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Quantum-mechanical formulation of the electron-monopole interaction without Dirac strings

%illiam A. Barker and Frank Graziani~
Department of Physics, University of Santa Clara, Santa Clara, California 95053

{Received 28 July 1977)

A relativistic wave equation is used to describe the interaction of an electron with a magnetic monopole at
rest. A quasipotential, defined in terms of an integral involving the pseudoscalar potential y =g/r, is used
in this Dirac string-free formalism. This equation, written in nonrelativistic form, is used in conjunction with
the appropriate angular momentum operators to obtain the Dirac quantization condition. An argument using

gauge invariance shows that this condition is not modified by a relativistic treatment. A detailed comparison
is made with conventional string theory, which is also formulated relativistically.

I. INTRODUCTION

We estimate that over 1000 papers ha, ve been
written about the magnetic monopole following
Dira, c's original suggestion. ' This sustained in-
terest is due, in la,rge measure, to the added sym-
metry of Maxwell's equations, when magnetic as
well as electric cha.rge and current densities are
included as sources, and to the joint quantization
of magnetic and electric charge, which is a funda-
mental aspect of the various theoretical formula-
tions. The magnetic field due to a stationary mag-
netic monopole of charge g is radial: B =gr/r',
like the Coulomb field of an electric charge. For
a point monopole, V B=4'&(r). A well-known
problem arises when one attempts to describe
the magnetic monopole by means of an appropriate
potential A, whose curl is B, because the diver-
gence of the curl of any vector is identically zero.
This contradicts the foregoing equation. One so-
lution to the problem is to abandon potentials com-
pletely, ' but it has been pointed out' that theoretical
laboratories simply cannot dispense with poten-
tials. The conventional approach is to construct
an A whose curl comes as close as possible to
yielding the correct B field. It is important, as
Wentzel4 empha, sizes, to identify and subtract off
the fictitious field terms. In Dirac's original
treatment, the source of A is taken to be a semi-
infinite string of magnetic dipoles which terminate
with a magnetic monopole at the origin. In his
formalism, a single four-potential A„ is used to
describe both magnetic and electric charges and
currents. A second point of view, which has been
considered by a number of authors, ' involves the
use of two sets of four-potentials: one for electric
charges and currents and the other for magnetic
charges and currents. In this formalism, which
we adopt, q&„=g/r and B = —Vy =gr/r' is free of
fictitious terms.

There have been a number of attempts to detect
the magnetic monopole. The evidence presented
so far has been either negative or unconvincing.

In our approach, we have chosen a formalism
which is easy to interpret from a physical point of
view and which we believe may be readily extended
to a description of electron-monopole binding and
scattering. If it exists, we believe that the mag-
netic monopole will be detected by virtue of the
unique features associated with the electron-mono-
pole interaction.

In common with the minority point of view, this
paper starts with two sets of four-potentials. In
order that B remain a,n axial vector, as it is in
conventional electromagnetic theory, g and y
must be pseudoscalars. This means that the
second set of four-potentials must be a pseudo-
vector. In the second-quantized formulation of
this theory, one finds discussions of left-handed
and right-handed photons. ' In this paper, we
quantize once not twice.

We construct a relativistic Hamiltonian for the
electron-monopole interaction which features a
quasipotential A*, derived from the pseudoscalar

This quasipotential is a polar vector, whose
curl is B, plus a fictitious term. We show that-
A* differs conceptually and mathematically from
the more conventional A's of the Dirac type.

By means of the Foldy-Wouthuysen' transforma-
tion we rewrite the wave equation in Schrddinger-
Pauli form, which we believe is most suitable for
exploring electron-monopole binding. '

The Dirac quantization condition has been es-
tablished in magnetic-monopole theory on the
basis of semiclassical, first-quantized and second-
quantized arguments using gauge, ' rotational, "
and Lorentz invariance. " Before proceeding to

I other aspects of the electron-monopole interac-
tion, we establish the Dirac quantization condition
for the nonrelativistic equation with A*, using
the approach Fierz used for the string potential
A. Later we use gauge arguments to show that the
same quantization condition holds for the rela-
tivistic equation.

The unique features of this paper are associated
with the quasipotential A*, obta. ined from the
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pseudoscalar cp, which we incorporate into Dirac,
Schrodinger-Pauli, and Schrodinger wave equa-
tions for the electron-monopole interaction. As
a necessary condition for further successful utili-
zation of these equations, the Dirac quantization
condition is deduced by means of angular momen-
tum and gauge invariance arguments.

Our purpose, in this paper, is to study the Dirac
Hamiltonian for an electron interacting with a
stationary magnetic monopole. Our Dirac string-
free relativistic equation is obtained from a clas-
sical Hamiltonian which we discuss in Sec. II.
In Sec. III we compare the properties of our quasi-
potential with Dirac's string potential. In Sec. IV,
we consider the relativistic behavior of an elec-
tron in four different physical environments: the
free electron, the electron interacting with a pro-
ton at rest, and the electron interacting with a
stationary magnetic monopole with and without a
semi-infinite string of magnetic dipoles. We fol-
low the approach developed by Fierz" to obtain the
Dirae quantization condition from nonrelativistic
theory. This theory focuses on the structure of the
angular momentum operators, which depend of
course on the nature of the electron's environ-
ment. With the successful derivation of the quan-
tization condition, we suggest in the concluding
Sec. V additional problems which could be studied
with this formalism.

Finally, in the Appendix, we write the classical
Hamiltonian generalized to include magnetic
charges in motion. And we discuss gauge func-
tions which may be used to establish Dirac's quan-
tization condition on relativistic grounds with or
without Dirac strings.

II. RELATIVISTICHAMILTONIAN VfITHOUT DIRAC

STRINGS

a charge q' of mass ~ and velocity v in the mag-
netic field B =gr/r'.

—ppggJ2 +gQ lv A+

where the quasipotential A* is defined in terms of
gamp

d x Vy~

with d f = dzk. Note that A* is a polar vector, as
it is the cross product of a pseudovector with a
polar vector. The generalized coordinates are the
rectangular Cartesian coordinators &y x2 and x,.
The canonical momentum is

p
—

gag v + q p —lA g

The corresponding Hamiltonian is

H=(2rri) 'g(P„—qc 'A*)'

=v (p-qA*c ')/2.

The canonical equations of motion are

BB . Vq Bgk p
BPk VE 8 Xk

(6)

(7)

The second of Eqs. (7) leads to the Lorentz force
equation

xii = j ( Vq iii X v)ii

apart from a fictitious term described below.
For the Dirac Hamiltonian, we replace the ve-

locity v in the classical Hamiltonian, Eq. (6), by
&n, where 8 is the familiar Dirac matrix vector.
We add the rest energy operator pm'' and let
q =e, the electronic cha, rge. Then

HMR~c = p'nc'+ cn (p —ec 'A*) .

and

E = —V(p —V x A —c iBA /Bt

In this theory A'„=(A, , i p, ) and A„=(A, i@ )
are the four-vector potentials whose sources are
electric and magnetic charges and current densi-
ties, respectively. The electric and magnetic
field quantities are

Define

m*=p- ec 'A*.

We note that

r =iII '[H, r] = cn

and

7*=i@ '[H, r]

(10)

B = V'x A, —Vy —c 'BA /Bi . (2) =enx (Vx A+). (12)

As we consider here the electron to be moving in
the field of a monopole at rest, the only nonzero
potential in (1) and (2) is y =g/r. (We develop
a more general Hamiltonian in the Appendix. )

We use the conventional Lagrangian-Hamiltonian
formalism" to obtain a classical Hamiltonian for

Equation (11) is the operator analog of the velocity.
But (12) is not the Dirac operator analog of the
Lorentz force equation because the curl of the
quasipotential A* does not equal g r/r' We show.
in the next section that V x A* =gr/r' plus a &-

function term.
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III. PROPERTIES OF THE QUASIPOTENTIAL AND

DIRAC'S STRING POTENTIAL

~ dfxr'
A(~, I-) = A(x, y, z) =g

%'e are using the quasipotential

A*=g r 'r~ d

=g r 'rxk dz

=gzr '(r'-z') '(y~ -xj)
=-g~ 'cote', (13}

To evaluate this integral, choose, for example,
the negative z axis as the integration line. The
element df = dz'k and the distance from field point
to source point is

ri [x2 2 (z z &)2jl /2

Then

0
A =g dz'(xj -yi)r' '.

where we take the constant of integration to be
zero. It is obtained from the pseudoscalar po-
tential y =g~ ', due to a point monopole at the
orlgln.

A familiar representation of the Dirac string
potential is used by Fierz":

A =r 'g(xl -y~ )(r+z) '

Let

g'=z —z t ~

then

A=g (xj -yi)r' 'd&'
z

=gr '(r + z) '(x j —y i ) . (18)

=gsin8(1+cos8) 'r 'cp.

This expression comes from the line integral

P
A(P, I) =g r 'dfx r,

L
(15)

where the negative z axis is taken as the integra-
tion path extending from -~ to the origin. Phys-
ically one may envisage this calculation as fol-
lows. Consider a string of magnetic dipoles, each
consisting of positive and negative magnetic
charges, extending from z = -~ to z =+ '. Now

imagine the string is cut in two just between a
positive and a negative monopole at the origin and
the upper portion is discarded. The remaining
semi-infinite string consists of an integral number
of dipoles and one positive monopole at the origin.
Equation (14) describes this Dirac string.

Apart from algebraic sign, the integrands in

(13) and (15) have the same mathematical form.
Physically, they have an essentially different
character, the explicit integrations reflect the
difference, and the resulting expression for A*
and A are different.

In the case of the quasipotential,

L"(x, y, z) = f dfx vy

One might argue that any relativistic Hamiltonian
with the particular A* we have chosen, or the
particular A chosen by Fierz, is not well defined
because there are other possible choices of A* and

A which may be constructed. Although it is indeed
true that A~ and A are not unique, other choices
will lead to essentially the same results. This
is familiar in conventional electromagnetic theory,
where one may represent a uniform field BP by
three different vector potentials: A =Boxj or
—fl,yi or —,"B,(xj —yi}. In all three cases &xA
= Bok.

It is not quite so simple in the case of a radial
field representing the field of a point monopole.
There is no vector potential whose curl is equal
to precisely grr ' and nothing more. Our quasi-
potential A* and Dirac's string potential A both

yield, when the curl is taken, gr~ ', plus a
fictitious field which must be subtracted off.

There is a straightforward way to evaluate
fictitious terms, due to Wentzel. " Consider a
magnetic monopole of charge g at the origin. Cori-
struct a circle of radius p around the z axis cen-
tered at z,. Now we compute the magnetic flux
4 through this circular area:

where y =gr '. - Note that the source is a mono-
pole of charge g, at the origin. We choose d7
= dzk as a matter of convenience.

By contrast, the Dirac potential, is based on the
vector potential expression of a, dipole of magnetic
moment m: A=(mx r)r '. On replacing m by

gdf and integrating from infinity to P, taken as
the origin, along a string L-I'

=g r~' ' 2''dp' .k
P

=2zgzo p'dp'(p" +zo')' '
P =0

2m~(l —cos8), 0 ~ 8& m/2

2'(-1- cos8), m/2 ~ 8
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Next, we compute

(20)

and

By=

0, x)0

(21)

—2mg6(x)6(y), z &0

Bfictitious

+2rg6(x}6(y), z & 0

as clearly

(22)

Here we have used the spherical polar forms for
A* and A in (13) and (14). Both expressions are
independent of y and are in the «I direction. The
integration is simple as dl = p~yp=r sin0dpp.

In the case of A*;.

4' 6(y) 6(z),

respectively. In polar coordinates

A&„*& =gsin8(cosy sing 8+ cos8 cosy'}

x r '(1 —sin'8cos'y} ',
which is much more complicated than the polar
form of A* in (13). Our choice of A*=—gr 'cot 8q&,
corresponding to dl = 4~k, is based on simplicity.
Further, it is consistent with our subsequent
choice of the z axis as the axis of quantization.

r (V & A* —Bfjctiti gg) da =
~t gr r ' da .

Similarly in the case of the Dirac A,

IV. RELATIVISTIC AND NONRELATIVISTIC HAMILTONIAN,

ANGULAR MOMENTUM OPERATORS, AND THE
DIRAC QUANTIZATION CONDITION

0, z)0

A&*„~ =gx'(z j —yk)r '(r' —x') ',
A(,) =g(yk-z j )r '(r+x) '.

(24)

(25)

The curl of both these expressions is again grx '
with new fictitious fields

—2 wg6(y) 6(z), x & 0

By =

+2'(y)&(z), x(0 (26)

fictitious

4ng&(x)6(y), z =0. (23)

We have constructed other expressions for A*
and A. For example, take d 1 = dx & in (13) and
choose the negative x axis as the flux line or
string in (14). The resulting expressions may be
obtained by direct integration or by a cyclic per-
mutation of the rectangular Cartesian coordinates.
Then

We label the equations associated with the free
electron F, the hydrogen atom H, the electron
string interaction S, and the electron monopole
interaction M.

The appropriate relativistic Hamiltonians are

R =Pmc~ +cR p)
=Prnc'+c+ p- e'r ',

X = P~& +~A

X = P ppz c + cD '
7T +

In string theory 7 is the kinetic momentum

(2&F)

(29H)

(3OS)

(31M)

w=—p-ec A, (32S)

where A is often represented by (14).
It is useful to write the four different equations

in the form of the nonrelativistic expansions. For
this purpose we use the Foldy-Wouthuysen trans-
formation" and set the Dirac matrix P=1 corres-
ponding to the positive-energy states

4
(33F)

P' P e' we'k' e'h
2m &m c r 2m c2 ' 4m2c2r3

p' p' iegh 1 8 e'g' (1 —cos8) eh
2m &m'c' mcr' 1+cos8 ay 2mc'r' (1+cos8} 2irsc j

(34H}

(35S)
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( p' p' ieger cos0 & e'g',
&

eh

+NREM

=1,2m
—

8m~c mcr sin' 0 By 2mc'r' 2mc

The first two terms in the expansion of the rela-
tivistic kinetic energy operator

T = m c2[(1 +p&/m &c2)& i2 1]

are common to each of the foregoing wave equa-
tions. In the H-atom equation the Darwin and spin-
orbit terms represent'relativistic corrections to
the Coulomb interaction. In the string and mono-
pole equations the appropriate fictitious mag-
netic field must be subtracted from the o curl
terms. The two middle terms obtained by evaluat-
ing w'/2m and w '~/2m in spherical coordinates
differ because the string potential A differs from
the monopole quasipotential A*.

The basic equation considered by Fierz" [(2.2)
in his discussion of the theory of magnetic charged
particles] follows immediately from (35S) if we
neglect the relativistic correction to the kinetic
energy and the Zeeman term. For purposes of
comparison, then, we are examining essentially
the two Schrodinger wave equations

pole is noncentral lea, ding to a change in the elec-
tron's angular momentum. These considerations
enable us readily to find enhanced angular mo-
mentum operators which commute with the string
and monopole Hamiltonians.

From the Lorentz force equation (8)
~0

ppgx' = —g eg v x r y' (39S,M)

it is easy to show that

dc', /dt = 0, ,

where

(40S, M)

~ o

ynr=0

or for the hydrogen atom

(41F)

d, = ypgr x v —g ~eg 1 y

plays the role of a more general angular momen-
tum. Obviously the first term in 8, is all that is
required if the force equation is either for a free
particle

(ii'/2m)/=ED and (ii*'/2m)~j =&/.
~ ~ «3&per=-e rx (42H)

In the discussion of the angular momentum op-
erators, we will find it convenient to refer to the
relativistic Hamiltonians. Clearly, the operators
whi. ch commute with a given relativistic Hamil-
tonian also commute with the corresponding non-
relativistic Hamiltonian as the latter is a con-
verging representation of the former.

It is well known that the ~ component of the
orbital angular momentum operator

j,=i, + bio, /2 (38F, H)

does indeed commute with (28F) [note that the (r,
here is the four-component Dirac spin matrix,
whereas the iy in (35S) and (36H) is the two-com-
ponent Pauli matrix]. The fact that j, also com-
mutes with the H-atom Hamiltonian but does not
commute with either the string or monopole Ham-
iltonians is understandable on classical grounds.
The force corresponding to the Coulomb potential
is central. Hence there is no torque to induce a
change in the angular momentum. On the other
hand the force between an electron and a mono-

l =rxp
introduced in (34H), does not commute with (28F).
Now, a time-changing component of angular mo-
mentum could be due to a. torque, but this is pre-
cluded for a free-pa, rticle Hamiltonian. Hence it
was necessary to expand the meaning of angular
momentum to include spin. Then

Finally, we must add one more term to the an-
gular momentum operators for the string and
monopole cases. This arises from A and A*, re-
spectively. Just as -eA/c and -eA*/c are added
to p to give the kinetic momentum, so must
-ec 'rx A and -gg 'r x A* be added to r xp in the
quantum mechanical formulation of angular mo-
mentum.

We now can write down the angular momentum
operators associated with our four relativistic
Hamiltonians:

1 =K+80/2,

8=j —eg rr ' —ec 'rxA,
n=j- egrr ' —ec 'rx A*.

(43F, H)

(44S)

(45M)

[+i i.l=[3cr i']=PL i.]=PL i']=0 (48F H)

and

[&„d,] = [&„d') = 0,
PC., D.]=[X., D'] = 0,

[i, i,] =&fif.

[d„d,]= i@d, ,

(47S)

(48M)

(49F, H)

(50S)

(51M)

Now in order to establish the Dirac quantization

It is straightforward but tedious to establish the
following commutation relations
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condition, we focus on the Schrodinger wave equa-
tions, which we can easily write down from (33)—
(36) and the corresponding g component and
raising and lowering angular momentum opera-
tors, written in spherical polar coordinates, from
(43}-(45)

(52F)

ators and the string and monopole wave equations
reduce to the operators and equations for a free
particle.

From (56)-(58), we can construct, in spherical
polar coordinates, the operator equations for the
total angular momentum squared:

g (. g'r
= —sing

(
sing

(
P' eg8

pn jW~ 1+cOs8 8p
1

0=x, y, z (60F, H)

2 mc'r' (1+cosg) &

+ e &, Iq =gy, (54S) P d,'= I,' —2pl, + g'+ —,'[d., d ],

(
p' egl cosg g e g'

+ 22 co —
)2' jypggy' sin g Bg7 2ssc J'

2

1+cosg j Bq7
k

1 8
l, = —,

i 8cp

8l, = l„+il, = e"~ ~- — —+ i cot 0
86P 8cp

p sing
d, =d„+ id, = l, —e"~

(55M)

(56F, H)

(578)

p'(I —cos g)+ +1+cose P:

2p, cos6) 8+ ~ 2 + 2 ~~~ ~~sin' g 9y sin'g

(618)

(62M)dg= lg —p ~

D, = l„
~ =I, —e""p/sing.

(56M)
We take as the general form for the solutions of
each of the Schrodinger wave equations

y=g(r, g, rp)=R(r)r (cosg)e '"'~'".
In (56)-(58}, we have written the angular mo-

mentum operators in units of I, truncated to
eliminate the spin operator o, and we use the ab-
breviation

ij. =- eg/a e. (59S, M)

Clearly, if g=0, all the angular momentum oper-

(63F, H, S:;M}

This is a representation in which l„d„-D„and
p d ', and D„' are diagonal, but the x and y com-
ponents of the three angular momentum operators
are not. We make the substitution x=cos6 and
find the eigenvalue equations:

l,q=D,(=( +my, )q,

d./=md,

(I —x')I "' 2'' —(1 —x')-'(m+ p, )'I'„+ ~I =0,
(1 —x')I'„" 2xY' —(1-x') '(m'+ p, '+2p. mx)r +x1„=0,
(I —x)'I "—2xI" —(1 x') '[(m+ g)+ p, (p, +2xm+2xp. )jr + ZY =0,

(64F; H, M)

(65F, H)

(668)

(67NI)

Clearly, for the free electron and the electron
interacting with a proton we must set p, = 0 in (63),
(64), and (65). Then we find that (65) is the as-
sociated Legendre equation and that (66) and (67)
reduce to this equation as they should for p, =0.

We note that the string equation (668) becomes
the monopole equation under the substitution pg

-yg+ p, , a fact which greatly simplifies the re-
maining discussion and can be understood in terms
of the gauge transformation described in the Ap-



QUANTUM-MECHANICAL FORMULATION OF THE. . . 3855

pendix.
We now use the raising and lowering operators

to construct recursion relations of the Rodrigues
type. Operating with d, on g yields

p, =eg/8 c=n/2

is the Dirac quantization condition.
Parallel calculations for the monopole yield

(758)

(1 + )m(I x)m+2PP (76M)
(68S)

The monopole equation

(1 2)i/2 d (m+ P } P )
~ (69M)

dx 1 —x'

may be found by direct calculation with D, acting
on g or replacing m with m+ g in (66S). The cor-
responding free particle and hydrogen atom equa-
tion

2
(70F, H)

is readily obtained from I, acting on g with p, =0
or by taking p, =0 in (56) and (57).

The general relationship

y'+yy =exp(—Jydx) exp(f ydx) y

with

f =+(mx+ p. )/(I —x'),

f =~[(m+ p. )x+ p. ]/(1 —x'},

f =+mx/(I —x')

enables us to write

(71F,H, S, M)

(728)

(72M}

(72F, H)

—(1 2) (men)/2
m+n 1+x]

t'1+
(1 X 2) /2 Ix

ft I1 m

d 1 —x

These solutions are analytic, only if both of the
quantities in square brackets on the right-hand
side are polynomials. It is only in this case that
the number of functions p,„, for a given eigen-
value A. , is finite.

If we set the first of (738) equal to a polynomial

p, then the second relationship is equal to

(1+x) -&(I -x)"21 . (748)

This is only a polynomial if m and p, are both
simultaneously equal to an integer or- half integer.
But

which is a polynomial if m is an integer and p, is
a half integer. This establishes the Dirac quan-
tization- condition for the monopole.

Fierz points out that (668) is identical with the
equation for a symmetric top." This is formally
true also for the monopole equation (67M). For
each one of the I'-'s the integral f,'

~1' (x)~'dx
exists. Indeed from the recursion relations one
can construct explicit solutions of the Y 's and
find the normalization factors for both positive
and negative values of ypz and p, .-

V. CONCLUDING REMARKS

In this paper we have constructed a relativistic
Hamiltonian in which the interaction of an electron
with a monopole at rest is described by means of
the pseudoscalar potential p =g/r The. Hamil-
tonian is cast into the same form as the Hamil-
tonian for a str'ing by the introduction of a quasi-
potential A*= Jdzkx Vy . Two approximations
are made to write the corresponding Schrodinger
operators and the associated angular momentum
operators. The method of Fierz is then followed
to obtain Dirac's quantization condition, a result
without which this formalism would have no merit.

As aresultof this successful outcome, it seems
that the formalism presented here could be used
to consider other problems of interest. What is
the structure and physical significance of the
relativistic wave equation describing the inter-
action between an electron and a magnetic current
density'? What are the conservation laws which
can be obtained by applying Noether's theorm"
to a covariant Lagrangian density formalism?
What are the essential physical differences be-
tween a monopole of postulated spin k/2 inter-
acting with a charge at rest and a monopole of
postulated spin 0 in the same environment? For
the former a Dirac equation such as (9) would be
used with e-g and A*- fdrx Vy . For the latter
the Klein-Gordon equation (m*'/2m+ m c )g = Eg
would be used, with p* redefined in terms of the
above A*. In the electron-monopole interaction,
do bound states exist for the Schrodinger-Pauli
equation, with the magnetic moment of the elec-
tron p, = eh (I + k) /2m c?

The theory of the magnetic monopole, with two
sets of four-potentials, has been investigated
already, "but attention has been focused on the
second-quantized form of the theory. The sugges-
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tions we make here for further study relate pri-
marily to the first-quantized form of the theory.
The objective is to expose as many features of the
hypothetical magnetic monopole as possible, with
the hope that additional detection schemes may
emerge.

The Lagrangian is in standard form

L=m v'/2+ c 'qA v —qq

but the canonical momentum

p mv+ tgc A

(A10)

(A11)

APPENDIX

1. General classical Hamiltonian

(Al)

where the quasiscalar potential

gxA ~ dr (A2)

and the quasivector potential

A*= dlx -V (A3)

The magnetic monopole is the source of the
pseudoscalar potential Q and the pseudovector
potential A . The physical field B due to magne-
tic monopoles is

The Hamiltonian used to describe the interac-
tion of a charge q moving with a velocity v in the
field of a stationary monopole characterized by a
potential y =g/r may be extended to include
fields generated by magnetic monopoles in motion
and, of course, by conventional electrical charges
at rest or in motion. This brings into play A

and A, of (1) and (2).
We find that the appropriate Langrangian

L=mv /2+c q(A, + A*) .p —q(q7 + p ),

(P, —qc 'A, )'
+qp2m

(A13)

has the usual form, but P„A, have generalized
meanings.

2. The gauge function relating the various A's and A*'s

We found that the differential equation describing
a symmetric top, as used by Fierz, with the po-
tential (14}, and the corresponding monopole equa-
tion have operators which are related by the
transcription m- m+ p, . The curl of the string po-
tential (14) and of the monopole quasipotential (13)
are both gr/r' apart from singular terms along
the z axis. The gauge function connecting these
two quantities can easily be found, providing we
exclude z =ay.'

includes the quasipotential A* as well as the con-
ventional vector potential A,. Similarly, the
Lorentz force equations, derived from the Lagran-
gian equation of motion,

ma=qE+qc '(Ox5), (A12)

includes the fields arising from both electric and
magnetic charges.

The generalized Hamiltonian

1 BAB =-Vp —— =V xA* —B„.„,.„.,„, .

The corresponding electric field

(A4)

we find

(A14)

1 eA*E~= -Vx A~= -VQ*-
c Bt

(A5)

We use the subscript g to denote potentials and
fields arising from electric charges. These have
their familiar form

(A15)

Hence if we use the operator in the string equation
we obtain the same eigenvalues in the monopole
equation providing we use the gauge transforma-
tion of the fir.st kind

1 gA,E =-VQ
c et

B,=VxA, .
(A6)

(K}Y (COS 8) j(|c+p) Peter/hc

—e&eXincq

—e l jl e (A18)

1 8AE=E +E = —VP ——
e m c et (A8)

If we use symbols without subscripts or asterisks
for the total potential and total field

A=A + A*, (A7)

(A17)

where

It is the gauge invariance of the two Schrodinger
equations which leads to the simple transcription
m-m+ p, relating them.

We note that the monopole potential may be con-
structed from two string potentials:

A*=[A-~ &+~& &P2,

B~+B (A9) Ai'i = —(g sin g/~(l —cos 8) (A18)
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represents a semi-infinite string of dipoles ex-
tending along the positive g axis and terminating
with a monopole.

%e find that the two string potentials A~ '~ and
A ' are related by the gauge function X =2'. If
we consider the change in X as y goes from y
-y+2m'. Ay=4wg. If we require that the wave
function be single valued, we obtain the Dirac
quantization condition p, = 2n. This is an example
of Dirac's original argument. "

Finally, we find by comparing any two mono-
pole potentials taken from (4), that the gauge con-
necting them undergoes a change gX =4gg as y
and 6I are separately allowed to range from 0 to
2p. This again leads to the Dirac quantization

condition.
It is easy to demonstrate that the relativistic

wave equations (pre c'+ cn ~ n~) p = Eq and
(pm c + cn ' p)p=Eg are gauge invariant, as are
the corresponding Schrodinger equations. Dirac's
argument leading to the quantization condition is
equally applicable to the relativistic and to the
nonrelativistic wave equations. %e conclude,
therefore, that the relationship eg/kc= ', n is no-t

modified by a relativistic treatment.

ACKNOW'LED GMENTS'

%e wish to thank Dr. Frederick%einhaus for
many helpful discussions.

*Present address: Department of Physics, U. C.L.A, ,
Los Angeles, California 90024.

~P. A. M. Dirac, Proc. B..Soc. London A60, 133 (1931);
see also P. A. M. Dirac, Phys. Rev, 74, 817 (1948).

N. Cabibbo and G. Ferrari, Nuovo Cimento 23, 1147
(1962).

3P. Vinciarelli, Phys. Rev. D 6, 3419 (1972).
G. Wentzel, Progr. Theor. Phys. Suppl. 37-38, 163
(1966).

5See Ref. 2 and 3. See also C. R. Hagen, Phys. Rev.
140, B804 (1965); A. Salam, Phys. Lett. 22, 683
(1966); J. G. Taylor, Phys. Hev, Lett. 18, 713 (1967);
E. Amaldi, On the Dirac Magnetic Monopo/e, Old and
Ne'er Prob/ems in E/ementary Particles (Academic,
New York, 1968), p. 43; D. Zwanziger, Phys. Rev.
176, 1489 (1968); Phys. Bev. D 13, 880 f971};W.A.
Barker and F. Graziani, Am. J.Phys. (to be published).
%.V. R. Malkus, Phys. Rev. 83, 889 (1951); M. Fide-
cardo, G. Finocchiaro, and G. Giacomelli, Nuovo
C&ment 22, 657 (1961); E. Goto, H. H. Kolm, and

. K.%.Ford, Phys. Rev. 132, 387 (1963); E.M. Pur-
cell, G.B.Collins, T. Fujii, J.Hornbostel, and
F. Turkot, Phys. Rev. 129, 2326 0.963); E. Amaldi,
G. Baroni, H. Bradner, H. de Carvalho, L. Hoffman,
A. Manfredini, and G. Vanderbaege, Nuovo Cimento
28, 773 0.963); V. A. Petukhov and M. N. Yadimenko,
Nucl. Phys. 49, 87 (1963); W'. C. Carithers, R. Ste-
fanski, and R. K, Adair, Phys. Rev. 149, 1070 (1966);
H. H. Kolm, Phys. Today 20, No. 10, 69 (1967); P. H.
Eberhard, Ronald R. Ross, and Luis %. Alvarez, Phys.
Rev. D 4, 3260 (1971);P. B. Price, E. K. Shirk, Vf. Z.
Osborne, and L. S. Pinsky, Phys. Rev. Lett. 35, 487

0.975).
7See Refs. 2 and 5.
SL, L. Foldy and S, A. Wouthhuysen, Phag. Rev. 78, 29

(1950).
9Harish-Chandra fPhys. Bev. 74, 883 (1948)] concludes

there is no binding for an electron whose magnetic
moment is exactly one Bohr magneton. Yoicho Kaz-
ama and Chen Ning Yang, Phys. Rev. D 15,
2300 (1977) treat the problem relativistically, with
a string potential, and "section."theory. They find that
binding exists for an electron with an anomalous mag-
netic moment.

iOS-ee Ref
~~M. Fierz, Helv. Phys. Acta 17, 27 (1940}. See also
J ~ D. Jackson, C/assi ca/ E/ectrodynamics (Wiley,
New York, 1965), 2nd ed. , pp. 251-260.
See Ref. 2; see also C. R, Hagen, Phys. Rev. 140,
B804 0.965).

~38ee Fierz, Ref. 11.
&4R. Becker, E/ectromagnetic I'ie/ds and Interactions

(Blaisdell, New York, 1964), Vol II.
~5See Fierz, Ref. 11.

See Bef. 4.
W. A. Barker and Z. V. Chraplyry, Phys. Hev. 89
(1953).

"See Ref. 11.
~ B.A. Sommerfeld, Atombau and Spektrallinien 2, 162

(1939).
20P. Boman Theory of E/ementary Particles (North

Holland, Amsterdam, 1960), pp. 217-246.
"See Ref. 5.


