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We study in detail the classical Yang-Mills field equations in the presence of static external sources. Their
formulation as an initial-value problem in the Ao = 0 gauge provides us with a powerful tool for determining
the existence of new solutions. In the case of point sources, the only static solutions known so far are the
various Coulomb solutions which we classify according to their total energy and isospin. In the case of a
localized but extended source, there are, besides the well-known Coulomb solution, two new types of solu-
tions: the "magnetic dipole" solution which has the long-range behavior of a magnetic dipole field and which
has lower energy than the Coulomb solution when the total external charge is large enough, and the "total
screening" solution which has no long-range field strengths at all and which can have an arbitrarily low energy.
We present a detailed study of these new solutions.

I. INTRODUCTION AND SUMMARY

Gauge theories offer the greatest promise to
describe the elementary forces in nature. In par-
ticular, quantum chromodynamics (QCD), the
quantum gauge theory of the unbroken local sym-
metry group SU(3) of color, is widely believed to
be the correct theory of the strong interactions.
Although this belief is strong and widespread there
is actually very little known about QCD, especially
in the infrared regime where the usual tool of field
theory, perturbation theory, fails to be applic-
able. ' In such a situation the investigation of the
classical version of the theory' appears as a wel-
come source of relatively straightforward in-
sights. It has already brought forth the existence
of the Wu-Yang monopole' and of Coleman's non-
Abelian plane waves. 4 The fascinating topological
properties of non-Abelian gauge theories have
further come to light through the discovery of the
't Hooft-Polyakov monopole' as a static solution
to the broken-SU(2) gauge theory, and of the in-
stantone and meron7 solutions to the Euclidean
version of Yang-Mills theory. These latter solu-
tions, although purely classical, have turned out
to be directly relevant to the problem of defining
the vacuum state of @CD and possibly also to the
problem of confinement. '

In this paper, we will study the solutions to the
classical Yang-Mills field equations in the pres-
ence of external sources, a problem relatively
little investigated so far. We will not take into
account the dynamics of the external source which
we assume to be static. ' That the study of classi-
cal Yang-Mills theories in the presence of exter-
nal sources could contain some interesting sur-
prises was first indicated by Mandula'0 in his
study of small perturbations around the Coulomb

solution. The existence of a Coulomb solution for
an arbitrary external source is well known. Man-
dula showed that if the external source is distri-
buted over a thin spherical shell, the Coulomb
solution is unstable under small perturbations as
soon as gQ )-', where g is the gauge coupling con-
stant and Q is the total external charge. He also
showed that the instability modes produce an in-
ward flow of charge which tends to screen the ex-
ternal charge. Since the energy of the Yang-Mills
fields in the presence of a static source is positive-
definite, Mandula's result implies the existence of
(at least) one solution with energy lower than that
of the Coulomb solution.

In a previous letter, "we presented two new
classes of solutions to the Yang-Mills field equa-
tions in the presence of static, localized but ex-
tended external sources. Both classes have totally
screened electric fields. One class of solutions
("the magnetic dipole" solutions) has the long-
range behavior of a magnetic dipole field and has
lower energy than the Coulomb solution when

g Q is large enough. The other class ("the total
screening" solutions) has no long-range field
strengths at all and has arbitrarily low energy for
all values of gQ.

In Sec. II, we review the general properties of
the Yang-Mills equations in the presence of exter-
nal sources, with particular emphasis on static
sources. In Sec. III, we discuss the Yang-Mills
equations as an initial-value problem in the A. o 0
gauge. This is a very useful tool for showing the
existence of new types of solutions.

For a point source, the Coulomb solution is the
only static solution known so far. In the presence
of several point sources, there are in general
several Coulomb solutions differing from one
another by their total energy and isospin. This is
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discussed in detail in Sec. IV.
In Secs. V and VI we give a detailed account of

the "total screening" and "magnetic dipole" solu-
tions, respectively, and show how they generalize
to gauge groups other than SU(2).

II. INTRODUCTION OF EXTERNAL SOURCES

INTO THE YANG-MILLS EQUATIONS

The equations of motion for the gauge fields"
&," in the presence of an external current j," are

gauge symmetry [U(x) x indeperident] is

Z"=s„F~'=j" g-[A„,F~'] (2.10)

is conserved (&P"=0) due to the antisymmetry
of &"". Thus ~ is a conserved but not a gauge-
covariant current, whereas j" is gauge covariant
but not conserved. ~ v~" =0 implies conservation
of the total isospin, i.e. external isospin plus the
isospin carried by the Yang-Mills field. The total
non-Abelian "charge" corresponding to ~ is

yPv jv
P

where

(2.1) d'xJ'(x) = d'xa, F" =
urface
at oo

I'0' n, d&x.

jv = ijPT

F""=s~A" —s'A~ +g[A ~,A"]. (2.2)

Here T' form an arbitrary representation of the
Lie algebra of a gauge group G,

[T,T'] =z c"'T (2.3)

where c' ' are the structure constants of G. (We
use &, &, , . . . to denote group indices, p, &, . . .
for space-time indices and &,j, &, . . .f or the spa-
tial components. We use the metric with goo= —1.)
&„ is the usual covariant derivative

D„.j"=s„j"+g[A~, j"J =0 .
Indeed, in general

[D„,D.] e =g [F„„el,
and therefore

(2.12)

(2.13)

D„j"=D,D,F"' =-,' [D„,D„JF""=,' [F~„,E""-]=0.

(2.11)

I is time independent and is covariant under gauge
trarisformations which are constant gauge trans-
formations at spatial infinity.

The gauge-covariant current j", although not
conserved, satisfies

Dp 4 = s
g 4'+g[Ap, 4], (2.4) (2.14)

with Q =-zQ'T' for any field Q'(x) transforming
as the adjoint representation of G. The field
strengths ~„, also satisfy

(2.5)

as a direct consequence of their definition, (2.2).
It is well known that under local gauge trans-

formations

A~ VA" V--'-- (S"V)V-z1
(2.8)

with

U = exp[-igloo(x)T' ],
the field strengths and their eovariant derivatives
transform as

From the Lagrangian (2.9) we can calculate the
energy-momentum tensor

(2.15)

Using Eqs. (2.1) and (2.15), the total energy is
given by

H= d~x2'oo= d'x ~ E +B +j~A" 2.16

provided the surface integral
F""-UF""V ' D E""-U(D F"")U ' (2.7)

(2.17)

& = —4 Tr(F„,F"')—Tr(j "A&) (2.9)

The Noether current corresponding to the global

Thus Eq. (2.1) is covariant provided j" also trans-
forms covariantly, i.e.,

(2.8)

The equations of motion (2.1) can be derived
from a Lagrangian density

Here E& Fo& and &» = 2&I,z; —F—" (z,j, A' =1, 2, 3).

A. Static sources

In this paper we shall be concerned with static
sources. We eall a source distribution j"(x) static
ifj '(x) =0, i =1,2, 3. Equation (2.12) then implies

q(x) =-g[A, (x), q(x)] with q(x) =jo(x). This
means that the time development of q(x, &) is given
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by a gauge transformation which depends upon

A, (x, t),
q (x, t ) = U(x; t, t )q (x, ta)U (x; t, to)

with

(
U(x; t, t, ) =exp ~- dt'gA (x, t'}

path-ordered

(2.18)

(2.19)

Thus a static source distribution only "rotates"
in the internal isospin space. For a static source,
the energy is simply given by

Consequently, our assumption that the source is
static implies that the Casimir invariants build
out of the q' (x, t }—i.e., the polynomial expres-
sions in 9' which are invariants under the group
transformations —are time independent. For ex-
ample, for SU(&), in which case q(x) is an anti-
Hermitian traceless &x + matrix and the Casimir
invariants are C~(x) = Tr[q(x)] ', l =1, . . . ,+ —1,
[& —1 = rank of SU(&)j we have

a,C, =l Tr[(a,q)q' 'j

gl Tr-([A„q]q' 'j.

=- gl [Tr(A,q' ) —Tr(A,q' )]

Let T, (i =1, . . . , r) be the generators of the Car-
tan subalbegra of G. For an arbitrary source dis-
tribution q' (x) (+ =1, . . . , +) there exists'4 a gauge
transformation U(x) which lines up q' completely
within the Cartan subalgebra

U(x)q(x)Ut(x) =Q ( i)-T)q~) (x) . (2.22)
g~)

The q& (x) are time independent because they can
always be expressed in terms of the & time-inde-
pendent Casimir invariants build out of the q' (x}.
If we make the ansatz A„(x) = (-i )Q, T, C'„(x),
Eqs. (2.1) become linear and identical to the set
of & Abelian Maxwell equations

aq(a "Cq a "Cq—) =g" qq (x), i =1, . . . , r. (2.23)

Thus for any gauge group and for an arbitrary'4
static source distribution, there always exists a
static Coulomb solution (plus an arbitrary radia-
tion field) to the Yang-Mills equations which can be
obtained by solving the linear Maxwell equations
(2.23).

Let us in particular consider the case of the
gauge group SU(3}which is of order 8 and rank
2. The commuting generators of SU(3}are those
corresponding to the two diagonal Gell-Mann ma-
trices ~3 and ~,. A general source distribution is
given by q(x) =Q,', (-i/2)~'q'(x). The Casimir
invariants are

de 82 ++2 (2.20)
and

C, (x}= 2 Tr[q(x)j' =q'(x)q' (x)

We now consider the Yang-Mills field equations
(2.1}in the presence of a static source g,"(x)
=~ "Oq, (x}. Let us specialize for the moment to the
gauge group SU(2}. In this case, for an arbitrary
q' (x) there exists'4 a gauge transformation U(x)
such that [U(x}q(x)]'=S"q(x) when q(x)
=[q' (x)q, (x)]' ' is time independent. With the an-
satz A.," = „C"all the nonlinear terms disappear
from Eqs. (2.1). The resulting equations are the
Abelian Maxwell equations.

a (a'C~ a~C") =g+q(x) . (2.21)

Its solutions are the static Coulomb potential plus
an arbitrary radiation field. They are thus also
solutions to the non-Abelian equations (2.1). We
will call the solution with the static Coulomb po-
tential only, the "Coulomb solution" to Eqs. (2.1).

Now consider a general gauge group G of order
+ and rank ~. By definition, the rank is the maxi-
mum number of commuting generators in the Lie
albebra of C. This maximal set of commuting gen. —

erators is called the Cartan subalgebra. The rank
of G is also the maximum number of independent
polynomial invariants (i.e., Casimir invariants)
which can be constructed out of the generators.

U(x) q(x)Ut(x) = [q,'(x)A., +q,'(x)A.,]. (2.25)

Indeed one can always find a special unitary matrix
to diagonalize an arbitrary Hermitian matrix.
and 98 are time independent bacause they are re-
lated to the Casimir invariants by

C, (x) =[q', (x)j'+ [q,'(x)j',
(2[28)

C, (x) = [q,'(x)]'+ v3 [q', (x)]'q,'(x) .

HI THE INITIAL VALUE PROBLEM IN THE AO= 0 GAUGE

In the following sections we shall discuss several
static solutions to the classical Yang-Mills equa-
tions. Sometimes, however, when we are unable to
find static solutions, it will be useful to know that
certain nonstatic solutions exist with a given, en-

C (x) = -4i Tr[q(x)]' = d ~,q' (x)q (x)q (x} . (2.24)

For an arbitrary source distribution q(x), there
exists" a local gauge transformation U(x) that lines
up q(x) into the commuting directions of internal
space,
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(D; E;)' =8;E'; +g(A; &E;)'=q'(x), (3.la)

(3.1b)

with

(3.1c}

where (A; && E;)' =c' 'A,'E;. Equation (2.12) im-
plies that in the A =0 gauge ~ g'=0. Thus both
the magnitude and the direction of the sources in
the internal space is fixed.

Equation (3.1b} is a second-order equation for
the time evolution of&;(&}. Thus, givenAq and

E& =~pA. ~ at some initial time t=tp, the Yang-
Mills fields are specified for all time through
Eqs. (3.1b) and (3.1c). Equation (3.1a}provides a
constraint on the values of A';(x, &) and E& (x, &).
However, since Eq. (3.11) (D„&'"=0) combined
with Eq. (2.14) (D„D,&" =0) implies &,(D, E; ) =0
in the Ap =0 gauge, it is sufficient that A; and &';

satisfy the constraint (3.la) at & =&, for them to
satisfy the constraint at all times.

The total energy of the system and its total iso-
spin~ can be computed at t =tp and will be con-
served. If the energy is finite then the positive-
definiteness of the Hamiltonian density 36=&(E'
+&') ensures that no nonintegrable singularities
in + will develop in time.

IV. POINT SOURCES

In this section we discuss the Yang-Mills fields
produced by a system of point. sources. I et us
first consider the case of the gauge group SU(2)
and two point sources separated by a distance
r =la, —a l. We have

q' (x) =Zg[e', & (x —a.,) + e,'~(x —a,)], (4.1)

where Z is the charge of both point sources in units
of the gauge coupling constant g, and e', and e,' are
unit vectors giving the orientation of the two sour-
ces in isospin space. Equation (4.1}does not give
a gauge-invar iant character ization of the sources,

ergy and total isospin. The initial-value problem
for the Yang-Mills equation in the Ap =0 gauge
provides a very powerful technique for accomplish-
ing this.

It is well known that for any gauge field configu-
rationA, "(&) one can find a gauge transformation
U(&) such that A."' =UA" U —(1/g)(~ "U)U has A,'
=0. Having fixed A.p =0, there remains the free-
dom to perform local gauge transformations U(x)
which are time independent, since they preserve
Ao =0. Let us thus consider Eqs. (2.1) in the A
=0 gauge:

however. A locally gauge-invariant characteri-
zation is the following:

Q (x) =[q' (x)q' (x)]' ' =Zg [&(x —a, ) + & (x —a, )].
(4.2)

The situation corresponds to having two &-function
localized particles represented by vectors g, and

g, which transform as the &-dimensionaL repre-
sentation of SU(2),

-2
~'(~) = g g4,'T'0;6(x a;)—. (4.3)

@a -x ~& ~a+a —+&i ~a +a —~ai
4v ' lx —a,l'+ ' lx —a, l' (4.4)

A'; (x) =0 .

The resulting solution to the equations of motion
will not be static unless e', =+ e,' in which cases
&E;'/d& = (D~ &~~)' =0 and A'; =(& —&,)E;. The energy
of the configuration (4.4) is infinite but by sub-
tracting the infinite self-energy of each source
we obtain a finite interaction energy

Z eaea
int 4 py I 2 (4.5)

The tota, l isotopic charge is given by Eq. (2.11),
I '=gg(e', ye,') . (4.6)

We thus have an infinite set of solutions to the
Yang-Mills equations with the source (4.2). e', and

e,' are just a convenient way of labeling these sol-
utions

Among these solutions, only two (up to gauge
transformations) are static. They correspond to

The statement that two such particles are located
at a, and a, is gauge invariant whereas a specifi-
cation of their orientation in isospin space is not

gauge invar iant.
The gauge invariance of the Yang-Mil1. s equa-

tions (2.1) means that if we find a solution to those
equations with the orientations &,

' and e', on the
right-hand side, this is also, after an appropriate
gauge transformation, a solution for any other
orientations ey and O', . Therefore, when we write
down an expression for a solution A. '„, although
this expression will always correspond to particu-
lar values of ~', and e,', these values of ~', and &'2

do not characterize the solution. Instead we will
characterize a solution by its energy and its total
isospin (isospin of the source plus isospin carried
by the Yang-Mills fields) because these quantities
are gauge invariant in addition to being conserved.

Following our discussion of the initial value
problem in the Ap=0 gauge, we solve the t =tp
constraint equation (3.la) for the source (4.2) by
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setting e', =+&,' and e', =- &,'. In the Coulomb gauge
they have the form

q"'(x) = — —[0' (x)f'(x)] ~.,3

Zg, l 1 1
' i ix —R i ix —a,i) '

1

A; (x}=0.

Their energy is

gmg 2

H int 43y

and their total isospin

(4.7)

(4.8}

[g~(x)P(x)] &„.
3

(4.13}

Thus the source produced by a field f in the triplet
representation has the characteristic property that
it is in the orbit of —(I/~3)[iji (x)iji(x)] &„. In other
words its source distribution is related to
—(1/v 3)$ (x)$(x)&,8 by a gauge transformation.
This can be expressed in a gauge-invariant manner
by saying that for a color triplet

a 2Zg8~
(4.9)

In a loose way, these two static solutions corre-
spond to the I =0 and I =1 representations that
figure in the Kronecker product of two doublets,

C, (x}
C,(x)'"

For a color antitriplet (~'- -Vr} we have

C, (x) 1

C, (x)'I'

(4.14)

(4.15}
2X2 =1+3. (4.10)

TheI =0 state is attractive, while the~ =1 state is
repulsive.

A. Point sources in SU(3)

We now turn to point sources for the gauge group
SU(3). In the case of SU(2) both a neutral attractive
(I =0) and a repulsive (& =1) solution exist for the
source distribution corresponding to two point
sources of equal magnitude. In fact there always
exists U in SU(2) such that (Ue)' = —e' for any
three vector &'. This result does not hold in gen-
eral for other representations and other groups.
In particular we shall see that there is no U in
SU(3) such that U, & &&, = —&„. As a consequence
the source distribution Zg~b"[&(x- a, ) +&(x —a, )]
has a repulsive solution with I' =kg &"but it has
no attractive solution with I' =0. Let us now dis-
cuss this situation in more detail.

Recall that for SU(3) there are two gauge-invari-
ant objects —the Casimir invariants (2.24),

The color charge distribution carried by a color
antitriplet is in the orbit of (+1/v 3 ) „g (x)iji(x).

Another interesting property of SU(3) is that al-
though no group transformation can change &„ to
-&„ there exist transformations which change &„
to

v3 r
(4.16)

with

3

Q I
~.l'=1.

In particular the currents c6rresponding to blue,
white, and red are, respectively,

blue: )=I 0 I

I, , ) m3
(4.17a)

W3
white: g=l 1 l- q' = ~2fi, — &„, (4.17b)

&0& &3

C, (x) =- 2 Tr[qm(x)] =q' (x)q, (x),
(4.11)

C, (x) = 4i Tr(q'(x))=d, ,q'(x}q~ (x)q'(x). red: e=l 0 I-q' = 2~., +
2

~.,08 2 cg (4.17c)

q'(x) =g (x)~a'g(x) . (4.12)

$' (x) is always related, by a gauge transforma-
tion, to p"(x}=&"$"(x) in which case

Observe that for q' = 5", C, = -1/M3, whereas for q'
= —&", C, =I/v 3 . Thus no group element can
change +&" to -&"; they are in different orbits.

Consider a field g'(x), & =1, 2, 3 in the color-
triplet representation of SU(3); we shall call its
components red, white, and blue, respectively.
The color charge distribution carried by g will be
(apart from a normalization constant)

These Q' are all related by group transformations.
In fact (4.17) correspond to the three different
ways in which the matrix q = —~ & ~'q' with q'
=g (x)2~'iji(x), can be diagonalized.

We now turn to the problem of two point sources
both in the triplet representation of SU(3) at a, and

a, with r =I a, —a, l. As for SU(2} [Eqs. (4.1) and

(4.2)] we can consider the sources at a, and a, to
be arbitrary vectors in the orbit of -(1/v 3)&,8.
We can then write anA'=0 gauge initial condition
as in Ec. (4.4) which leads to a solution of the
equations of motion. Up to global gauge transform-
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ation only two of these solutions are static. They
can be written in Coulomb gauge as

1~., 1

the combined orientations in the orbit of (-1/v'3)
&„for the color triplet (1/W3)&„ for the antitrip-
let. Among them there are again two static solu-
tions,

(4.18a)

~a ~a 1 1
gas (4.20a)

( 2 ix-a, i&

(4.18b)

3x3-3+6 (4.1S}

Equation (4.18a) corresponds to the sextet where-
as (4.18b) corresponds to the antitriplet.

Now consider the situation of a pointlike color
triplet at a„and a pointlike antitriplet at a, .
Again there are an infinity of solutions with var-
ious energies and total color corresponding to all

They correspond to the two inequivalent ways one
can diagonalize the sources [blue-blue for (4.18a).
and blue-white for (4.18b)].

Thus, as for SU(2), we have an infinity of non-
equivalent solutions for the same source distribu-
tion. These solutions are characterized by their
total energies and by their total color, I', . Note
that in their ground state, the two color-triplet
point sources attract but are not neutral [Eq.
4.18b)]. Furthermore, the two static Coulomb
solutions (4.18a) and (4.18b) of the system are
analogous to the two representations which can be
constructed from two color triplets 3X3 =1+8 . (4.21 }

Finally we consider three color triplets at a„
a„and a,. Of the infinite class of solutions
with different energies and total color there now
exist three static solutions which are not related
by a global gauge transformation. These corre-
spond to blue-blue-blue, blue-blue-white, and
blue-white-red and are given by

~., ( 3

4 2 ix —a i&.
(4.20b}

Solution (4.20a) is attractive with&'=0 while
(4.20b) is repulsive with&' 4 0. Once more one can
show that (4.20a) has the lowest energy in the
aforementioned infinite class of solutions. Equa-
tions (4.20a) and (4.20b) correspond to the two
nonequivalent ways of diagonalizing the sources:
either they have opposite color (blue-blue) or they
do not have opposite color (Mue-white). We can
again draw an analogy between (4.20a} and (4.20b)
and the decomposition

1 1
~

1 1 1
(4.22a)

1 1
~

1 1 1 1 8 v3 1
4~ v3 " ix-a, l Ix-a, i'2 Ix-ai (4.22b)

A. , A. 116 1 1 1 1 1 5(W3 1 W3 1

Equation (4.22c) has the lowest energy of these
solutions. It has I' =0, and it is thus neutral. Eq-
uations (4.22a}, (4.22b}, and (4.22c) correspond,
respectively, to the 10, 8, and 1 in the decomposi-
tion

3&3X3 =10+2' 8+1 .

We summarize the situation for SU(3) in Table 1
by showing the relative values of the interaction
energies for various states (i.e., static solutions). "

V. EXTENDED SOURCES AND SCREENING

Consider the Yang-Mills field produced by an
extended, static source distribution q'(&). For
SU(2) we characterize this source by the gauge-
invariant distribution q(x) =[q'(x)q, (x)j'~'. Let us
assume that q(x) has no &-function singularities
and that q(x) A& as &=ixi-~ for some A and» 0. The standard "Coulomb" solution for this
configuration is obtained by setting

q'(z) =& 'q(x)
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TABLE I. Relative values of the interaction energies for the Coulomb solutions in the pres-
ence of two color triplets, of a triplet and antitriplet, and of three triplets in SU(3) Yang-Mills
theory.

Decomposition Interaction energy

3x3 =3+6 3, solution (4.18b):
-1

f2

6, solution (4.18a):

3 x3=1+8

3 x3 x3 =1+2 8+10

1, solution (4.20a):

8, solution (4.20b):

1, solution (4.22c):

8, solution (4.22b):

10, solution (4.22a):

f2

+1
2xf 2

(-1/2) (1/rf 2+ 1/~f 3+ 1/F23)

+1/+f2 2 (1/+f3+ 1/&23)

1 1 1
Jf2 Vf3 f23

(5.1)
h(r) =— 4wR'q (R)dR,

1
(5.2b)

Let us first restrict ourselves to spherically
symmetric source distributions, q(x) —= q(r). Let
us suppose for the moment that q(r}=0 for r &r,.
The Coulomb solution with q' =~"q(r) will have the
long-range electric field Ef = (0/4w)(r, /r, )&„for

Now recall that in SU(2) a source +~„can
locally be changed to -&„. (Such a feat is impos-
sible in electrodynamics where the sign of the
charge is 'gauge invariant. ) To see the consequen-
ces of this let us divide the region &~ &0 into an
even number of shells each having an equal total
isotopic charge. Then let 9' point in the + „and
-&„directions in alternate shells. If we then
make the ansatz A.," =&„C", the source distribution
on the right-hand side of the resulting Maxwell
equations is spherically symmetric and has zero
net charge. The solution which results thus has
a vanishing electric and magnetic field for &&&,.
By a gauge transformation this is also a solution
for the configuration q' (x) =~"q(r). We shall see
that as the number of shells tends to infinity the
energy of the Solution tends to zero. Thus for a
spherically symmetric extended source distribu-
tion there exist solutions of arbitrarily small en-
ergy with totally screened electric and roagnetic
fi.elds.

For the spherically symmetric case it is tech-
nically simple -to avoid the discontinuities associa-
ted with a sharp transition from + &, to -&„. Let
us return to a general q(r) and define

(5.2a)

so that

Q 1dh
q(r}=-———.

4@
(5.2c)

A] =E] t,

E', = —— (~"[cos2«h(r) —1]Q r, 1
4n r22wn

—&"sin2«h(r)j .

(5.4)

This can now be rotated back into a gauge where-'' is parallel to &„everywhere. The solution then
has the form

q'(x) =q (r)5"

A' =0, A; =Ef t —~" —9, [2«h(r)],

E,' =——' (~". [ 1 —cos 2«h(r)]4gr, 2m

—~"sin2«h(r)] .

(5.5}

The electric field is completely screened and there
is no magnetic field. The energy of this total
screening solution is computed from (5.4) or (5.5)
and is given by

h(r) is the fraction of the total charge Q outside a
radius &. Let us represent the charge distribution
as follows.

q'(r) =q(r) [~"sin2«h{r) + &"cos2«h(r)] . (5.3)

The Yang-Mills equations now have the following
solution:
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1Q2 1~ t.s. —sin'vugh(xa) .a 2m (27(s)'
0

(5.6)

H" is finite provided 1 —h(r)-r' " as r-0 with
& ~ 0. [(5.2.b) implies h(0) = 1.] This means that
q(r) is less singular than 1/r'" as r-0; this con-
dition is also necessary and sufficient for the Cou-
lomb solution to have finite energy. If h(r) satis-
fies the above condition then II".-0 as &-~."
We have thus shown that a static, extended,
spherically symmetric source distribution admits
solutions of arbitrarily small energies for
which the electric field is totally screened and the
magnetic field is zero.

Before turning to a general (nonspherically sym-
metric) source let us see what happens in the case
of SU(3). The source is now described by the two
gauge-invariant functions,

q (x) =6"q'(x)+6"q'(x) . (5.8)

For simplicity we shall restrict ourselves to the
case where the source is derived from a field in
the 3 representation of SU(3) as in (4.13). [Our
results apply to the general case (5.8) as well. ]
Thus consider a spherically symmetric source
with

=0. Then q'(x) can be gauge rotated into the form
q (x) =q(x)6". It then lies completely within an
SU(2) subalgebra of SU(3). As a consequence q'(x)
can be locally changed from + &„ to -&„and the
total screening solutions exist as for SU(2).

If C, (x)+0 then the situation becomes more com-
plicated .As discussed in Sec. II q'(x)~(' can al-
ways be diagonalized by a gauge transformation so
that the source can be represented as

C, (x) =q' (x)q. (x),

C, (x) = d,~,q' (x)q' (x) q'(x) .
(5.V}

q'(r) = —6'Bq(r) = Pt(r) (I/(r—)

where

We have already noted in Sec. II that C, and t", are
time independent if j =0. Suppose first that C, (x)

By a local gauge transformation q' (r) can be ro-
tated to the form

( (//r
q" (s( WSS(s)=(,/-', oooo, /-', sioo) —' /2/Sooso ',

&&2/i sioi(1

(5.10)

with

g =2~h(r) .
where h(r) is given by Eq. (5.2). It is now a simple
exercise to compute the components of q "(r) and
to verify that j d'xq" (x) =0. In analogy with (5.4)
one can now write the electric field as the sum of
the Coulomb field for each component of q" (x) and
write &'; =~'; &, A', = 0. One then has a solu-
tion to the Yang-Mills equations. The electric
field is totally screened and the energy tends to
zero as &-~.

One can understand this result better by recal-
ling that although a source —6" (corresponding
to a 3) cannot be rotated into +6" (corresponding
to a 3) we are still able (as in Sec. IV) to combine
three 3's to neutralize the system. In other words
one divides q(r) into equally charged shells, as we
did for SU(2) and alternately assigns to these
shells the charges -6", +26" +(M3/2)6", and

+ ~ 6'(( —(~3/2)6" thus neutralizing the charge,
Finally we comment on the case of a general

nonspherically symmetric extended source dis-
tribution q(r) which vanishes exponentially at
spatial infinity. We consider the gauge group

SU(2) for simplicity. There exist infinitely many
source distributions q'(r) with the same q(r)
=[q' (r}q,(r)]' ' all of which are related by gauge
transformations. However, let us, for the mo-
ment, consider each such q'(r) separately. The
initial condition (3.1a) for the A =0 gauge in-
itial-value problem is solved by

Aq-p,

x x' (5.11)

Clearly these configurations for different choices
of q' (r} [but for the same q(r}] are in general not
related by a gauge transformation. In fact they
have different energies and total isospin. Most
of the solutions resulting from the time-evolution,
(3.1b) and (3.1c}will be non-Abelian in character
(for example [ &„Z&] is usually nonzero) and in
general they will not be static. We seen then
that in addition to the Coulomb solution discussed
in Sec. II, any source distribution q(r) admits an
infinite class of solutions with varying energies
and total isospin.

As a particular example let us take q' (r) 6's-
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but let us alternate the sign of q'(r} within the
source distribution (by a gauge transformation),
so that

q(x} necessarily satisfies

Dqj "(x)=s q(x)+g[A (x), q(x)] =0 . (6.2)

q'(r) =6"q'(r), (5.12)

with q'(r) =+q(r) in some regions (&.) and q'(r)
=-q(r} in others (& ). It is clearly possible to
choose these regions such that the first & multi-
pole moments of q'(r} vanish. In other words for
each & ~0 there exist regions&. and & such that

d' xq~(x) x. ~ ~ 'x =0 (5.13)

VI. THE MAGNETIC DIPOLE SOLUTION

If small perturbations are applied to the Coulomb
solution of an extended charge distribution, one
might presume, although it has not been shown,
that by emitting radiation the Yang-Mills fields de-
cay into one of the "total screening" solutions ex-
hibited in the preceding section. Moreover, Man-
dula' has discovered an instability mode of the
Coulomb solution which is present specifically
when gQ is large enough; more precisely, when

gQ &-, in the case he studied of an external charge
distributed over a thin spherical shell. In our
preceding publication" we found that extended
charge distributions can indeed admit a type of
solution which has the long-range behavior of a
magnetic dipole field, which has lower energy than
the corresponding Coulomb solution once gQ is
large enough and thus appears to correspond well to
Mandula's instability mode. Vfe shall now give a
more detailed account of these "magnetic dipole"
solutions.

Let us first everywhere line up the external
source into the commuting directions of isospin
space (Cartan subalgebra),

[q(x), q(y)] =0 all x and S. (6.1)

In this diagonal form, the source q(x) is time inde-
pendent (see Sec. II). Equation (6.1) partly fixes
the gauge. The remaining gauge freedom consists
of all local gauge transformations in the Cartan
subgroup U~'&(1)xU&»(1)x ~ x.UI"&(I), where r is
the rank of the group.

From Sec. II, we know that any solution A„ to the
fieM equations in the presence of a static source

for $g ~ $g $ 3 0

The configuration (5.11) then yields a static solu-
tion to the Yang-Mills equations [Af =&; (t —to)j
with Ef 6" F(8, Q)/r"'' as r-~. Thus for a
general source distribution there exist static solu-
tions to the Yang-Mills equations with arbitrarily
low energy and with an arbitrary number of multi-
poles of the electric field vanishing.

Dp; =g[A„-s,A, .g[A.,A, 1]

=g'[A„[A„A, ] ] =D, F„. (6.5}

These equations get simplified considerably fur-
ther by imposing cylindrical symmetry around an
axis in real space, which we choose to be in the
8 direction. Vfe make the ansatz

A, = Q(p, x,) a,nd A, =c,„.—'A(p, x,),
where p =(x,'+x,')' '. As a consequence2 /2

(6.6)

aA& =0 and A& &, Ao =0

Thus we obtain

—s, B,A, +g'[A; [A„A.; ]]=q(x),

s, 8;A, —g2[A, [A. ,A; ] ] =0,
or in terms of P and A

—~'0-g'[A, [A, 4)]=q(x),

', A g'[y, [y,A]]=0.

(6.V}

(6.8a)

(6.8b)

(6.9a}

(6.9b)

e will first analyze these equations for the case
of the gauge group SU(2) and discuss later how the
results generalize to other Lie groups. For SU(2),
Eqs. (6.9) become

—& Q~+g Q~[(A') +(A ) ] =q~(x) (6.10a)

@'A'A' =@'A'A' =0, ' (6.10b)

+&'A'- —,A'+g'(Q')'A' =0, for a =1,2 (6.10c)
p2

~2A~ ——A. ~ =0 .1
p2 (6.10d}

The last equation plus the boundary condition that
A'-0 at infinity and the requirement that A' be
free of singularities implies that A'=0. More-

Therefore, we can conclude that in our chosen
gauge, Eq. (6.1), in which s,q(x) =0, a solution to
the Yang-Mills field equations in the presence of
an extended charge distribution has A.o(x).also
lined up in the commuting directions of isospin
space.

If, in addition, we assume" that the Yang-Mills
fields A„(x) are all time independent, the field
equations get simplified as follows:

E) Fq -———- &;Ao+g[A, A) ], (6.3)

D, Z, = s, B,A, +g[A„[A„A,-]]
+g(2 [a)A„A( ]+[AD, &)A) ] =q (x), (6.4}
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over, since A' and A' play symmetrical roles in

Eq. (6.10) we shall assume, for simplicity, that
A' =0. We then obtain the equations of our pre-
vious paper"; renaming (I»'=Q andA' =A,

'Iglnp gmA2(I» qs( ) (6.11a)

V'A ——A +g'Q'A =01
p3

(6.11b)

(1)A(p, x,) goes to zero as r-0.

(2) Away from the origin, A(p, x,) approaches
exponentially fast a solution 8 of V'8 —(1/p')6= 0;

The idea is as follows. For that given A(p, x,),
we try to successively solve Eq. (6.11b) for
(I»(p, x,) and calculate (f(p, x,}from Q, A, and Eq.
(6.11a). For the charge distribution (f(p, x, ) thus

found, (I»(p, x, ) and A(p, x,) will be an exact solu-
tion of the field equations. The first condition on

A(p, x,) has been imposed so that the energy den-

sity be integrable at the origin. The second condi-
tion on A(p, x, ) has been imposed so that both p
and Q would vanish exponentially fast away from
the origin. Whether everything works out or not

depends very much on which solution 8 of ~'8
-(1/p')8 =0 one uses. For a particular solution t2

to be useful it should have at least the following
properties. First, it should go to zero at infinity
to assure finiteness of the energy there. Second,
it should have no singularities anywhere other than

at the origin to ensure that the whole charge dis-
tribution will be localized there. Third, it must
be possible to find an A satisfying conditions (1)
and (2) above such that (1/A) (V'A —(1/p')A] is
negative. Otherwise, of course, there is no real
solution Q to Eq. (6.11b). Of the various solutions
8 which we know of to V'8 —(1/p')8 =0I.& = (1/P)»

(x,/r p), r/p, x,/p, (1/r "")P'„(cos8)and r"P'„(cos8)
for n ~ 1, where the P„are the Legendre polynom-
ials], only the solutions (1/r"')P'„(cos8) have the
required properties. Among these we will only
use extensively the one for n =1: p/r'=. (sin8)/r'.

Let us then consider an A field of the following
form:

One obtains the Coulomb solution by setting A =0.
If A+0, the full nonlinearity of the equations comes
into play and there are no analytical methods
available. It is nevertheless possible to show that
there exists a large class (a continuous infinity)
of localized and integrable (i.e., Q & ~) charge
distributions which, besides the Coulomb poten-.
tial, admit a new type of solution with A & 0 and
Q&0 and finite total energy. To this end let us
consider any field A. (p, x,) which satisfies the fol-
lowing conditions:

A(»», x,) =ca —,f( —,»),
where f((r/~), 8) is an arbitrary function that goes
to one exponentially fast as r/+-~, and goes to
zero as r-0, in a particular fashion to be deter-
mined later. & is a parameter with dimension of
length which will of course be the spatial exten-
sion of the charge distribution Q. & is the (dimen-
sionless) norm of A(p, x,) which will be directly
related to Q and the gauge coupling constant g.
We will call f((r/&), 8} the shape function because
it gives us all the information complementary to
the norm (Q or &) and the spatial size (a). Solving
Eq. (6.11b), we find

4 Bf 2 sf
gQ = —

I
v'f ———+f ( r sr r'tan8

(6.12)

r
=—6:(xi 8} wi«=—

0 a (6.12)

where & is again a dimensionless function which
depends only on the "shape". gQ goes to zero ex-
ponentially as r-~ because f goes to one expo-
nentially in that limit. There certainly exists a
very wide set of shape functions f such that g(((» is
real everywhere. The external charge distribu-
tion is now given by Eqs. (6.11b), (6.12), .and

(6.13}. The total charge is

Q=f d+(—V (~gA (»

de 2 =gc2l (6.14)

is a number which depends only on the "shape".
The field strengths are the following:

B =B=E =0

E'= vy=- —V6"i= 8

QxxE~ =ggA =cFI — 8 f — 8a' r' (6.16)

2(m'x)x —mr' (/r m(x'Vf) —x(m Vf)
I( g r3

with m =ca3. %e thus find that the long-range
behavior of this new type of solution is that of a
magnetic dipole field. All the field strengths but
~' are either zero or short range. The physical
situation is as follows. The Yang-Mills field A,
and Q create a charge distribution -g'(A')'p whose

where

ckI, =2n sin'8d8 f2(x 8)$(x, 8—) (6.15)
0 0
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total charge exactly cancels Q. The electric fields
thus become short range. On the other hand,
those Yang-Mills fields create a current loop dis-tributionn,

f(r)-r2+O(r2) . (6.22c)

and the 8 integral is itself convergent. For ex-
ample if f is 8 independent it is necessary that

I g2 y2AI g2y2A (3xx)
p

(6.17)

whose total magnetic moment is precisely m =4a3,
Let us now consider the energy of the magnetic

dipole solution,

The convergence of theI, andl3 integrals requires
that +&-.

The energy of the Coulomb solution correspond-
ing to the external charge distribution g(x) has the
general form

$3g — 3 2+ E2 2+ gl 2
~Q

H Coulomb

a 4' (6.23)

dS& 1 +&2 2 Al 2+ P XAg

de —g +g2 2+2 (6.18)

(6.21)

Then, from Eq. (5.13}, one can verify that
&((r/a), 8}™constantas r/a 0 and therefore that
the integralI, is convergent, provided

d2H, 3 dH
d

2' +
g dg' +I('+ —3)H, =0, (6.22a)

d'H, 3 dH,,'- + — '+(22+1)(22 —2)H2 =0 (6.22b)

where we have integrated the last term by parts
and made use of Eq. (6.11b). Let us separate the
dependence of H on the gauge coupling constant
g, the total external charge Q, the size a of the
source, and the "shape":

2
—,
' —V —,8' ga &a' j

+ -6:i- 8 e2a f21-, 81
fr 2 S,„2g

a La' r' ka' &

1(1
(6.19)a~2 2 g

I

where we have used Eq. (6.14) and where

(gP 'lj 2
= m sjndg x2&

i

—(x, 8) i(Bx ' j

x~ egg ' j
fs6

" ChI =2@ sjn38d8 —S2 x 8 2 & 8
0 0

E, and I„asI, depend only on the "shape".
The requirement of convergence for i2 puts a

restriction on the way f((r/a), 8) approaches zero
as r-, 0, since otherwise $((r/a), 8)-1/r as r-0
[see Eq. (6.13}]. Let

fi —,gi =r "a,(8}+r""If(8)+O(r"") as r-o.t'r

4 1 1
(6.24)

above which the magnetic dipole solution has lower
energy than the Coulomb solution.

In summary, to every function f((r/a), 8) which
goes to one as & ~, which goes to zero as &-0
in the manner specified by Eqs. (6.21) and (6.22)
with 22& 2, and which is such that the 6'(&, 8) in
Eq. (6.13) is everywhere real, there corresponds
an external charge distribution which admits a
static solution of the magnetic dipole type given by
Eqs. (6.6), ($.12), and (6.13). The energy of these
magnetic dipole type solutions become lower than
that of the corresponding Coulomb solutions if the
external source strength is sufficiently large.

W'e shall. now explore the generalization of our
results to any gauge group. To this end the Car-
tan-Weyl representation of Lie algebras is useful.
This representation generalizes the, use of raising
and lowering operators SU(2) to other groups. Ac-
cording to the Cartan-Acyl representation, a basis
can be chosen for any Lie algebra where every
generator is either inside the Cartan subalgebra
( T&, 2 =1, .. . , r, r =rank) which is the maximal set
of commuting generators or is'associated with one
of the (22 —r}, r-component root vectors' of the
Lie algebra (22 =order}. Let us then label the gen-
erators which are outside the Cartan subalgebra
T, where a =(a„.. . , a„) is the associated root
vector. Let us also recall that

(1}if a is a root vector, so is -a = (-a„.. . , -a„};
(2}all root vectors are sums of a subset among

them called the simple root vectors.
This having been said, we can write down the com-
mutation relations in the Cartan-Weyl representa-
tion,

where ~4 depends only on the "shape". For a given
"shape", size, and gauge coupling constant, the
energy of the magnetic dipole solution rises linear-
ly with the total external charge Q whereas the
energy of the Coulomb solution rises quadratically
in Q. Thus there is a critical value of Qg,
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[T„T,] =0 for alii, j =1, . . . , r, -V ~,.g [(A,)"(A.) l~. =q„

For a+540

(6,25)

—Vkg, =q

P2 3 j22
V2 +g2((j) }2 A 0

(e.soa)

a t b ~~ aI

~ ~
I

I

~

~

~

0 if ++ & is not a root vector
[T., T, ]=

N, bT„b if a+b is a root vector.

p =(-i)g P T, (6.2ea)

The root vectors and the &,& thus play the role of
structure constants in this representation. Now,
we know that Q must lie completely within the
Cartan subalgebra [see Eq. (6.2)] while there is
no a Priori restriction on where A lies. Thus

(ii) All A» vanish except A, and A„and

— i'-~"" I- ~
g. 4..+~3&2 'A 0

p2 4 ~ 5

(6.30b)

v(4" 4 ]+g ((&)+(&)]I " )
q. +~sqk

2

A =( i) I g A, T, +g A .T. ~.

('
j (6.26b) (iii) A11A» vanish except A, and A„and

V2A —,~„=0, k =y, . . . r .1
(6.27)

However, projecting Eq. (6.9b) onto the Cartan
subalgebra implies

-v'( ' '+g'((4]*+(4]'](l ' ')

q, ~pq
2

With the boundary condition that A. -0 at infinity
and the requirement that it has no singularities,
we obtain that A.& =0 for & =1. . .&, i.e., 4 must
lie completely outside the Cartan subalgebra. To
satisfy Eq. (6.9a) one must then require

, (23 y, y, &~ VYq, q,
2

2~ y, Wsykl~ A =O
p2 2 ] 8 ~ 7

(6.30c)

and

a2b

a+b~O

A. ,A»(a; —b )N»T, »».0, i =1, . . . , r

(6.26)

V'A, ——,A, +g' +k Qk A, =0. (6.29b)

Let us now specialize to the case of the gauge
group SU(3). After adding some tedious analysis,
we find that within our original ansatz Eq. (6.6}
there are three types of solutions to the field
equations [SU(3) notation, Q =-, ~a ($,~2+(t]2](2),

~2 +k-g, 2, 4 ~ 2 ~ », vA» kl

(i) All A„vanish except A, and A„and

V'y»4-g»QA. A »a»a'y, =q, 0=1 . . . , r
a

(6.29a)

while Eq. (5.9b) becomes

It is clear that these three solutions correspond to
the three SU(2) subgroups of SU(3), I, V, and U,
respectively. For a given external charge distri-
bution, there are in general four different solu-
tions up to global gauge transformations. The
first one is the Coulomb solution obtained by set-
ting, A=O, inwhich case (i), (ii), and (iii) are allequi-
valent. The other three solutions have the long-
range behavior of a Coulomb field in a direction of
isospin space which is in the orbit of ~„plus a
magnetic dipole field within the SU(2) that com-.

mutes with the direction in isospin space of the
Coulomb field.

In case(i), q, produces a Coulomb field while q,
gets screened and produces a magnetic dipole field
associated with SU(2), .

In case (ii), 2(- v 3 q, +q, ) produces a Coulomb
field while 2 (q, + v 3 q, )gets screened and produces
a magnetic dipole field associated with SU(2}».

In case (tii), 2 (v 3 q, +q, ) produces a Coulomb
field while 2(q, —v 3 q, ) gets screened and produces
a magnetic dipole field associated with SU(2)~. Of
course if q is completely within an SU(2) subgroup,
the charge can be totally screened.
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