonalized three-
quark algebra.

S(x,x) = 3&(n&+ n3) —12n2

S(x,y, ) =0

S(x, &~) =-2y~

where y, are constants. [In Adler's notation, '
this is the case 5 = 0, e„=P, = (2 jn) 'y, .] The outer
product (15) is reasonably easy to represent
diagrammatically. A diagram representing *u
differs from one representing u insofar as its
zeroth line is an antiquark line.

One can go further and weight the zero compo-
nents, I', u', v, etc, differently from the other
n' —1 components. To do this diagrammatically,

n
S(y., yb) =-48 (n, —n3)o. b

S(y„&b) =0

S(Z~, Zb) —
2 g(3)

Yp=8 (2)' '(&+ n2)

y&
——

8 (-n2 —nn3+4p3)

]o ~o

)( Il
io

Q = ii

lp

Qp -(-l)

'o
-j)

y4
——

+8 (n2+n n3+ 2~3p&+ 2p3)

~6=~8(-n2-. n3+2~»~-»3)
v3

~8 4 3

(c)

FIG. 1. {a) A representation of Eq. {12)as a duality
diagram. {b) Another way of drawing the duality dia-
grams representing Eqs. {12)and {13). {c)Diagram-
matic computation of the product Qpg&.
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say for the P-product, construct a "contracted"
version of P(u, v) by replacing P(u, v) by 1,
8 tr Q(u, v). Then replace P(u, v) in Eil. (15)
by a weighted sum of P(u, v) and its contracted
version. Do the same for *P(*u, W). The new
outer product now has independently normalized
zero. components and, in Adler's notation, ' inde-
pendent parameters E, and y, .

Modifications of the S-product can be dealt with

in similar fashion.
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5Thus, if e3 and eg are projectors onto the two subspaces

(e3 —e3 y e3 egg e3 ef e3e3 = 0), and ~' are U (3) matri
ces, we have fe A, +e-(-X~') ep +e3 (-X* )j=2if~&&
[e3X + e-(-A, * )]

Note however that anticommutators take one out of the
minimal algebra: e.g., for the SU(2), (e&a&, e~o';j
=2e&h, ;; and fo. r the SU(3), (e&&'+ e&(-X*'), es&
+ e3 (—X*~))=2 d&~3& [e3Ã —e3 (—X*~)].

The projections of the Abelian elements on the five
subspaces can be read off the character tables (Ref.
9) of 84.

Diagrammatic methods for computing P-products in
terms off and d symbols can be found in P. Cvitanovic,
Phys. Hev. D 14, 1536 (1976).

~See the second paper of Ref. 1, second note added in
proof.


