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Assuming that all quarks have only electric, ,charges 2/3 and —1/3, we classify all possible representations

and all admissible gauge groups 6 underlying the unified weak ind electromagnetic interactions. In
particular, the group 6 cannot contain any exceptional Lie groups 02, F4, E6, E7, and E8 as its factor,
Moreover, the underlying irreducible representation for quark multiplets to be used must be one of
fundamental representations for each component of simple Lie groups contained as a factor of G. For
example, only the spinor representation is allowed for the SO(2n+1) group, while only the basic
representation is admissible for the. symplectic groups. If 6 is semisimple in addition, then 6 must be a
product of SU(3 I) groups.

I. INTRODUCTION AND SUMMARY OF
MAIN RESULTS

The unified electromagnetic and weak-interaction
theory of steinberg and Salam' appears now to be
on solid ground. However, parity nonviolation' in
atomic physics as well as elastic scattering' of
neutrinos on electrons may require enlargement
of the group structure beyond the original SU(2)
Is U(1) group. Many larger groups have been in-
deed proposed by various authors. Among non-
semisimple groups we count the groups SU(2) s U(1)
g U(1),~ SU(2) g SU(2) S U(l), ' SU(3) I31 U(1),' SU(4)

U(l), ' and Sp(4}8 U(1),' while semisimple gauge
groups so far proposed are limited only to two
cases of SU(3) (Ref. 9) and SU(3)s SU(3)." These
attempts are, however, not systematic. In a pre-
vious paper" [hereafter referred to as (I}], I
made a systematic classification of all possible
semisimple groups for the unified gauge theories
under some very general assumptions and showed
that only products of SU(3l) (I being integers)
groups are admissible as candidates for semi-
simple gauge groups. In the present paper, we
generalize our consideration to any compact Lie
group which may not necessarily be semisimple.

Let G be any Lie group underlying the unified
gauge theory of weak and electromagnetic interac-
tions. Note that we are not including the strong
interaction so that we will not discuss the color
degree of freedom in this paper. Let g be the Lie
algebra of G. Then our assumptions are as fol-
lows:

(1) G is a compact Lie group.
(2) Quark multiplets and lepton multiplets form

separately representation spaces of the group G.
(3) The electric charge operator Q is. a member

of a Cartan subalgebra of g.
(4) The electric charge operator Q cari assume

only two distinct eigenvalues x and y in any non-
trivial representation of any quark or lepton multi-

plets.
In the last Ansatz (4), we particularly have in

mind the fact that quarks can have only two frac-
tional charges 3 and —3, while leptons can have
only two integral charges 0 and -1. Hence, we
may normalize two eigenvalues x and y so that
they satisfy

We shall call the Ansatz (4) the two-charge condi-
tion hereafter. If leptons are assumed" to have
three charges 1, 0, and -1, then our analysis ap-
plies only to quark multiplets as in (I).

As far as we can see, our assumptions are very
general and reasonable. First of all, suppose that
G is not compact. Then its nontrivial unitary rep-
resentations are automatically of infinite dimen-
sion" so as to necessitate introduction of infinite
numbers of quarks and lep)ons. Such a prospect
would be rather unpleasant at least for the pres-
ent. This justifies our Ansatz (l.). The second
condition is essentially a statement that we are
considering only a unified theory of weak and elec-
tromagnetic interactions but not of all weak, elec-
tromagnetic, and strong interactions. The third
condition is equivalent to the fact that any particle
in a given representation of G can be classified
according to eigenvalues of the electric charge op-
erator Q together with other mutually commuting
members of g. Therefore, this is automatically
satisfied in any model fo conventional gauge the-
ories. '4 In comparison to the first three ApgsB tee,
the fourth one (i.e. , two-charge condition) is per-
haps less general, since it assumes the absence
of quarks with charges ——, or + -', , etc. However,
this condition is usually assumed and appears to
be consistent with all present experimental data.
We may also note that the two-charge condition is
related to our desire that the intermediate gauge .
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18 R.EPRKSENTATIONS AND CLASSIFICATIONS OF COMPACT. . .

bosons should have electric charges of only 1, 0,
and —1.

Since G is assumed to be a compact Lie group,
it is essentially equivalent" to a product of a semi-
simple Lie group with U(1} groups, as far as its
Lie algebra is concerned. Since we are mostly in-
terested in the structure of the Lie algebra g rath-
er than the Lie group G itself, we may set
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where G& (j=1,2, . . . , N) are simple compact Lie
groups and the U(1) group appears M times. If G
is semisimple from the beginning, then the U(1)
groups should be absent in Eg. (1.2). Correspond-
ing to Eq. (1.2), the charge operator Q can be ex-
pressed as a direct sum

Q=Q, +Q, +'''+Q„+8, (1.3)
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where Q& (j=1,2, . . . , N) are components of Q in the
Lie algebra g~ of the simple group G& and where B
is a direct sum of all infinitesimal generators Z&

(j= 1, 2, . . ., M) of U(1) groups present in Eq. (1.2)
as
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for some constants C& (j=1,2, . . . , M). Hereafter,
we consider only irreducible representations of
all simple groups G,. (j= 1,2, . . ., N) and U(1)
groups, so that B will assume only a single com-
mon eigenvalue Z in any given quark or lepton
multiplet. Now our problem is reduced to the fol-
lowing group-theoretical question of finding all
possible compact groups G and all admissible rep-
resentations of G such that there exists a member
Q of a Cartan subalgebra which can assume only
two distinct eigenvalues x and y in the representa-
tion. This imposes a very severe constraint and
we find the following results''.

(a} None of the simple groups G,. (j= 1, 2, . . ., N)
contained in G can be any of the exceptional Lie
groups G„F, E„E„and E,.

(b) If G is semisimple", then G must be a pro-
duct" of SU(3l) groups (l being integers) for the
quark multiplet.

(c) Any irreducible representation (Xj to be used
for quark or lepton multiplets is trivial for all
simple groups G,. (j= 1, 2, . . . , N) except for one of
them, say G„ to be definite. Then the only irre-
ducible representation to be used for G, must be
one of the fundamental. ones. More precisely, we
adopt a lexiconal ordering of simple roots as in
Fig. 1, following Patera and Sankoff. " Then the
highest weight A of the irreducible representation
(Xj must be the following:

(i) A„(n 1), A~=A& (1~j~n), i.e. , the SU(n+1)

I 2
ESC

5 6

FIG. 1. Numbering of simple roots of simple Lie alge-
bras. Black dots represent shorter roots, so that
IO, Q)/(~, )=2 for &„, C„, and F4, while the ratio is 3
for Gp ~

group admits only completely antisymmetric ten-
sor representations with dimensions d(A&)
= (n+ 1)!Ij!(n+ 1 —j)! (1 ~ j~ n).

(ii) B„(n 2)~, A= A„, i.e. , the SO(2n+ 1) (n ~ 2)
group admits only the fundamental spinor repre-
sentation with dimension d= 2".

(iii) C„(n ~ 2), A = A„ i.e. , the Sp(2n} (n ~ 2)
group is possible only for the basic representation
with dimension d= 2n.

(iv) D„(n ~ 3), A = A, or A = A„, or A„. In other
words, only either the basic representation with
dimension d= 2g or two spinor representations
with dimension d= 2" ' is possible for the group
S0(2n) (n 3).

(d} The form of the electric charge operator Q
is more or less uniquely determined. Its explicit
form will be given in Sec. III. If none of G&

(j= 1, 2, . . ., N) is of type A„(n ~ 2) and if the multi-
plet belongs to a nontrivial representation of at
least one simple group G&, then 8 must have eigen-
values
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II. DETAIL OF PROOF

We first note the following consequence of our
two-charge Ansatz (4) of the Introduction. Only

one of Q,. (j= 1,2, . . ., N), say Q, to be definite, can
assume two distinct eigenvalues, while the rest
of Q& (j O1) must assume only zero eigenvalues in

any given quark (or lepton) multipiet. To prove it,
we rewrite (1.3) as a direct sum

Q=Qi+Q, (2.1)

Q = Q2+ Q~+ ' ' '+ Qg+R. (2.2)

Suppose now that each of Q, and Q can assume at
least two distinct eigenvalues, say u and v for Q,
and a and b for Q. Then the direct sum Q can as-
sume at least four eigenvalues u+a, u+b, v+a,
and v+ b. However, since we have u 0 v and g 4 b

by assumption, we can easily see that at least
three out of these four eigenvalues must be mutual-
ly distinct. But this contradicts our two-charge
Ansatz. If Q, can take only one common eigenvalue

q, in the irreducible representation under consid-
eration, then q, must be identically zero since the
simplicity of G& demands"

TrQ,.=O, j=1,2, . . . , N (2.3)

in the representation. Moreover, if Q, assumes
only a zero eigenvalue, then the representation
must be a trivial one because of the simplicity of
G„as we shall prove shortly. Now in the case
that Q, is zero identically, we consider Q instead
of Q and rewrite it as

Q= Q, + Q'

and repeat the same argument for Q, and Q'. In
this way, we can prove that only one of Q, , say
Q, to be definite, can assume two distinct eigen-
values u and v, while all the rest, Q~ ( j

8= -', for the quark multiplet,

8= —-', for the lepton multipI. et.
The case involving the algebra A„(n ~ 2) is more
complicated and will be discussed in Sec. IIL If
the multiplet belongs to the trivial representation
of all simple groups G, , then R is equivalent to Q,
l.e. ,

g = & or —3 for quarks,

&=0 or -1 for leptons

for such cases.
Finally, a number of positively charged inter-

mediate gauge vector bosons as well as a number

of weak isotopic-spin doublets contained in the
representation fX) when we reduce the group into

the SU(2) subgroup are computed in Sec. IV.

Q= Qi+R (2.4)

in the representation under consideration, since
all other Q& (jO1) must vanish. Now the Abelian
generator A can assume only a single common
eigenvalue Z in the irreducible multiplet. The
eigenvalues x and y of Q must have the form

x= u+ Z q g= v+ Z.
l

In view of normalization (1.1), this implies

u-v=1.

(2.5)

(2.6)

I et n, and n, be multiplicities of states with
eigenvalues Q, =u and v, respectively. Then the
dimension d= d(X) which is equal to the number of
quarks or leptons in the multiplet is given by

d(X) = ni+ n .

Moreover, the traceless condition (2.3) is re-
written as

n)u+n2v= 0

so that together with (2.6) we find

n, = -vd(X) = (1 -u)d(X),

n, = ud(X) .
(2. t)

We note that this requires 1 ~ u ~ 0 and 0 ~ v ~ -1.
In the case that the algebra g~ is not of type A„
(n~ 2), we can say more In tha. t case, it has been
shown"" that a trace identity

(2.8)

must be valid for any element X of the Lie algebra
g, . In particular, for the choice X= Q„ this leads
to

ngu +npv =0

which requires
1u= -v= g

n, = n, = —.'d(~)
(2.9)

in view of Eqs. (2.6) and (2.7}. We should note that
alternative solutions with u=1, v=O, . n, =O or u
= 0, v = -1, n, = 0 are not acceptable, since then

Q, in reality has only single eigenvalue zero in-
stead of the assumed two distinct eigenvalues.
Then the value of Z can be computed from Eq.
(2.5} to be

1
~ for quarksZ= 2(x+y -u-v)= -2 for leptons

(2.1Oa}

= 1,2, . . . , N), must be identically zero in the multi-
plet under consideration. Of course, if we con-
sider another multiplet, then it will be Q, instead
of Q, which will be nontrivial and so on. At any

rate, we can rewrite (1.2) as
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2 1since we have x= 3 and g 3 for quarks and x= 0,
y= -1 for leptons. However, it could be that some
quark multiplets such as purely right-handed
quarks in the Weinberg-Salam theory may belong
to trivial representations of all simple groups G&,
i.e. , we may have Q~ = 0 for all j= 1, 2, . . ., N. For
such cases, the value of Ii is equivalent to Q it-'
self, i.e. ,

2 1Z= & or —3 for quarks,

Z=O or -1 for leptons
(2.10b)

whenever the multiplet belongs to trivial repre-
sentations of all simple groups G&. However, we
will not consider this trivial case hereafter.

We notice the fact that Z 0 implies the presence
of a,t least one U(1) group in Eq. (1.2). In other
words, the group G cannot be semisimple. There-
fore, if G is semisimple from the beginning, then
any of its factors G& (j= 1, 2, . . ., N) must be" of
the form SU(m) (m~ 3). As we shall prove in the
next section, m must be, moreover, integer multi-
ples of three.

Another consequence of Eq. (2.9) is that the di-
mension d(X) must be an even integer, if g, is not
of the type A„(z~ 2). This fact alone eliminates
many irreducible representations such as the ba-
sic representation of the algebra B„(~~ 2) corre-
sponding to the 80(2n+ 1) group. To obtain further
restrictions, we need to go deeper into our analy-
sis. Hereafter we consider the multiplet in which
the group G, alone is nontrivial. I et yg be the rank
of the group G„and t.et II& (j=1,2, . . . , n), E, and
E be the standard Cartan-Weyl basis~ of the
simple I ie algebra g, . By assumption then Q,
must be expressed as a linear combination of H~
as

weights M, this imposes a severe restriction for
the type of representations as well as a form of
the vector f .Again, we shall refer to this condi-
tion as the two-charge condition. I et

fnl& n2& ~ ~ '& nJ
n= fA„A„.. ., A„}

(2.14}

(2.15)

be a simple root system and the corresponding
fundamental weight system, respectively. Then

2(A~, n„) = 5„(n„n,) (2.16)

for all j,k= 1, 2, . . ., n. The highest weight A of
the irreducible multiplet is written as

A = m~A~+ m2A2+ ' ' '+ m„A„, (2.17)

where m& (j= 1,2, . . ., n) are non-negative integers
specifying the irreducible representation. We
shall prove the following propositions under the
two -charge condition:

Proposition (I). The highest weight A must co-
incide with one of the fundamental weights, i.e. ,
we must have A=A, E n. Moreover, for any posi-
tive root P, it is necessary that

2(A, P)
(p, p)

assumes only two values 0 or +i.
Proposition (II) For any .nonzero root p, ((,p)

can take only three possible values, 1 or 0 or -1.
Moreover, if a positive root P satisfies a condi-
tion

2(A, P)
(p, p)

then the value of (g, P) is restricted to

Q, = P ~~II, -=(g, a).
g-" 1

(2.11) 0 or 1, if ((,A) = u,
0 or -1, if ((, A) = v.

(2.12)

in the usual notation. "
I et A be the highest weight of the irreducible

representation {X)under consideration. If M is a
generic weight belonging to the representation (X),
then eigenvalues of Q, have the form

($,M) . (2.13)

Since this must be equal to either u or g for all

Here g~ (j =1,2, . . ., n) are c numbers which are
regarded as the jth coordinate of a contravariant
vector $~ in the root space and we introduced the
inner product ($, q) of two vectors in the root space
by

Before proving these propositions, we mention
the fact that these are sufficient to derive results

"

quoted in the Introduction, as we shall see in the
next section. Moreover, proposition (II) has the
following physical implication. We note that the
intermediate gauge bosons must belong'4 to the ad-
joint representation (XJ of the group G~. Then the
electric charge of the gauge boson 8' correspond-
ing to a root n is precisely given by (g, n} since
the eigenvalue of II in the adjoint representation is
n itself, and Q, is now given by (g, ad II). There
fore, proposition (Ii) is equivalent to the physical
statement that all intermediate gauge bosons have
charges 1 or 0 or -1. As we shall show in Sec. IV,
the number N, of all positively charged vector bo-
sons can be easily computed once the group and
the representation space are specified.
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The next task is to prove these propositions. To
this end, we adopt a lexiconal ordering of simple
roots as in Fig. 1, following Patera and Sankoff. "
Let us define n special Weyl reflection operation
S,. by

(2.18)S) =S j= 1, 2, . '. , n

so that SJ is the reflection operation with respect
to a plane perpendicular to the jth simple root vec-
tor n,. in the root space.

Now let nr be a given simple root in the Dynkin
diagram, and let u„, (and/or u, ,) be the next
simple root adjacent to the right (or left) side of
ar in the diagram, where ~r i may be joined to
o.

r by either a single, double, or triple Dynkin
line. When we set

2(n„u;„)
(ngslt j+1)

(u„x, u, „) 2(n;, n;„)
3 Jul (n n ) yjsl (n u )

(2.19)

(2.20)

we know that both y,.„and y,'.„are positive inte-
gers,

1, y~~& 1. (2.21)

] ~&P~& $~&q~&p ~ (2.22)

An example for the case of the algebra A„(n) 2)
is depicted in Fig. 2. Then we define a Weyl op-
eration S"' byPta

(2.23)

and find

We may note that yz„and yz„are equal to unity,
if the two roots a,. and n&„are connected by- a
single Dynkin line. Noting for example that

Sr+ x r +r+ yr~x +r+ j. y

I+2 lklnl l Xlal(nial+3 la2nt+2} t

Sr-j.Sr+i~r = yr-x~r-x+ ~r+ yr+a~g+i y

etc. , we can generate other adjacent simple roots
a'r-i a'r+x a d ~r+ by ope a g specie Wey r
flection operations S,. successively to the root ur.
We can generalize this fact as follows. For a given
simple root a„ let us consider a connected sub-
Dynkin chain of simple roots, involving q -p+1
simple roots n~, . . . , u„.. . , u, for any integer pair
(p, q) satisfying

x, =1, $=j. (2.25)

From Eq. (2.21), we inay easily verify the fact that

x)~ 1,
(us~ uz) ~ ) 1
(us~ ni)

hold for all values of j, when we note that

(n„n, )
(u u q j Xlsl yl+2 JjQr, Cry

(2.26)

(2.2't)

(2.28)

Although the explicit form (2.28) is, strictly speak-
ing, applicable only to connected Dynkin subchains
without any branch, the essentially same operation
can be defined with suitable modifications to any
connected diagram even with a branch. For ex-
ample, we multiply, if necessary, the operation
S„by. S,',"defined by (2.23) whenever the branch
chain for l cn involves the root u„. Also, for cases
with l =a w'here the root n„ is the end of a branch
as in algebra D„, E„E„and E„we may define
S~",' analogously. However, for the sake of sim-
plicity, we adhere to the same notation S~",' for all
cases with an understanding of such necessary
modifications whenever we are discussing a con-
nected, Dynkin subchain involving a branch, so that
Eq. (2.24) with (2.26) still holds. After these prep-
atations, we shall prove the following lemmas.

Lemma (I). For any given nonzero root P, we
can find a weight M belonging to a given nontrivial
representation (X) such that (M, P) 40. Also, if the
vector $ satisfies (g, M) = 0 for all weights M, then
t is identically zero. In particular, for any non-
trivial representation (X) and for any nonzero vec-
tor $, we can find a weight M such that ($,M} c0.

Proof First, let .us suppose that for a given
nonzero root p, we cannot find a weight M such
that (M, P}WO. Then we must have (M, P) = 0 for
all weights M belonging to the nontrivial repre-
sentation (X). Now it is known~ that any nonzero
root P can be expressed in the form

QIISHI

p p+~ X~ 2 2+~ q —l q

FIG, 2. A su/chain of simple roots used to define the
Weyl feflection operation S&~' of Kq. (2.23) for the case of
the algebra A„. We may de/inc S&~'"~ analogously for other
cases.

P= Tn, (2.29)
S~ Qr= x A.

y

where x& are positive integers def ined by

x~ —yr-yyr-2 yg y

x~=yr+j.yr+2
' 'yy~ ~+1-j

(2.24)
for a Weyl operation T and for a simple root ur
c m. Replacing M by TS 'M for arbitrary Weyl re-
flection S, this leads to

(M, Su)) = 0

for arbitrary Weyl reflection S. When we choose
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S to be S~",' defined by Eq. (2.23), this gives

g x,(M, u, )=0.

We start with p =q = l to find(M, u, ) =0. Next we
vary values of p and q successively and indepen-
dently by lowering the value of p and increasing
the value of q from the initial point p= q= l. Noting
that x& (j = I, 2, . . ., n) are always positive, we find
then

(M, u, )=O

for all j=1,2, . . ., n. But since all simple roots
span the whole root space, this implies M= 0 iden-
tically for any weight M, i.e. , the representation
space (X} is trivial, contradicting our assumption.
This proves the first part of the lemma. The sec-
ond part can be proved similarly as follows. Sup-
pose that we have no weight M such that (],M) to.
Then since both M and S&M for any nonzero root
P are also weights, we must have

(t.,M) =(t, s,M) = 0.
However, noting

sM M ( 'P)P(, )

this leads to

" P)((,P)=0.
(P, P)

Now, for a given P, we can find a weight M such
that (M, P) co by the first part of the lemma.
Therefore, this gives

(&, P)=0.
Since the nonzero root P is arbitrary, this implies
$ = 0 identically.

We may remark that in the proof of lemma (I),
we did not assume the two-charge A.ersatz. Also,
if Q, =($,H) assumes only zero eigenvalues and
if g WO, then the representation (X}must be trivial
by our lemma. This fact has already been used
in a previous discussion given at the beginning of
this section.

eLmm(aII) If for a n.onzero root P, there exists
a weight M satisfying

2(M, P)
(P, P)

then P must obey the condition

(&,P)=0

in order to satisfy the two-charge condition.
Proof. Let us consider a P series of M where

M, of the form

ivI, =M+ lp
I

are weights for all integer values of / in the inter-
val -j ~ l ~ 0 for some non-negative integers j and
k. Moreover, we have

2(M, P)(, )

Therefore, if

2(M, P)

(P, P)

then the P series contains at least more than three
distinct weights. Noting that

(h, M() =($,M)+ l($, P),

we see that ($,M, ) will assuine more than three
distinct values unless ($, P) = 0. By virtue of the
two-charge condition, we must have ($, P) = 0.

Lemma (III). For any weight M, and for any
nonzero root P, the only possible value of

2(M, P)
(P, P)

is limited to either 1, 0, or -1.
Proof Suppos. e that there exists a weight M,

and nonzero root P„such that

2(M„P,)
(Po, Po)

Now for arbitrary Weyl operation S, we set

M= SMO,

P= SPo

and we compute

2(M, P) 2(M„P,)
(P, P) (P., P.)

Therefore by the lemma (II), we must have (g, P)
=0, i.e. , we have

(~, sp,)=0

for all arbitrary Weyl operation S. Now write P,
as

Po= Tu,

as in Eq. (2.29) and replace S by S~",'T '. This
gives

(t', S",'u, )= g x ($, u )=0.

Since p and q are arbitrary as long as p & l & q, we
vary values of p and q successively and indepen-
dently, starting from p=q=l. Then, as in the
proof of lemma (I), this gives (t, u~) = 0 for all
j= 1, 2, . . ., n so that we have $ = 0 in contradiction
with g, xo.
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Lemma (IV) .The highest weight A must coin-
cide with one of fundamental weight Az, i.e. , A

=A, c Q.
Proof. For arbitrary integer I (I ~ I- n), let

us set

M =(s&'&)-'A

=(s„,s„," s„)(s, ,s, ," s,)A.

Then we compute

2(M„~,) 2(A, S,"&n,)

2(A, u, )

Noting now

2(A, n;)
(u„n, )

(of"g)
(n„n, )

(n, , n;) 2(A, n, )

j=l

n

Hence, if we have Z, =, m,. ~ 2, this gives

2(MO, n, }

in contradiction to lemma (III). Therefore, we
must have

n

Q m~=0or1,
j=l

which implies that A is either trivial or A= A, for
some integer I (1 ~ I- n)

Lemma (V}. If M, is a dominant weight, and if
n is a positive root, then we have

2(MO, u)
(n, n)

Moreover, if Po is a dominant root, then for any
Weyl reflection S and for any weight M (which need
not be dominant}, we have

2(A, P,) 2(M, P)
(P., P.) (P, P)

where P is given by

P=SPO.

Here we do not assume the two-charge Ansatz for

from Eqs. (2.16), (2.1V), and (2.2'1), this leads to

2(M„u, )

the validity of this lemma.
proof T. he first half of this lemma is standard.

Noting that
2(M, u)S Mo™0—
(

') n,

we would have

S Mo&MO

if it happens that

2(MO, a)
(n, n)

so that it contradicts the dominantness of Mo.
Next let M be any weight(which need not be dom-

inant). It is well known that M can be written in
the form

M=A —QP~n~, n, Em

where p& (j= 1, 2, . . ., n) are non-negative integers.
If P, is a dominant root, then the first part of the
lemma applied to the adjoint representation with
M, = P, implies

"P"" 0

so thai we find

2(A, PO) 2(M, PO)

(P., P.) (P., P.)

Since M is an arbitrary weight, we can replace it
by S 'M for an arbitrary Weyl reflection S. Then
the above inequality leads to

2(A, PO) 2(M, P)
(P., P.) (P, P)

Changing M by S~M and noting that SP= -P, this
also gives

2(A, PO) 2(M, P)
(P., P.) (P, P)

Combining both inequalities, we find the desired
formula

2(A., PO~ 2™~~
(P,, P.'} (P, P)

After these preparations, we are now in a posi-
tion to prove propositions (I} and (II). First, prop-
osition (I} is an immediate consequence of lemmas
(III), (IV), and(V) with a choice of M=A for
lemmas (III) and (V}. The proof of proposition(L')
is as follows. By lemma(I), we canfind a weight
M such th'at

(M, P) ~O

for any nonzero root P. Then, by lemma (III),



18 REPRESENTATIONS AND CLASSIFICATIONS OF COMPACT. . .

2(M, P)/(P, P) must be either+1 or -1. Now both

($, M) and ($, S~M) which are related by

(~, S,M) =((,M) — ' (],P)

must assume either value u or v by our two-charge
Ansatz. Noting that u —v= 1 by Eq. (2.6), these
are possible only if ($, P) can assume values of
either 1, 0, or -1. The second half of proposition
(II} can be similarly proved with choice M= A.

(&, A) =-." (3.1)

by changing the sign ef $, if necessary.
Now we investigate each algebra separately.
(1} The impossibility of exceptionaL Lie algebras

By proposition (II) of the preceding section, ($, u,.)
can assume only integer values 0 or +1. Then, if
we express the fundamental weights A& in terms
of simple roots o, as in the Appendix, we see im-
mediately without any explicit calculation that

($, A) can never assume the value+2 for all cases
of algebras G„F~, E„and E,. For the algebra
E„ the same consideration precludes all cases ex-
cept possibly for A=A~ or A, or A, . Therefore,
we have only to prove the impossibility of these
three cases of E,. We first note that P, = A, is the
highest weight of the adjoint representation of E„
and consequently is the dominant root of E,. From
Eq. (2.16) and from explicit forms of A» and A, as
in the Appendix, we can easily compute

2(A„P,) 2(A„P,)
(p., p.) ' (p., p.)

which are larger than 2. Hence, by our proposi-
tion (I}, the cases A= A, and A= A, are excluded.
However, for the remaining case A= A„we find

2(A», po)

(pp, pp)

and the same argument cannot be applicable. We

III. INDIVIDUAL ALGEBRAS

Because of proposition (I) and lemma (V) of the
preceding section, we have only to consider cases
where the highest weight A must coincide with one
of the fundamental weights and that the value of

2(A, p, )
(p. , p.)

for dominant roots P, is precisely equal to one.
First, we consider algebras other than the type

A„(n~ 2). Then we have noted that ($,M) must
assume values only+2 or -& for all weights M.
In particular, ($, A) must also be either+~ or =, .
Since these two values are interchangeable by g- —$, we may normalize the sign of (g, A) to be

Tr(X') = K(X) [Tr(X') ] ' (3.2)

for any generic member X of these Lie algebras
in any given irreducible representation (X].. Here
the constant K(X) is given by

1 d(X,)
2[2+ d(X,)] d(X)

I,(X,)
I,(X)

(3.3)

where (A.,j designates the adjoint representation
and where d(A. ) and I,(X) are the dimension and
eigenvalue of the second-order Casimir invariant
in the irreducible representation {X), respectively.
Now we choose X= Q, in Eq. (3.2). Moreover, for
algebras A„, G„F», E», E„and E, (but not for
A, ), we have [see Eq. (2.8)]

Trg, = Tr(Q, )'=0,
which give for any positive integer p

Tr(Q, )'= 2d(~) [(-,')'+ (--,')']

because of n, =n, = 2d(A. ) and u= -U= —,
' for these

cases as we noted in Eq. (2.9). Therefore, the
relation (3.2) reduces to

may note that A= A, is a multiplicity-free repre-
sentation with dimensionality 56. As a matter of
fact, all 56 weights M satisfy by lemma (V) the
condition of lemma (III), i.e. ,

2(M, P)
(p, p)

for all nonzero roots P. Therefore, we have to re-
investigate this case in detail. We express all 56
weights M as a sum of the simple root u&. Then
all 56 quantities (],M} are expressed as known
linear combinations of seven unknown ($, o&) (j
=1, 2, . . ., "I) which must assume only three possible
values 1, 0, and -1. This must be consistent with
the fact that ($,M) for all 56 weights M must have
values +& or -2. Actually, since all representa-
tions of E, are known" to be self-contragradient,
both weights M and -M belong to the same repre-
sentation so that we have only to study 28 among
these 56 quantities. The test for the consistency
is very tedious, but nevertheless leads to a nega-
tive answer. Hence, the case A= A, is again not
admissible. In conclusion, all exceptional Lie
algebras are incompatible with the two-charge
Ansatz. An alternatiye proof will be given in Sec.
IV. A more systematic way to eliminate the ex-
ceptional Lie algebras is to utilize the following
trace identity. Since algebras G„F», E„E„E,
as well as A., and A, are known not to have any
completely symmetric genuine fourth-order Casi-
mir invariants, "we can prove" the trace identity
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I,(A, ) 4
1

I,(x) d(&,)—
(3.4) 2 2

A, — A,
(ug, u, ) (n, „n, ,) (3."I)

%e can easily check" that this relation is not sat-
isfied for any fundamental irreducible representa-
tion of any exceptional Lie algebras G„F~, E„
E„and E„again proving the incompatibility of
exceptional Lie algebras with our two-charge
Ansatz. For the algebra A„we can simply find
that the relation (3.4) is satisfied only for the two-
dimensional repre'sentation of A, . Therefore, we
reproduced the well-known fact that only the two-
dimensional representation is compatible with two-.
charge Ansatz for the SU(2) group.

(2) Algebra B„(n~ 2). Again we express all fun-
damental weights A& in terms of simple roots as
in the Appendix, and note the fact that ($, u&} can
assume only values 1, 0, and -1. Then we find
that only A=A„can reproduce the value+& or -&
for (g, A). In other words, only the spinor repre-
sentation with dimension d(X) = 2" is permissible.
Next we would like to find the explicit form of the
vector $. Since the algebra B, is equivalent to C„
we restrict ourselves to the study of B„with z ~ 3
hereafter. Then the algebra B„( ~n3) has two
dominant roots A, and A,. Note that A= A, corre-
sponds to the adjoint representation for z~ 3. As
is expected, both dominant roots satisfy the con-
dition 2(A„, Po)/(Po, Po) = 1.

Now let us consider n weights M& (j = 1, 2, . . . , n)
given by

M~ = S)S)„'' ' S„A„

For the special case /= 1, we omit the second
term in Eq. (3.'l).

So far, these conditions are necessary. But we
can prove conversely that these are also sufficient
as follows. To this end, it is more convenient to
use a non-Cartan form for the algebra B„corre-
sponding to the SO(2n+ 1) group [or more accurate-
ly spin(2n+1) group]. Let A, B,C, D be indices
running over 1, 2, . . . , kg+1, and consider genera-
tors J» satisfying relations

J~a= -Ja» (3.8}

(I „,I,).= 26„,E, (3.10)

where E is the 2" x 2" unit matrix. Then the ma-
trix representation of the generator J» in A= A„
is given by

(3.11)

For any pair (A, B}, the identification

[~~a * ~ca] = bsc~~D+ ~~Dirac —b~c~ec —bec~~c.

(3.9)

The algebra satisfying (3.8) and (3.9) is equivalent"
to B„. Now the fundamental spinor representation
A= A„can be constructed as follows. Let us con-
sider 2n+1 matrices I"„(A=1,2, . . . , 2n+1) of di-
mension 2" x 2" which satisfy the anticommutation
relation

= A„—(n~+ n~~g+ ' ' '+ n„)

and set

Z, =-(], n~)+ (&, u, ,)+ + ((, u„) .

(3.5)

(3.6)

Q, =iJ„s, A 4B

will give obviously

(q, )'= —,'E

(3.1.2)

(3.13)

Then, since ($, M~) can assume only values +-, or
--„and since (g, A„) is normalized to be +-, by
(S.l), we see that Z& must be equal to either 0 or
+1 for all j=1,2, . . . , n. Next we express

(],A„}=z(((, n, }+2((,u, )+ +n(], u„)}
=-.'(z, + z, + ~ ~ ~ +z„j,

which must be equal to —, by (3.1). But we noted
that all Zz (1 ~j - n) are either 0 or +1. There-
fore, only one of 5&, say Z„can be equal to+1,
while all other Z,. with jcl must be zero. Together
with (3.6), this determines (&, u~) to be

+1, if j=l,
-1, if j=l —1, l~ 2,
0, if j t l and j w l —1 .

In view of Eq. (2.16), the explicit form for $ sat-
isfying this condition is

in view of (3.10) which guarantees that eigenvalues
of Q, are only +z and -& in the spinor representa-
tion. The solution (3.12) is in fact equivalent to

e, =(&,H) (3.14)

Po= A2= ni+ 2(n2+ n~+ ' ' '+ n„ i) + u„ (3.15)

is a dominant root other than the highest weight
Ap 2Ag for the adj oint repr esentation. Moreover,

with Eq. (3.7) for $, if we adopt a suitable lexiconal
ordering of simple roots in a suitably chosen Car-
tan subalgebra. Indeed, ordinarily we choose a
Cartan subalgebra to consist of operators

H„=iZ, „,„(p,=1,2, . . ., n)

apart from some normalization constants which
do not concern us here. Then it is not difficult to
check the equivalence of (3.12) with (3.14) and
(3.7), where A=/, and B= l+n, 1 ~ l ~n.

(3) Algebra C„(n & 2). We note that
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A=m A +m A + '''+m„A„,
Qgp = -o&gp =+21

1 1
@x+z= 2~~Px= +& Pz ~

(3.19)

then we compute

2A,
2 3 n

=m +2(m +m +'''+m )

so that for j~ 2 we find

2(x„p,)
(p. , p.)

Therefore, by our proposition (I), only the case
A Ag is perm iss ible. How ever, in this case we
cannot determine the form of $ uniquely. As we
shall see shortly, this fact is related to many
possible choices of lexiconal ordering of simple
root systems.

To show that A=A, is indeed consistent with the
two-charge Ansatz, it is convenient to write the
algebra C„ in the following form:

[A„" A ] = 5"Ao —5oA"
V& 0 I V V 0&

[A„",R o] = -5„R"o—5o+ ",
[R„„,Roo] = 5„"Ao+ 5„Ao + 5oA„+ 5oA

[R„„,R o] = [R"",R o] =0,
R„v=R„„,
Rgv Rvg

(3.16a)

(3.16b)

(3.16c)

(3.16d)

(3.16e)

(3.16f)

(3.16g)

A„"yq= 5q y„,

Rv v~X 0

Rgv~ QN ~v+ Qv~g

(3.17a)

(3.17b)

(3.17c)

(3.17d)

(3.17e}

Then the desired charge operator Q, which is con-
sistent with the two-charge Ansatz is found to be
of the form

where indices p, v, c(, P run from 1 to n. The mem-
ber H~ of a Cartan subalgebra may be identified
with A&~(j=1,2, . . ., n) apart from a constant nor-
malization factor, while allA~~ (j4k}, R~", and R»
correspond to some E for nonzero root 0,.

The basic representation space for A = A, can be
spanned by a 2n basis g, and g' (X= 1, 2, . . . , n) on
which A„", R"", and R„v act as

In other words, Q, can have only two eigenvalues
+& or --& in the representation P. = Ag

trariness for sign of e„ is related to nonunique-
ness of solutions (g, c(,}in.the corresponding Car-
tan notation. The arbitrariness can be largely
eliminated if we relabel indices suitably so that
Q„can be rewritten as

l n

o, =l I pa„"- P a„") (3.20)

for some integer /. This corresponds to a suitable
choice of lexiconal ordering of simple roots. Then

2
, (2A, —A„), 1 ~ l ~ n.

("o~ ~o}
(3.20')

(4) Algebra D„(n~ 4). Since the algebra D, is
equivalent to A„we will consider the case D„with
n ~ 4 here. We note that

Po= Ao= Qi+ 2(Qo+ Qo+ "'+ Q„o)+ Qj„(+0„ (3.21)

is the unique dominant root, since it is the highest
weight of the adjoint representation of the-D„.

~ Then we compute

z(p„a)
(-

o', = m, + 2(m, + m, + ' ' '+ m„,) + m„, + m„
o~ Po&

so that all cases A= A~ with 2 & j& n -2 lead to

2(P„a,)
(po, po)

Therefore, only cases A = A„A = A„„orA = A„
are permissible. To show that this condition is
also sufficient, we proceed as follows. For two
spinor representations A=A„, or A„, we use the
non-Cartan form of generators Z» (A, B= 1, 2, . . .,
2n) as in the case of B„. However, the range of
indices A and B in Eqs. (3.8) and (3.9) is now re-
stricted to A, B=1,2, . . ., 2n but n0t 2n+1. We
still define 2" x 2" matrices I'„ for A=1, 2, . . ., 2n
+1 as in the case of B„. However, I",„„commutes
now with all 8» for A, B=1,2, . . . , 2n, and (I',„„)'
= E. The matrix 1",„„is reducible when we re-
strict ourselves to the SO(2n) [or spin(2n)] sub-
group of the SO(2n+ 1) group [or spin(2n+ 1)].
Then, the single-spinor representation A„of the
SO(2n+ 1) group will split into two spinor represen-
tations A„, and A„of the SO(2n) subgroup, corre-
sponding to eigenvalues I',„„=+1or -1. Note that
the dimension of the representations are

ll

Q, =o Q E„A"„, (3.18) d(A„,) = d(A„) = 2" '

where E„are either+1 or -1. We can check that
Moreover, Q, defined by reduced form of Eq. (3.12)
still satisfies Eq. (3.13) in both A= A„~ and A= A„.



3802 SUSUMU OKUBO 18

Therefore, we conclude that our Q, satisfies the
desired two-charge condition for these represen-
tations. Then the explicit form of ( for both li.

A 1 and A„ is found to be

(3.22a)

as long as 1& l&n-2. However, for /=n-1 or
n, we have to use

(3.22b)

n+1
0 (3.27a)

so that all fundamentai representations A= Ji. (1- j- n) can be compatible with the two-charge con-
dition. To check that they are all admissible, it
is more convenient to work with the non-Cartan
form of A„:

or

(3.22c)

(3.2'rb)

The irreducible representation space of A= A& can
be described by a completely antisymmetric ten-
sor

gfl V gVW
gV VV ~ (3.23)

for the case A= A„» while for A= A„we inter-
change the role of indices n and n-1, in Eqs.
(3.22b) and (3.22c).

For the basic representation A = A„we rewrite
the algebra D„ in a form ana'. ogous to Eqs. (3.16a)—
(3.16g}. The only difference now is that R„, and
A'" are antisymmetric, i.e. ,

of degree j, on which 8„" acts as
J

V~A P ~ ~ ~ Q ~ ~ Q ~P ~ ~ ~ P ~ ~ ~ 0-1
0=1

0

n+ 1 v~01

(3.28)

(3.29)

and Eq. (3.16d) must be replaced by In Eq. (3.29), the symbol p, , implies that we delete
p, „and replace it by v. Then the most general
charge operator Q, must have the form

Similarly, the basic representation is spanned by
2n vectors p~ and y~ (X = 1, 2, . . ., 2n) as before.
The difference is that Eqs. (3.17d) and (3.17e)
must be replaced by

(3.25a)

(3.25b)

The form of the charge operator Q, is the same
as (3.18). The remaining check for eigenvalues
of Q, being always either +~ or ——, is again un-
changed, so that A= A, is again compatible with
the two-charge sensate also in this case. The ex-
plicit form of $ corresponding to Eqs. (3.20) and
(3.20') is

(3.30)

where $~ are some constants. Now we repeat es
sentially the same argument as in (I) to prove that
Q, must be reduced to the form

Q1= + (3.31)

Q, =R,'+a, '+ ~ ~ ~ +at (1-p &),

for an integer p satisfying 1 ~ p ~ n, when we re-
label indices suitably. Also, again due to the hvo-
charge sensate, we find finally

2
(A, -A„}, 1 ~ l - n —2(a„,u„)

2
, lt, , l=n —1 or ~.

~n~ ~nj

(3.26a)

(3.26b}

u=i-
n+1 n+1

(ii)a li (2 j & 1):

(3.32a)

If we wish, we could replace A„by A„, in Eq.
(3.26a).

(5) Algeba A„(n ~ 1). The only dominant root Po
is the highest weight of the adjoint representation,

(iii) A=A„:

n+1 ' n+1 ' (3.32b)

i.e. ,

Po= A1+ A„.
p — pu=l-

n+1 ' n+1 ' (3.32c)

But we compute that for all j= 1, 2, . . ., n where the integer p in Eqs. (3.32a) and (3.32c) is
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1 2m= 2(x+y) -- 1—
2 n+1 (3.33)

where m= p (1(l)(n) for A= A, and A= A„, but m
j=for A=A& (2(j(n —1). For the case that G is

semisimple from the beginning, we require Z= 0.
Then for x = 3 and y= -3, this requires

(3.34)

Since m is a positive integer, 6 must be a product
of SU(3m) groups in agreement with the conclusion
reached in (I).

The explicit form of $ is now given by

arbitrary as long as 1&p&n. We can easily con-
vince ourselves that the two-Charge Ansatz is now
satisfied for all A= A, (1 ~j- n)

Note that for all cases, the value of Z which is
the eigenvalue of the Abelian generator 8 is given
by

1z= p(x+ y -u -U)
(4 2)&a, -a=1

)

for all nonzero roots, unless we state otherwise.
Then we have also

g'a= 2 Q Pyp„,
g& 0

(4.3)

where PJ is the jth component of a positive root P
in the root space. This implies

n=2+ (P, P)= g(P, P),
P& 0

(4 4)

where n is the rank of the group 6,. If we define
6 as usual by

since (g, p) can assume only three values, 1, 0,
or -1, and since the number of positively charged
vector bosons should be equal to the number of
negatively charged bosons, in view of T„Q,=O.

Following Racah, ~ we adopt a normalization

2
, A&, for A=A, ,

+1~ +1~
(3.35a)

5= p Q P= A, +A, + ' ' '+A„,
8&o

(4.5)

2
A„ for A = A,. (2 (j ~ n —1), (3.35b)

G|, Qi

$=( ) A„„q, for A=A„
2

a1s u
(3.35c)

(t, A)=u=1-
n+1 (3.36)

corresponding to Eqs. (3.32a)-(3.32c) with a choice
of f,(~) =(A, A+ 25),

f,(~,) =(A„A,+ 25) =1,
(4.6a)

(4.6b)

then the eigenvalue I,(X) of the second-order Casi-
mir invariant

I,=g""X„X,, g„,= Tr(adX„adX„)

in generic irreducible representation fX) is given
by

If we wish to use another choice

'm
(t., A) = ~=-

n+1 (3.37)

where X„ is a basis of the I ie algebra g~ and A0
is the highest weight of the adjoint representation
(XJ; It is sometimes more convenient to consider
the second index l,(X) of Dynkin" "by

then we have only to replace A~ inside the expres-
sion of $ in Eg. (3.35) by

d(x)
l,(X) = nl, (X) „( 0

(4 'I)

(3.38)

We may note that apart from the sign change, Eq.
(3.38) is equivalent to the inversion of the Dynkin
diagram of A„, which in turn represents effects
of its corresponding outer automorphism.

apart from the normalization constant, where
d(X,) is the dimension of the adjoint representa-
tion (X,j. Then our starting formula is

Tr(X„X„)= —l,(~)g„„
1

IV. ADDITIONAL RESULTS
d(x)=
( )

I,(x)g„„.
0

(4.8)

In Sec. II, we noted the fact that ($, o) is the
electric charge of the intermediate gauge boson
W of the type e for the gauge group G, . Here,
let us first compute the number N, of positive'ly-
charged gauge bosons for the simple group 6,.
Then X, is given by

Q, =(t,a),
this gives

(4.8)

Tr(Q, )'= —l,(&)(), P) . (4.10)

Since the electric charge operator Q, is given by

(4.1) On the other hand, ((, t') can be computed from
(4.3) to be
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(&, &) = 2 g (&, P)'= 2N, .
g& 0

(4.11)

Moreover, when we note that Q, can assume only
two eigenvalues u and v in the representation {X),
we evaluate

Tr(Q, )'= n,u'+ n,v'= -uvd(X) (4.12)

because of (2.7). From Eqs. (4.10), (4.11), and
(4.12), we compute

d(X,)
l,(X)

'

If we note that we have I,(X,) = 1 for our normal-
ization (4.2), this can be rewritten in a form

Ã, = -2uvd(A, ,) l,(X,) (4.13)

in any unspecified normalization for g„„. For the
cases that the algebra g~ is not of the type A (n

1 n
~ 2), then we know u= -v = 2 so that this gives

1 I (X )d(x,) 1 l,(X,) „( )8 f,(Z) 8 l,(X)
(4.14)

N, = d(Xo) —2N, .

Numerically, we find

(i) B„(n-2), A=A„, d(&o)=n(2n+1):

(4.15)

In this way, the number of positively charged vec-
tor bosons can be computed. We note that the num-
ber No of neutral vector bosons is given by

[z„z,] = (P, a),
[(P,ff), E,]= (P, P)E„
[(P, lf), E,]= -(P, P)E „

(4.16)

we may identify the weak isotopic-spin subgroup
SU(2) of the Weinberg-Salam theory contained in

6, to be generated by

1
T3 (P'P) ( PI+) l

2 1/2
T,= T~+iT2=

( )
E

g

(4.17)

Tr( T3)'= —,'N„, . (4.18)

On the other hand, Eq. (4.8) together. with (4.17)
leads to

1 1 d(A.) E2(&)

u(P, P)
' d(~.)(P, P)

'

so that we find

for a positive root P. Lemma (III) of Sec. II
guarantees then that all eigenvalues of T, are re-
stricted to 0 or a2 for all weights M in the repre-
sentation {Xj. Therefore, we conclude that only
the isosinglet and isodoublet alone can appear in
the reduction of the group 6, to the SU(2) sub-
group.

Let Nlz/2 be the number of isotopic doublets which
are contained in the representation {X). Then we
have

N, =2n-1, N, =2n' —3n+2;

(ii) C„(n~ 2), A= A~, d(&0) =n(2n+ 1):

N, = 2n(n+ 1), N, = n',

(iii) D„(n ~ 3), d(XO) = n(2n —1):

(a) A=A„

or

2 d(X) 1,(z) 2 l,(~)
'~' (P, P) d(x, ) f,(x,) (P, P) i,(~,)

N, N~ ( ——2-uvd(X)
( )P

(4.19)

N, = 2n(n -'1), No= n',

(b) A= A„, or A„,

N, =2(u -1), N, = &n' —5n+4;

where we divided Eq. (4.19) by f,(X,) in the num-
erator since f,(X,) = 1 in our normalization. The
value of (P, P) can be computed from normalization
Eq. (4.4) or f,(X,) = 1 to be

(iv) A„(n ~ 1), d(X,) = n(n+ 2):

(a) A=A~ or A= A„,

N, =P(n+1 -P), 1 P- n,

(b) A = A,. (2-«j - n -I),
N, =n, N =n ~

Another physical quantity of some interest is the
number of isotopic-spin doublets contained in a
given multiplet {X). Noting the usual commutation
relation"

(1) &„(n-l), D„(n 3), E, E, and E:
(P, P) =

d(~ )

() „(u- ):

, if P=So&, jan,

(P, P)=
ii

, if P= So.„,j =u,

(4.21a)

(4.21b)
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(3) &„(n~ 2):
1 ), 'f p=s, j4

(p, p)=
, if p=Sn, j=n,++1 ' n~

(4.21c)

(4) G.:
(u„a,) = 3( o.„o.,) = —,',

(5) F,:

( o.„o,,) = ( u„o.,) = 2( o„u,) = 2( u„u, ) = -', ,

(4.21d)

(n -1) i"' (j —1) i(n- j) i
'

(2) a (no 2), A=A:

(4.22a)

(4.21e}
where S in Eq. (4.2lb) and (4.21c) denotes any
Weyl reflection operation. From Eqs. (4.19) and
(4.21), we compute N, » to be

(1) A (no 1) A A& (1 «j «n).

which is compatible with proposition (II) of Sec. II.
Of course, these represent only a contribution
from the group G, . The real expression for T, and
Y are direct sums of all these contributions from
all simple groups Gz and the Abelian U(1) generator
R for the case of Y. Then the final expression ob-
tained in this way would correspond to the physical
T, and Y of the %einberg-Salam gauge subgroup
SU(2) 8U(1). Also, we may note that we defined
the SU(2) subgroup by Eq. (4.17). However, it
could happen that we can find many subgroups of
G„which commute with each other. In such a
case, we may choose T, and T, as a direct sum of
all infinitesimal generators of all such SU(2) sub-
groups, if we wish to do so.

Finally, we could give another proof of incom-
patibility of the two-charge Ansatz for the case of
A=A, in the group E, as follows.

Suppose that the representation A= A, of E, is
compatible with the two-charge Aygsgtz. Then we
compute ($, $) in the following two ways. First,
because of Eqs. (4.11) and (4.14), we compute

N„,= 2"-', if (P, P) = 1
(4.22b)

((, g)= —' ' d(~,)=42.4/, X,
(4.2'l)

1
N1/2 I (pi p} 2(2n I)

(3) C„(n 2), A=A, :

(4.22c}

Qn the other hand, we may express it also as

( )
" 2(5, A)($, ;)

1
N~(2 —— , (P, P)=

2( 1)

1, if (p, p)=——
1

(4.22d)

(4.22e)

(4) D„( =3):
(a) A=A, ,

Nj(, = 2,
(b) A= A„, or A„,

2'

(4.22f)

(4.22g}

1
Q, = T, + gI',

so that Y is given by

I =(ri, H),

2
7i=2) -( )

p.

The condition

[V;, I]=[T„Ij=O

imposes a constraint for P of the form

(&, p)=1

(4.23)

(4.24a)

(4.24b)

(4.26)

The component of weak hypercharge Y in the
group G, may be defined by

But because of proposition(II) of Sec. II, ($, u~) is
an integer. Then expressing A,. in terms of simple
roots as in the Appendix, we find that 2($, A,.) is
also an integer. Moreover, noting (n&, oz) =

—,', ,
this requires ($, $} to be an integer multiple of 18.
However, this contradicts Eq. (4.27). This proves
the impossibility of A= A, for E, in accordance
with the conclusion reached in Sec. III.

V. CONCLUDING REMARKS

In the previous sections we have classified all
possible gauge groups for unified weak and elec-
tromagnetic interactions which are compatible
with a two-charge sensate. Although the results
are found to be very restrictive, it is still not
enough to determine the best possible candidate
for G. To that end, we have to assume some sim-
plicity (not in a mathematical sense) assumptions.
The most reasonable way is perhaps to consider
small-rank groups. Eliminating the trivial case
of the pure Abelian groups, the smallest group
with rank r=1 is the SU(2) group. However, this
is semisimple and would not satisfy our criteria
that only admissible semisimple groups are a pro-
duct of SU(3l) groups. Hence, the lowest-rank
group SU(2) is not possible. The next higher-rank
non-Abelian groups with rank r = 2 are SU(2) SU(l),
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SU(3), G„SU(2)@SU(2), and Sp(4) =SO(5). Again,
our semisimplicity criteria eliminate all semi-
simple groups except for the SU(3). Therefore,
we conclude that only SU(2) @U(l) and SU(3) are
possible candidates for the gauge group with rank
r= 2. However, models based upon the SU(3)
group' predict a pure axial-vector neutral current
which contradicts the present experimental data. "
It appears" that any reasonable SU(3) model can-
not reproduce the experimentally allowable linear
combination of vector and axial-vector neutral cur-
rents. Therefore, we conclude that the only viable
lowest-rank gauge group is precisely the Weinberg
s.nd Salam gauge group SU(2}sU(l). However, in
case we need to go beyond this, we may have to
consider groups with r= 3. Again, the only groups
compatible with the two-charge condition are SU(2)
SU(l)SU(l), SU(2) sSU(2) SU(1),' SU(3) sU(1),' and
Sp(4)@U(l) =SO(5)@U(1).' All of these groups have
been indeed proposed and investigated by many
authors. Note that all these groups are non-semi-
simple. We may remark that the first viable semi-
simple group SU(3}sSU(3) (Ref. 10) is of rank 4.
gs we have emphasized in (I), the semi-simple
group has many interesting predictions so that the
group SU(3) sSU(3) may be of some physical inter-
est.

In ending this section, we simply remark that
physically we can relax our two-charge condition
so as to allow three quark charges 3, -3, and

In that case, the condition of lemma (III)
must be relaxed to a statement that 2(M, p)/(P, p)
must be restricted to values 0, +1, and a2. Then
the highest weight A for an admissible multiplet
must have the form

Q=Q, +R,
where Q, now satisfiesi'

Tr(Q, )~= 0

(5.4)

(5.5)

for all positive odd integers p = 1,3, 5, . . . . Let
n„n„and n, be the numbers of quads with elec-
tric charges 3, -3,' and —-', , respectively, in a
given irreducible multiplet. Then if the genuine
three-charge Ansatz" is obeyed for the multiplet,
we can easily prove on the basis of Eg. (5.5) that
Q, can assume only eigenvalues 1, 0, and -1 while
B takes the value -3 in the multiplet. Moreover,
we must have

ng n3 (5.6)

i.e. , the number of the quarks with charge —-',

must be equal to those with charge+3. This fact
would be phenomenologically undesirable at least
for the present, so that the choice of Eq. (5.3) for
G, being one of the groups given in (5.2) will not
be a good prospect. In contrast, the pure simple
gauge group G= E, in the 27-dimensional repre-
sentation A=A, will give n, =10, n, =16, and n, =1
with a choice of $,

(5 'f)

We may easily check that these are consistent
with Egs. (3.2) and (4.10) for X= Q, =(g, H)

Here we did not discuss the cancellation of the
triangular anomaly as well as Higgs mesons.
These depend upon detailed dynamical considera-
tions and upon specific assignments of representa-
tions for positive and negative chiral components
of fundamental fermion multiplets.

A = A,. or A = A,.+ A~„ (5.1)
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where A& and A~ are fundamental weights. In such
a, case, even exceptional Lie algebras can now be
allowed. For example, the 27-dimensional repre-
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APPENDIX

Here we shall adopt the lexiconal ordering of
simple roots as in Fig. 1. Then straightforward
computations based upon Eq. (2.16) enable us to
write fundamental weights in terms of simple
roots' as follows: Here A, designates the highest
weight of the adjoint representation:

(1) Algebras„(n) 1), A, =A, +A„:

A~= ((x|+ 2&2+ ' ' '+ jQ))
n+1 -y

n+1.
G= G, SU(1)

and if G, is one of ihe simple groups listed in
(5.2), then we have

(5 3)
+ [(n -j)~„,+ (n -j -1)o.,„n+1

+ + u„] (1-j-n). (Al)
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(2) Algebra B„(n~ 2), A, = A, (n ~ 3),

A, = 2A, (n= 2):

(a) A,. {1&q&a—1),
A~= ni+ 2n2+ ' ' '+(j —1)ng i

+j(n, + n„,+ + n„),

(l ) A„(j=n),
A„= —,'(n, + 2u, + + nn„) .

{3)Algebra C„(n~ 2), A, = 2A, :
(a) A,. (1&j-n-l),

A, = n, +2n, + +(j-l)n, ,
+ j(ng+ ug~g+

' ' '+ n„g+ g n„) ~

(b) A„(j=.),
A„= u, + 2u, + ' '+(n -1)n„,+2nn„.

(4) Algebra D„(n ~ 3), Ao= A, (g ~ 4)

A, =A, +A, (n=S):

(a) A„1&j&n-2,
A~= n~+ 2u2+ ' ' '+ (j -1)n~ ~

+ j(n,.+ n~„+ + n„,)
+2 j(n„,+ n„),

(A2a)

(A2b)

(ASa)

(A3b)

(A4a)

Aq=

A2=

A3=

A4=

A~=

—,'(4u, +5n, +6u, +4u, +2u, +Su,), (AVa)

—,'(5u, + 10u, + 12u, + Bu, +4u, + 6n, ), (AVb)

2u, +4u, +6u, +4n~+ 2n, + Su, , (AVc)

& (4u, + Bu, + 12n3+ 10n + 5n, + 6u,), (AVd)

—,'(2n, +4u, + 6u, + 5n4+4u, + Sn6), (AVe}

A6= Q~+ 2Q2+ 3Q3+ 2Q4+ Q5+ 2Q6. (AVf)

A, = 2n, + 4u, + 6n, + 5n4+ 4n, + 2n, + 3u, , (ABe)

Ae= 2 (2u~+ 4u2+ 6u3+ 5u4+ 4u5+ Sn6+ 3u7) ~

(A8$)

A, = 2 (4u, + Bu, +12n, + 9n, + 6n, + 3n, + V u, ) .

(ABg)

(9) Algebra E„A,= A, :

A~ = 2Q~+ 3Q2+ 4Q3+ 5Q4+ 6Q5

(8) Algebra E„A~=A, :

A, = 2n, + Su, +4u, +3n4+ 2u, + u, + 2u, , (ABa)

A, = Sn, + 6n, + Bn, +6u4+4n, + 2n, +4n, (ABb)

A, = 4u, + Bn, + 12n, + 9n4+ 6n, + Sn, + Bn, , (ABc)

A& = z (6u, + 12u&+ 18n&+ 15u++ 10u5+ 5n&+ 9 n7),

(ABd)

(b) A„„j=n 1,
A„,=-,'[u, + 2u, + Su, + ~ ~ ~ +(~ -2)u, ]

+4 [nu„, +(n —2)u„],

(c) A„, j= n,

A„= —,
'

[n, + 2u, + ' '+ (n —2)n„,]
+ —,

'
[(g —2)n„,+nu„]

(5) Algebra G„A,= A, :

A~ = 2ul+ 3Q2 &

A, = u~+ 2

(6) Algebra F„A,= A, :

Al —2Q1+ 3Q2+ 4Q3+ 2Q4 q

A, = 3Q~+ 6Q2+ 8Q, + 4Q4,

A, = 2Q, +4Q, + 6Q, + 3Q4,

A4= Q, + 2Q, + 3Q, + 2u, .
(V) Algebra E„A,= A, :

(A4c)

(A5}

(A6a)

(A6b)

(A6c)

(A6d)

+ 4Q6+ 2Q7+ 3us

A, = 3Q, + 6u, + 8Q, + 10Q4+ 12Q, + 8u,

+ 4Q~+ 6Qs ~

A3 4' +Su, + 12Q, + 15Q4+18u,

+ 12Q6+ 6Q7+ 9us,

A4-—5Q, + 10u, + 15u, + 20u~+ 24Q,

+ 16Q6+ 8Q, + 12u, ,

A, = 6Q, + 12Q, + 18Q, + 24Q4+ 30u,

+ 20Q, + 10Q, + 15Q, ,

A6 = 4Q~+ 8Q2+ 12Q3+ 16Q~+ 20Q,

A, = 2u~+ 4Q2+ 6Q, + 8Q~+ 10Q,

+ VQ + 4Q7+ 5us

As= 3Q~+ 6Q2+ 9Q3+ 12Q@+15Q5

+ 10Q6+ 5Q, + 8us.

(A9a)

(A9b)

(A9c)

(A9d)

(A9e)

(A 9f)

(A9g)

(A 911)
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