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A generalization of superalgebras leading to a new Lie structure of color algebras is proposed. The three-

color extensions of osp(4;1) (super-de Sitter) and su(2, 2;1) (Wess-Zumino)-superalgebras are presented.

I. INTRODUCTION

There are two known ways of introducing a gen-
uine unification of space-time and internal sym-
metries via the supersymmetry scheme:

(i) graded de Sitter algebras osp(4;N), admit-
ting O(N) as an internal symmetry, "'

(ii) graded Haag-Lopuszanski-8ohnius conformal
algebras su(2, 2;N), with U(N) as integral sym-
metry group. ' '

In these unification schemes flavor and color
groups are treated in the same zeay —as the sub-
groups of O(N) or U(N), respectively. It seems de-
sirable to distinguish flavor and color degrees of
freedom by introducing different structures offlavor
and color algebxas. An interesting effort in this di-
rection was made by Gunaydin and Gursey' by in-
troducing nonassociative octonionic color alge-
bras." In this paper we propose for color a new
algebraic structure, but we stay in the framework
of associative algebras.

The conventional Z, grading, leading to super-
algebras containing only fermionic and bosonic
generators, can be generalized in several ways. '
In this paper we shall consider one of the simplest
generalizations based on a Z, 6 .6Z-, SZ, grad-
ing. "' We call these new algebraic structure
color sup exaLJ. ebzas. "

In particular we define the color-de Sitter and
color-conformal superalgebras in such a way that
the charges generating the color group are pw. a-
bosons and the spinorial supercharges are Pw. a-
ferrnions. We see, therefore, that in our scheme
the color aLgebxa is not a Lie algebra, because .

its different generators have anticommutation re-
lations.

The mathematical aspects and some results on
classification of color superalgebras are consider-
ed in Ref. 11. In the present paper, after intro-
ducing the color space and the corresponding gen-
eralization of the grading structure, we review
in some detail the three-color case (Sec. II). Fur-

ther we present the explicit realizations of the
color-de Sitter (Sec. III) and the color-conformal
superalgebra with three colors (Sec. IV). Finally
in Sec. V we discuss ways in which the Z, SZ, SZ,
color algebras have different implications from
conventional superalgebras.

II. COLOR SPACE AND COLOR STRUCTURES

(x-. ,x;)cx-.,& (2.1)

[it follows from (2.1) that the color algebra with n
colors is a Z, B "SZ, (with n Z, 's) graded alge-
bra];

(ii) symmetry properties,

(X, g ix, $) = (-I)'"~ »"(Xy», X) -), (2.2)

(iii) generalized Jacobi identity,

(X; -„,(X&
~ ft, X» "„»(—1)~ '"'+ cycl perm = 0 .

(2.3)

One can show' that there are only two nonequiva-
lent choices for the scalar product (n, P) which
are consistent with the relations (2.1)—(2.3):

(i) symplectic antisymmetric scalar product,

(n, P), = n,P, —n,P, + ~ + n„,P„—n„P„, (2.4)

[the scalar product (2.4) can be defined only if n
is event;

In order to introduce the color degrees of free-
dom we consider a set of generators X, -„, where
n = (n„. . . , n„) is an n-component vector whose
components are integer numbers modulo two (n„
= 0 or 1; r = 1, . . . , n). The 2" vectors n form a
vector space, which we call a color space Mith

n colors. We denote by X- (X, - cx-}the set of
generators corresponding to the same &. A color
supexalgebxa X is given by a bilinear map, denoted
by (, ) of X xX-X with the following three condi-
tions:

(i) closure relations,
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(ii) Euclidean symmetric scalar product,

(n, p), = n,p, + n,p, + ~ + n„p„. (2.5)

In this case n can be any positive integer.
The structure of the color supe ralgebra is de-

te rmined by
(i) the choice (2.4) or (2.5) of scalar product,
(ii) the number of colors (m= 1, 2, 3, . . . ).
We denote the color structures with the scalar

product (2.4) by C(n; a) and with the scalar product
(2.5) by C(m;s). In particular if n= 1, we obtain
the conventional supe ralgebras .'

The basic difference between the C(n, a) alge-
bras and the C(n, s) algebras is that for the former
the "diagonal" product

(X-', ,X-„',) = [X-. ..X-. ,]

We see that the generators X(y. p) X(p ] ) and

X(, » are parabosons in the C(2, a) case; in the
(2, s) case, the generators X(, » and X«» are
parafe rmions .

B. Three colors

We have

X-„: X«, » (colorless),

X(1~ 0 0) X(0~ 1~ 0) X(0 0 1) (red, white, blue),

X(1 1 0) eX(1~ 0 1) eX(0 1~ 1) (biCOlOred),

X(, , » (tricolored) .
The only possible color structure is C(3;s). The
generalized commutation relations appear as
follows:

is always a commutator, while for the latter it
can be a commutator or an antic ommutator . The
C(n, a) algebras appear also as subalgebras of
the C(n, s) algebras as will be seen from our ex-
amples .

We shall now discuss the simplest. color struc-
ture s .

[X((&(&(&), ( 0„&] ( 0„),

(leoeo) e (1~ Oeo)) (Oeoeo) e

@(Oeleo) e (Oe leo)) (Oeoeo) e

(Oeoe1)e (Oeoe1)3 (Oeoeo) e

(2.7a)

(2.7b)

We have

A. Two colors
[ (XeaeO) e (O, &, O) J (1,1,O) e

[ (leoeo) e (Oeoel)] (1~ Oel) e

[ (O 1 O) e (Oeae&& J (Oe&e&)

[ (0, 1)e (0, 1)] (0, 0) e

(1eo) e (Oe1)) (1e1) e

[ (1~ 1)e (1~ 1)] (Oeo) e

(X(1 0) eX(1 1)) X(0 1& e

(0, 1) e (1~ 1)} (1~ 0)l

(2.6a)

C(2; s)

[X(0 o),X(a 0 )]cX( 0 ),
l~
L (1e0) e (1 0)) (0 0) e

Q (p p) ~ (1 p) ~ (p11) ~ (101)

If n= 2 we can have two color structures: C(2;a)
and C(2;s). The generalized commutation rela-
tions appear as follows:

C(2; a)

[X(0 0)eX(0 0 )]cX(0 0 ),
IX(1,0) X(1,o)] X(o o)

[ (1~ le 0) e (1~ le 0) ] (Oe Oe 0)

[ (1eoe1) e (1eoe1)] (OeoeO) '

[ (Oe 1~ 1) e (Oelel)J (Oeoeo)

(1~ 1~ 0)e (1~ Oel)] (Oelel) e

(1,1eo) e (Oelel)) (leoel) e

(Oe 1~ 1) e ( le Oe 1)) (le le 0) e

( (1e1ei) e (1e1e1)) (Oeoe0) e

(le 1~ 1) e (le Oe 0)) (Oe le 1)

(1~ lel) e (Oeleo)J (leoe1)

IX(1,1,1) e X(1.1,o) ]CX(o, o, 1»

[ (lelel) e (leOe1) J (Oeleo)

[ (lel ~ 1)e (Oelel)] (1~ Oeo) e

(2.7c)

(2.7d)

g(o, »e (0,1&)CX(o,o»

[X(1 0) e (0 1)] (1 1)

[ (le1) e (le 1) ] (Oeo) e

(1 0) e (1 1)] (0 1) e

(X(,),X(, ,))cX(,

(2.6b)

(1,1,0) e X(l,oeo)J (0, 1,0) e

X(1,1.O)e '(0, 1,0&J (1,O, O) e

(le leo)l (Oeoel)] (lelel)

and analogous two sets of three relations for
X(y p y) and X(p y ] ) respectively.

(2.7e)
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From the set of relations (2.V) we see that
(a) The set of generators X«, » forms a Lie

algebra. In this sector one should put bosonic
generators describing space-time as well as
flavor symmetries [see Eq. (2.7a)].

(b) The generators X(. ..&, X«...&, X«„»
are parafermionic [see Eq. (2.7b)].

(c) The generators X(, , », X(, , », X«, » are
parabosonic, and this sector contains the color
charges. It is interesting to observe that the set
of generators [see Eq. (2.Vc)]

(Oporto) & (1~ lgo) y (1~ osl) y (Os1 ~ 1)

forms a C(2;a) subalgebra.
(d) The charges X(, , » are fermionic [see Eq.

(2.7d)]. We shall consider examples of color
superalgebras with X(, , „=-0. If X(, , »+ 0 it
seems plausible to relate these generators with
leptonic degrees of freedom.

III. THE COLOR-DE SITTER ALGEBRA

A (4 x 4) CE (4 x 3—)

E (3x 4} B (3x 3)

0 0 1 0

0 0 0 1

-10 0 0

0-1 0 0

where A. C+CA=O, E arbitrary, and

(3.1}

(3.2)

We introduce the following basis for the matrices
(3.2):

0 1 0 0 0 1 0 0 0

000, I.,= 001
000 1 0 0 0 1 0

Our first example is the three-color extension
of the graded de Sitter algebra osp(4; 1), which are
denote by osp(4((1, 1,1). The generators of
osp(4((1, 1, 1) can be represented by the following
real 7x 7 matrices:

a, b=1, . . . , 7), which have in the (4+i)th column
the elments (C „.. . , C „0,0, 0) and in the (4
+ i)th row the elements (5 „.. . , 5 „0,0, 0) and
using the generalized commutation relations (2.7),
one obtains the three-color superalgebra OSp(4lil,
1,1) which reads as follows:

(a) Three copies of the fundamental superalgebra
osp(4; 1),

(Q;( Qs:(}=(a"C) sM~»

i=1,2, 3, A, B=1,2, 3, 4, 5,
(3.5)

[Q;» Qs;s l
= C sLs Ls =X(&,&, o&

[QOI&1fqs& 31 Rs 21 s (&~ Oy1&

[Qa;a~qs;sl- CasL( Lx-X(o, &, » ~

(3.6)

The 7 x 7 matrices L, (i =1,2, 3) have only the
entries in the B sector given by the formulas (3.3),
and they satisfy the algebra (3.4).

(c) Covariance properties of supercharges.
The fundamental supercharges Q,. transform

under the rotations of the de Sitter group as O(3, 2)
spinors. The color indices tranform as follows:

[Lx Qa;(]=o «s Qa;&}=Qn;s

«„Q.,J =q. ,„[r.„q„,,]=0,
(L„q...}=q..., (L„q..,}=q... . etc.

(3.7)

IV. THE COLORCONFORMAL ALGEBRA

The second example is the three-color extension
of Wess-Zumino superconformal algebra su(2, 2;
1},which we denote consequently by su(2, 2[(1,1,
1). The generators of su(2, 2((1,1,1) can be de-
scribed by the following complex 7 x 7 matrices
[for the definition of C see Eq. (3.1)] with vanish-
ing supertrace (trM = trH):

where the ten real 4x 4 matrices o„» (o„„=s [y„,
y„]; z„,= -(&,„=y„;y„ in the Majorana representa-
tion) form a basis for sp(4;R). The Vx 7 matrices
M~+ span the A sector of the matrix (3.1) and
satisfy the commutation relations of de Sitter
o(3, 2) algebra.

(b) Definition of color charges

(3.3)

which are the generators of a C(2, a) algebra [see
Eq. (2.6a)],

«s Ls}=Li tLs, L,}=L, .
(3.4)

Choosing 12 fundamental real parafermionic geri-
erators X(, „=Q„,„X(,, &

=Q,„X(...&

= Q
((&(=1,. . . , 4) as real matrices (Q„,(),s (i =1,2, 3;

M (4x4) CF (4x 3)

E (3x 4) H (3x 3)

where

M g=-gM,

diagonal, gyp f22 f33 g4
—1,

Ii arbitrary,

a=a'.

(4.1)
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The eight Hermitian 3&& 3 matrices H are obtained
here as the realization of the following extension
of the C(2, a) algebra (3.4) by new six generators
I„H, (i =1,2, 3;H, +H, +H, =O) and we obtain a new

C(2, a) algebra:
)) = —,'()), +)(,+)(,) (4.7)

satisfies the o(4, 2} algebra, and spans the M sec-
tor of the matrices (4.1). Three axial charges ))(
commute with J~~ as well as among themselves;
they define. the unique flavor charge

[I„I(]=2iH„(I„L,)=I„
(I„L,)=I„[I„L,]= 2iH„

(I„L,)=I„ (I„L,)=I„

(I„L,)=I, ,

(I2, LJ =I, ,

[I„I.,]= 2', ,

(I„Q= L„(I„I,)=L„(I„I,)= L. .

(4.2) H, =-,'(7(, -)),},
H, =-,'(7(, -)),) .

H, =-,'()(, -7(,),
(4.8)

and the generators of the Cartan subalgebra of the
C(2; a) algebra (4.2),

[H„I,]= 2L„ [H„L,]=2I, , (b) Definition of color charges

[H„I,]= [H„I~]=0 [H) L.]= [H) Ls]=0

etc.
It is easy to check that if we choose L,. given by

the Eq. (3.3), we get
or

[Q;) Q();2]=2 [Ca()Ls+ f(ysc).e 3]

[Q .„Qz*.,]=—[C„zL,+ i(y,c)„I,],
[q.,„q,*,,]=.' [C.,-L, +I(y,C).P, ],

(4.9a)

0 i 0 0: 0 i 0 0 0 [Q.*,„q...]=-' [C.~L, —f(y,c} (4.9b)

0 0 0 -i0 0 0 i 0

I,=, -i 0 0, I,= 0 0 0, I, = 0 0 i etc. We see that for SU(2, 2)(1, 1, 1) the two-colors
sector has the form

(4.3)
X(),),0) (La~Is)~ X() 0 )) —(L2~I2),

(oils)) ( 1& 1} '
(4.10)

0 0 0

H, = 0 1 0

0 0

-10 0 1'0 0

0 0 1 0 0 0

(4 4)

H2= 0 0 0, H3= 0 -1 0

(c) Convariance properties of supercharges.
The generators Q, , transform under the con-

formal group as SU(2, 2) spinors, i.e. , twistors.
The color indices transform under L,. according
to the set of relations (3.7). Besides this we get
new relations

[I„q., ]=0,

(Q~, , Q)),()= 2 (y"C )~()P„,

2 y"C K (4.5)( ).. .,

(QN. ..Q~",()= (&x~„c)NgM""+~c~++ 4(y,c)~()7)(,

where the set J~~ = -Jz~ (K, L = 1,2, . . . , 6) of the
conformal generators

Jv=M v~ J =P

J56 D~ Jg6 Pg +K
(4.6)

We see that we have obtained the three-. dimen-
sional representation of the su(3) algebra as a
representation of a C(2, a) algebra. . We represent
the 12 fundamental complex parafermionic gen-
erators as complex 7 x 7 matrices (Q,(),~ with the
elements (C',„,. . . ,C;, 0, 0, 0) in (4+ f)th column
and the elements (O „.. . , 5 „0,0, 0) in (4+ i)th
row, where C'=-, (1+y,)C, f)'=~(1+y,), and in the
Majorana representation (C'}*=C, (5')"=() . The
color superalgebra su(2, 2~ii, 1, 1) has the following
form:

(a) Three copies of the fundamental superalgebra
su(2, 2;1) (i =1,2, 3),

and

(I) Q...)-&(y.}.(q(;s

ItQS)3) (y5)$()Q())2 I etc. ,

(4.11)

[q. , „H,]= 0,

[q„.„,H, ]= -q. .„,
[Q.„,H31= Q. ..

(4.12)

The transformation under the single flavor
charge (4.7) has the form

I& Q-;(]= '(y.}-aqua;( ~-- (4.13)

V. CONCLUDING REMARKS

We have considered Z, SZ,SZ, graded super-
algebras and have shown through two examples
[the osp (4)/1, 1, 1) and the su(2, 2ff1, 1, 1) color
algebras] how one can obtain a unification of space-
time and "color" symmetry. Are these algebraic
structures "new"? A similar question appears
also when one considers the parafield realization
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of color." Actually the algebras of the creation
and annihilation operators that one encounters in
parastatistics for the three-colors case are solv-
able algebras of the type C(2, a) for. parabosons
and C(3, s) for parafermions; for these algebras
there exists a transformation (the Klein trans-
formation) which turns the C(2, a) algebra into a
Lie algebra and the C(3,s}algebra into a super-
algebra. Such a transformation generally does
not exist if the color algebra is not solvable. A
first insight in the problem of "novelty" can be
obtained if one compares for example the osp(4)(1,
1,1}algebra with the superalgebra osp(4, 3), one
then observes that the structure constants are
identical although the product can be a commutator
in one case and an anticommutator in the other.
Let us consider now the three Pauli matrices 7,
(i =1,2, 3) (r,v&+7'p, =25, &). and take any represen-
tation of the osp(4 (1,1,1) color superalgebra. We
can now consider the algebra formed by the ma-
trices

eralizes for any Z, SZ,S SZ, graded color
algebra. Thus the novelty of the osp(4))1, 1,1}col-
or superalgebra as compared to the osp(4(~3}
superalgebra is that they have different represen-
tations. " For physical applications, however, it
is not yet clear if there is a novelty (this point still
has to be studied). It is possible that when writing
a field theory for the osp(4)(1, 1,1) algebra one is
forced to take certain representations such that
for all practical purposes through changes of no-
tation one obtains the same results as if he had
started with an osp(4, 3) algebra. We hope to
come back to this point in a further publication.

The main purpose. of this paper was to show that
there are mathematical structures which go beyond
the Z, graded superalgebras and which may be
useful. The Z2$Z2$Z2 color superalgebras is
only one example. There exist other possibilities
such as the one based on a Z3$Z3$Z2 or Z48Z4
grading as suggested in Ref. 7.

X(o o o)~ 1 (1 oo) g~ 2 (o 1 o) 4 ~

( (5.1)

1 3 (lyoel) ~ 5 & 2 3 (Oelvl)ek & 1 2 3 (1v ly1) ~ f

where X( ~ »; are a representation of the
osp(4((1, 1,1) algebra. It is a trivial exercise to
show that the generators (5.1) form a representa-
tion of the osp(4, 3) algebra. This representation
may be irreducible, fully reducible, or not fully
reducible. As shown in Ref. 7 this argument gen-
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