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Discrete sine-Gordon equations
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Various discretizations of the sine-Gordon equation are studied. Hirota s discretization scheme is extended

and two alternative discretization schemes are constructed. The associated soliton solutions, Backlund

transformations, conservation laws, and the inverse scattering equations are obtained.

I. INTRODUCTION

The sine-Gordon equation has served repeatedly
as a prototype for a two-dimensional nonlinear
field theory. It can be solved exactly by the in-
verse-scattering-transform method and possesses
all the remarkable properties' that follow from
this method, ' namely particlelike solutions, the
solitons, and the breather; Backland transforma-
tions; infinite number of conservation laws;
complete integrability as a Hamiltonian system. '

Recently, there has been some interest in ex-
actly soluble discretized nonlinear problems, and
the inverse-scattering-transform method has
been extended to a wide class of such problems.
Hirota' has discretized the sine-Gordon equation
in both the space and time variables and has ob-
tained discrete soliton solutions, the associated
Backlund transformations, and the inverse scat-
tering equations.

In this paper we consider a generalization of
Hirota's discretization scheme for the sine-Gor-
don equation and compare it with two alternative
schemes. Specifically our results are as follows:
(a) We extend Hirota's formalism to incorporate
different lattice spacings for the space and time
variables. (b) This allows us to take the contin-
uous limit separately in the time or space varia-
bles, thus obtaining semidiscrete sine-Gordon
equations. (c) We construct two alternative dis-
cretization schemes for the sine-Gordon equa-
tion, and find that they agree with Hirota's in the
semidiscrete limit. (d) We derive Backlund
transformations for all three schemes, and (e)
solve them for the one-soliton and two-soliton
solutions. (f) We construct the discrete analogs
of the energy conservation laws and show how,
in conjunction with the discrete Backlund trans-
formation, they can be used to generate an in-
finite number of conserved quantities. (g) We
consider the inverse scattering equations, solve
them for the one- and two-soliton solutions, and
generalizing the results of a previous paper' we
derive the discrete analogs of the Coleman corres-
pondences between the sine-Gordon equation and
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complex variable as
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Hirota's g/f notation is also used, where g =e~~4
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can be expressed' in terms of the corresponding
fields w and w =e~""~~')=f +ig as
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The associated inverse scattering representation
is obtained from (6) by defining'
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Then, Eqs. (6) become the usual'" inverse scat-
tering equations
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the massive Thirring model. '
The sine-Gordon equation in light-cone coordin-

ates x =(x' —x')/2 and f =(x'+x')/2 is

8„9,$ =sing.

Introducing the auxiliary field p(x, f) through the
equation
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Instead of discretizing the sine-Gordon equation
(1) directly, it proves very convenient to discretize
first Eq. (4) and then obtain the discrete form of
(1) through the identification (3).

II. DISCRETE SINE-GORDON EQUATIONS

A. Hirota's discretization method

WWt —WtW =47'(WWt —W*WXt) s

4' —4'=esinlt 4')
I'

t

pt'-p'=r 1 —cos ~ +
2 j

where (tt' =8„$ etc.

(14)

In this section we consider Hirota's method of
discretizing the sine-Gordon equation. We have
slightly changed Hirota's notation and somewhat
generalized his results to include different lat-
tice spacings for the space and time variables.
Thus, the x and t variables are discretized ac-
cording to

x =jgn, n=0, +1,+2, . . . ,

(Q„, +Q —@.—Qt && . 4. t 4+4+. 4+tsin(" .
=

4
sin

-s[-,'(e., e)1
xp[( p p p —p )/4] =

[ ( )]
~ (12)

We observe that in the simultaneous continuous
limit (It =v- 0) these equations reduce to (1) and

(2), while in the continuous-time limit (r- 0) they
reduce to

WW„-W„W = —,
'

It (WW„-WxW„*),

—j=s sinl 4 4*)
(

j„-p=Itl —cos

where p =()tp etc. In the continuous-space limit
(h- 0) Eqs. (10)—(12) reduce to

t=gm, m =0,+1,+2, . . . ]

where h and y are the lattice spacings. We intro-
duce the notation P„(x, t) —= P(x+it, f) = P(lt(n+I), f)
for the x-shift operation and similarly for the t
shift, so that, for example, P„t(x, f) = g(x+8, f+T)
=+It(n+1), v(m+1)). Hirota's way' of discretizing
Eq. (4) is to replace it by the partial difference
equation'

Its WWxt 4WxWt W*Wgt+toxW))I
xt x t 4 2 2 j

(1o)

Defining p and p again by w =e(~t+ the discrete
version of the sine-Gordon equation (1) and of the
related Eq. (2) can be obtained from (10) as

xt x t cos xt s jn x t

& e(v- v„)/4

exp[( p„+pt —p —p~)/4] =
cos[-,' (y„t + y)]
cos —, Q„+Qt

(16)

The extra exponential factor e(P Px) ' turns (16)
into a nonloea/ nonlinear partial difference equa-
tion. In fact, Eq. (17) can be used to solve for
this factor in terms of Q,

m-1

(p-p„)I4 O [4(ext +4)]
cos[-,'(y„+yt)]

In the continuous limit h =~- 0 Eqs. (15)-(17) re-
duce to the usual ones, Eqs. (1)-(4), while in the
continuous-time limit (w- 0) they reduce to

WW„-WxW =4 Il(W -'W "2)

I sing e(P Px)/4-

yg &w+ w
s [eie-e ii'I = —sist inn I" *).t 4

In the continuous-space limit It —0 Eqs. (15)-(17)
become local, and reduce to the same set of
equations as in (14). The nonlocality of (16) can
be traced to the asymmetric treatment of the x
and t variables. Since the original continuous
sine-Gordon is symmetric in x and t, we can
obtain a third discretization scheme by inter-
changing the roles of x and f in Eqs. (15):

WWxt -WxWt =4 PL1 (WWx —8) XW +) i

sinl4*'+4 4*
.
te I= nnsl4"+ Isinl 4*+ e)4 J 2 i 4 & E 4

(p- p ))4] OS[4 (Qxt + Q)
cos[-,' (y„+ tI)t)]

(2o)

B. Alternative discretization methods

An alternative discretization method consists
in replacing Eq. (4) by the following partial dif-
ference equation:

WWxt —W Wxt
= 4 Q 7(WW't —W*W t)

with a corresponding discrete sine-Gordon equa-
tion
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The continuous-time limit (y-0) or continuous-
space limit (h- 0) can be taken in a similar man-
ner. In particular, we note that the (y- 0) limit
results in the same (7- 0) limit of Hirota s
scheme, i.e., Eqs. (13). . The properties of this
semidiscrete sine-Gordon equation are studied
e 1.sewhere. "

III. BACKLUND TRANSFOR1VlATIONS

p, = tanh(ha/4), q, =tanh(za/4), (22)

where g and a are real parameters constrained
to satisfy

tanh(ha/2) tanh(wa/2) =hy/4.

Setting w =e +'~ and w =e ~+'@, the discrete
version of (5) becomes

. ((y„-y)-(j,—j)'~sin
~

(23)

= tanh —"
I sinl

2& & 4

(24)
. ((y, - y) +(j, —j) '~Sill

I

=tanh] —~sinl ~'
i2& E 4 j'

In the continuous limit (h =g 0) Eq. (23) gives
a =a ', and (21) and (24) reduce to the usual Eqs.
(5) and (6).

In the alternative discretization scheme of Eq.
(15) the Backlund transformation is

w„w —ww~ = —v4(w + w +)
~

Bl~w* —ww
g

= —+4(w f w) ~

(25a)

(25b)

where v, =tanh(ha/2), p., =tanh(ga/2) and a and a
are constrained by the same Eq. (23). By inter-
changing the roles of x and t we can also obtain
the corresponding Backlund transformations for
the third discretization scheme of Eq. (20) as

All of the above discretization schemes admit
a Backlund transformation which is a discretized
version of (5) and (6). In Hirota's case"

w„w -ww„=-p, (w*„w*+w*w*„),

w~w ww~ = i/4(w~w+w wg) q

where w is the new solution of (10) obtained from
an old solution w of (10). The Backlund parame-
ters p, and q, are defined by

that w is a solution of the Eq. (15), and that w and
w satisfy (25), we are to prove that w also is a
solution of (15). Taking the t shift of (25a) we
obtain

10„4' =w4w„g —v (w f w f) ..

Multiplying both sides by ww and using Eq. (15)
for w we obtain

wwg (ww„g) =wing (ww„g) —v4www f w +)

=wwg [BI~Kg + 4 h T (wwg —w + w f)]
—v wwm*se*a

from which it follows that

wwt (wloxt w„wg —
4 h7'wwg)

=wow 20(.. -wzU)w~zUg —
4 A7'wow *w +] p zo
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Using now the constraint Eq. (23) to replace hq. /4
by V,, v, and using the complex conjugate of (25b)
we can rewrite

ww, (ww„, -w„m, --,'h~ww, )

=su,w, ( ww- ww) —v,ww f(wow + p.,w,w*)

=
gvgÃg (v4 w *w *) —v4 ww f (w *

Kg )

= v, w *so, (w,w* -ww*, )

= v, w *au, (- p,,ww f)

=ww) (- 4 h'rw fw*)
~

where we used (25b) and (23) again. Eliminating
the common factor svzu, we see that w must also
be a solution of (15).

As in the continuous case, we may think of the
Backlund transformation as a nonlinear "super-
position" principle' which generates a new solu-
tion w by adding a soliton to an existing solution
w. Starting with the "vacuum" solution w(x, t) =1—
(with p = P—= 0) we can successively apply the
Backlund transformation to generate the one-soli-
ton, two-soliton, etc. solutions.

IV. ONE- AND TWO-SOLITON SOLUTIONS

Starting with the initial solution w(x, t) -=1 of
(10), we solve (21) for w to obtain the one-soliton
solution in Hirota's case. %e have

w f+tg —e(Pa+I O4)/4-
a a a

tan(y, /4) =g./f, =eo4,

w„w —ww„= —v, (w,*w *),

w,w *-ww ", = —p, (w* w) .
(25)

e-84/2

1+* n (I+ )m

1 -p, Il —q) (27)

The proof that the above equations indeed define
Backlund transformations is straightforward. %e
illustrate this for the case of Eqs. (25). Assuming

8, (x, t) = ax+at =ahn +arm,

tanh(ha/2) tanh(g a/2) =he/4,
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while in the alternative scheme of Eq. (15) the
corresponding Backlund transformations (25) give
for the one-soliton solution

tan(y, /4) =g, /f, =e~',

g. = (1+v, )"(1+p,,)",
f, = (1 —v.)"(1 —p,.),
v, = tanh(ha/2), p,, = tanh(va/2),

il,.v, =b~/4.

(23)

tv„tv, -svu = —P, (w*„m*, +w'm*„),

W~'W +~
—tv% +~) = —

qg (NJ fK~ +II +'N~t ),
(29)

where p, = tanh(hb/4), q, = tanh(l. b/4), and b and b

are constrained in a similar manner as in (23),

tanh(bb/2) tanh(l b/2) hl /4.

Solving (29) for lv =f+ig we find

In the continuous limit (b =g - 0) P, reduces to
the usual soliton. Even though the discretization
of x and t badly breaks the Lorentz invariance of
the theory, the solution remains basically the
same. In terms of the laboratory coordinates
x' and x' we have

8,(x, t) =ax+at =y, (x' —v, x'),
where v, = (a —a)/(a +a), y, = (a +a)/2 and can be
thought of as the "velocity" and the "Lorentz contrac-
tionfactor" of the soliton. The soliton "at rest"
would be characterized then by v, = 0 or by a =a
=a„and 8, (x, t) =a,x', where a, is the solution
of

tanh(jga, /2) tanh(l a,/2) =bl. /4.

In the continuous limit a, =+ 1 corresponding to the
soliton or antisoliton.

Next, we consider the two-soliton solution which
can be obtained by applying the Backlund trans-
formation a second time. Starting with the one-
soliton solution that we just found sl, =f, +ig„and
using new Bicklund parameters for the second
soliton, Eqs. (21) for zv become

have also expressed K in terms of the a and 5
parameters. We note the following: (i) Equations
(30) are straightforward generalizations of the
continuous case. ' (ii) Because of the symmetry
of the resulting equations with respect to a and b,
it follows that the Backlund transformation is a
commutative transformation just like in the con-
tinuous case. (iii) The inverse of the Backlund
transformation can be obtained by reversing the
sign of the a parameters. (iv) Solution (30) cor-
responds to iwo solitons (or two antisolitons)
when a and b have opposite sign, and to a soliton
and an antisoliton when a and b have the same
sign. (v) From the last two remarks there fol-
lows the same exclusionlike principle as in the
continuous case, namely, that two solitons cannot
be put together if they have the same "velocity"
parameters, i.e. , P—= 0 if a = -b. (vi) So far the
parameters a and b were assumed to be real; by
choosing them to be complex conjugates of each
other, i.e., g =b* we obtain in (30) a discrete
analog of the breather solution of the sine-Gordon
equation.

V. CONSERVATION LAPIS

The procedure by which the Backlund transfor-
mation serves as the generator for an infinite
number of conservation laws is well known. ' It
makes use of the energy conservation l.aws

8, [-,'(s„y)']+8„[cosy]=0,

8„[-,'(8, y)'] + s,[cosy] = 0.
(31)

In this section we derive the discrete analogs of
these conservation laws and a few others. Using
the field equation (11) we can easily verify

I. —cos~~" @
)
+a„" cos~~+

2 ~
" 4 ~ 2

(32)

1-cos j~' ~
I +s, cos

~

bl- & +
2 i~ ' 4

g = K' ' sinh[ —,
' (8, —8,)],

f=K cosh[2 (8 + 8l, )]
ea( w) ~ go+ )

hg hb 7'b Ta

8,(x, t) =ax+at, 8, (x, t) =bx+bt,

(30)

where A„and 6, are the difference operators,
i.e., s.„f=f„fete. These-equations reduce to
(31) in the continuous limit. From (32) it follows
that the quantities

f, =g
+

1 —cos ]
~+~"

~

where g, and P, are the one-soliton solutions
given by (2 I) with parameters a and b, respec-
tively. Because of the constraint Eqs. (23) we

are t-shift invariant, that is, conserved. Two
additional conservation laws can be obtained
from the equation of motion (11), namely,
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sin ~" ~
~

=a "
sin

2 i " 4 2

nin ' ~
~

=n "
nin ~ +

~*)J .
2 j [ 4 2

(33)

The conservation laws (32) can now be used in con-
junction with the Backlund transformations (24),
with an infinitesimal Backlund parameter a, to
generate an infinite number of conservation laws
in exactly the same way as in the continuous
case. '

VI. INVERSE SCATTERING EQUATIONS

.tv* cu
Xl X2 2, X

X2
(34)

then (21) becomes

Hirota has shown' how to turn the Backlund
transformation equations into the inverse scatter-
ing equations. This is done by rewriting (21) in
terms of the quantities

e&(4-4~)/2

x x=0'

t/ 0

,(,„~)(.)
x P

p e-4((t+4g)/2

p x)+x

eh(4 —4~)/2

p xx~

Eliminating the x-shifted and t-shifted quantities from the right-hand sides, we obtain an egaivalent set of
inverse scattering equations

oshha 2e'~ @

sinh(Jga /2)

cosh(~a/2)

sinh ya 2 e' ~+~~

sinh(ka/2) -=MX,
cOsh(I2a/2)e' +" + 'j

si hn(~a/2)e-"i" i' ''2)

cosh(ra/2) )
X=&x ~

where a and a are again constrained by (23). The
"integrability" of this system (i.e., X« =X,„) re-
sults in the condition

MX=N„M,

which can easily be seen to be equivalent to the
discrete sine-Gordon equation (11). In the con-
tinuous limit the usual. inverse scattering equa-
tions (8) are recovered.

The advantage of this method of deriving the
inverse scattering equations from the Backlund
transformation lies in the fact that (34) allow
one to determine x, and x, from the knowledge of
ze by undoing the Backlund transformation to ob-
tain ge.

As an illustration, we work out the X's for the
one- and two-soliton solutions that we found in
Sec. IV. Since the one-soliton solution w =go, =f,
+ig, is obtained from the "vacuum" solution so
= 1, we immediately find the corresponding X
from (34)

1 1
Xal f +ig P Xdl2 f Zg

with f, and g, given in (27).
It can be verified that these solutions satisfy

I

the quadratic relationships

—i cosh(ya/2)X*„, X„=-,' (1 —e' ~"~«~ '),
sinh(ha/2)X*, ~X„=(1/4i)(1 —e' @' ~'& '),
sinh(va/2)X, *„X„=(1/4i)(1 —e' ~' ~«' ')

which are the discrete analogs of similar ones
in the continuous case', namely,

(36)

—iX,*,X„=-,' (1 —e' ~')

1aX*„X„=-B„Q,,
1 g 1a X„X„=48,$, .

(37)

As shown in Ref. 6 Eqs. (37) form the basis for
the classical Coleman correspondences between
the sine-Gordon theory and the massive Thirring
model. Therefore, (36) can be thought of as a
discretized version of the Coleman correspon-
dences.

For the two-soliton solution P given by (30) we
have two eigenvectors X, and X, corresponding to
the two Backlund parameters a and b. To find
X we must undo the Backlund transformation with
parameter a and we obtain ce =so„ i.e., the one-
soliton solution with parameter b. Similarly, for
X, we must undo the Backlund transformation
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with parameter 5 and we obtain gg=sv, . %e have
then

tinuous case'

fb bg-b fb +bgb

f+ig f zg

f. -ig. f.+ig.
Xb1 f+ig & Xb2 f ig

where the f 's and g's are given in (27) and (30).
The analogous equations to (36) are, in the two-

soliton case,

i c—osh(7a/2)X*„«X„+i cosh(rb/2) X» «Xbb

l (1 «(«b+e«)/2)

sinh(ha/2) X,*~X„—s inh (I«b /2) X)~Xb2

=(1/4i)(1 —e««~ ~&« '),
sinh(7a/2)X, *„X„-sinh(vb/2)X~», X»

= (1/4')(1 -""-'«")
which are again the discrete analogs of the con-

ax,*,X., —bX b2Xb2 =-'s, y,
XblXbl 4s«4

VII. CONCLUSION

In discretizing nonlinear equations one is in-
evitably faced with a large number of choices (all
with the same continuous limit) for discretizing
the nonlinear terms. The basic difference be-
tween the discretization schemes that we have con-
sidered lies indeed in the way the nonlinear term
w2 in (4) is discretized. The particular choice one
makes can alter the character of the resulting
discrete 'sine-Gordon equation; it can even turn it,
as we have seen, into a nonlocal equation. It is
nevertheless rather remarkable that there exist
discretization schemes that preserve most of
the interesting properties of the continuous case.
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