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By examining the implications of the usual physical assumptions for gauge theories we are led to a number
of interesting structures which can be formulated in terms of moving frames. The first problem we consider is
Faddeev’s fiber bundle procedure for removal of gauge degeneracies from quantum fields. We show how the
theory of moving frames can be related to the theory of fiber bundles. In the fiber bundle extra
displacements and extra components of the gauge fields are included. These precisely remove the gauge
degeneracies. In order to formulate this problem in the language of fiber bundles, we begin with a section
detailing the algebra of forms in four dimensions and their associated operations (exterior differentiation,
Hodge duality and the natural Hilbert product of forms). We then show how to form the action for the
SO(3) fiber bundle. This opens the general question (implicitly answered by this example) of how to quantize
in a fiber bundle. Next we examine the question of choice of local symmetry structure. First we consider a
space whose local “rotations” do not form a group. By generalizing the structure equations for manifolds, we
can study such a space. Second, in general relativity it is assumed that at any point one can choose an
orthonormal basis and a vanishing connection. This corresponds to giving the zeroth, first, and second
coefficient of a Taylor’s expansion of the coordinate system. But manifolds flatter than those of general
relativity do exist for which the structure is carried in the higher coefficients. We show how to give an action
principle for them. Third, algebras more general than Lie algebras are possible local symmetries, e.g.,
superalgebras, the octonian algebra, and others violating the Jacobi relation. An action is given for a one-
parameter family of quasi-Lie algebras which reduces to that of u(l) + su(2) in the zero limit of the
parameter. Fourth, simple examples of actions for gauged superalgebras are given which do not include the
full complexity of general relativity. Fifth, an easy derivation of the supergravity action is made; then
generalized to a supergravity Weinberg-Salam-type model.

I. INTRODUCTION

The description of physics in terms of moving
frames' has the advantage of a central position.
On the one hand, by choosing a specific basis the
explicit components of the field are manifested.
In detailed calculations it is often necessary to
use these. On the other hand, by formulating the
usual physical assumptions in this general lan-
guage, it becomes easier to observe and modify
their consequences for local structures. By ex-
amining some of these assumptions we are led
to a number of models which generalize the stan-
dard view? of gauge theory but can still be ex-
pressed in terms of individual components in a
specific basis.

We begin with a look at Faddeev’s technique for
removing gauge field degeneracies. To do this
we consider “cohesions in a vector stratification,”
i.e., “connections in a fiber bundle.”® We show how
to relate the theory of moving frames to that of
fiber bundles.*'® Essentially a fiber bundle is an
extension of the usual base manifold (space-time)
to include an internal-symmetry space such as a
local gauge group by “attaching” one copy of the
group to each point of space~time. Both the local
frame and the number of allowed displacements
are increased. The “fiber” at each point is the

group at each point.

Section Il details some of the “natural” bundles
found on a four-manifold (those associated with
infinitesimal lines, areas, etc.) and some of the
characteristic operations on those bundles from
an intuitive viewpoint.* A description of the tech-
nical features of a fiber bundle is found in the
Refs. 4 and 5 and is sketched in Sec. IIL

The operations on the “natural” bundles which
are mentioned are the exterior derivative (a gen-
eralization of the curl) and the Hodge dual (a gen-
eralization of Maxwell duality). From these the
cohomology groups and the “natural” Hilbert pro-
duct of n-forms can be found.*

We proceed to a discussion of the details of an
SO(3) bundle on Minkowski space in Sec. III. There
we see that if the action is formed as the Hilbert
square of the Yang-Mills curvature of SO(3) up in
the bundle, the gauge fields have further degrees
of freedom corresponding to the group generators
which must be fixed through some sensible pres-
cription. Consideration of this problem yields
the Faddeev procedure for dealing with quantum
field’s degeneracies, and suggests that a detailed
examination of the technique of quantizing in a
fiber bundle may be useful.®’ ,

One of the obvious advantages of the theory of
moving frames (or of fiber bundles) is that it
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permits one to examine internal and space-time
symmetries with a single formalism (Sec. IV).®
In this viewpoint arbitrary manifolds are straight-
forward generalizations of group manifolds. To
obtain them one permits the connection coeffi-
cients to become functions instead of structure
constants.

The theory of moving frames (or of fiber bun-

dles) clearly includes a wide variety of structures.

In Sec. IV we indicate some of the more amusing
examples of local structure.® We begin with an
object having a local rotation manifold instead

of a local rotation group. This structure can be
(even locally) anisotropic. But still it is not a
difficult object to describe differentially. Next
we examine manifolds which can be locally flatter
than those considered in general relativity.t°+!
Usually one assumes that at any given point an
orthonormal vector basis with vanishing connec-
tion (and torsion) can be chosen. This amounts
to picking a zeroth-, first-, and second-order
structure. But what about frames of higher than
second-order contact (jets)?? We sketch the
theory of a manifold in which the third-order
structure at a point can also be chosen.

Other modifications of the usual local (alge-
braic) structure are possible. For example, in-
stead of restricting the local algebra to be Lie,
it can have mixed Lie and Jordan structures (as
a graded Lie algebra does.)®"** Or the Jacobi
identity can fail to hold in a number of interesting
ways, giving rise to alternating, Mal’cev or even
more unusual algebras.!®* We provide an example
of a local algebra which has a broken Jacobi
relation but in the zero limit of a given parameter
becomes u(1) +su(2). Some of these algebras
may be physically interesting because they allow
a different kind of symmetry breaking than is
available through the Higgs-Kibble?:** mechanism.
Clearly, exhausting the Lie algebraic structures
does not exhaust the options available to local
field theories.

Since there is some reason to hope that graded
Lie algebras have physical relevance,'® we des-
cribe some moving frames related to those alge-
bras in the manner discussed in Sec. III of the
second paper in this series.’ But in Sec. V we
concentrate on some simpler versions having
two- or three-component spinor fields. We dis-
cover that the SL(2|1)!* super connections are not
adequate to include general relativity. This
occurs because SL(2,C) covers only the Lorentz
group. Translations are needed to obtain the full
effects of general relativity as pointed out in
Sec. II of the first paper in this series.!

In Sec. VI we show how to obtain the well-known
spin-2-spin-3 supergravity action from a moving
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frame.'™® We point out that this is not the gauge
theory of any simple supergroup (cf. Sec. II of
paper II'). The nearest simple supergroup is
OSp(1,4). When it is gauged, extra pieces appear
in the action (at least a cosmological constant).

If simplicity is not a requirement, then many more
structures are available. As an example we

write down a colored supergravity Weinberg-Sa-
lam-~type model.2:19+2°

II. DIFFERENTIAL FORMS, GRASSMANN ALGEBRA,
HODGE DUALITY, AND COHOMOLOGY GROUPS

Given abose manifold (space-time) it is possible
to consider oriented basis elements associated
with infinitesimal points, lines, areas, etc. The
coefficients of these basic elements form linear
vector spaces: functions, gauge potentials, etc.
One can express the bases for planes, etc., in
terms of line elements by using the alternating
tensor product (wedge product), A. The infin-
itesimal n-plane element can be written as fol-
lows,*:%1!

dx‘-‘/\'“/\dx":Z%cp(dx"P@“°®dx"P) (1)
P

summed over all n! permutations each with sign
op. An area element, for example, is given as
follows,

di' A dx” =5 (dx* @ dx” - dx” @ dxt) . 2)

The exception to the rule of alternation occurs
when the basis, I, for the space of functions
(points) is included. It satisfies

Indit=dx" A I=ax", (3)

We can now tabulate the objects associated with
points, lines, etc.; please see Table I
Sometimes the collection of vector spaces,

L n
AM)=D A (M)E,,Z% X () (4)
with #» =dimension (M) is called the exterior alge-
bra of M. A? (M) is called the space of p-forms

on M. It is also called the Grassmann algebra.
Note that these are special fiber bundles on M.
Compare Sec. III,

N (M)=0 for p&{0,...,n} (=4, here). (5)

It is possible to introduce*:®!! a map, d, called
the exterior derivative from A? (M) to AP* (M)
which acts on one-forms like (V X) and on func-
tions like (V), where M is a three-manifold.
We will give a table of the action of this operator
for the four-space exterior algebra. See Table II.
All other actions are trivial since A? (M) =0 for
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p£40,...,4}. We remark that the operator d
satisfies dod =dd =0 as can readily be verified
for f € A,

ded f =d(fj,dx”") =3 f, \dx™~ dx” =0. (6)

Indiceswithbars are tobe antisymmetrized. Thus,
J

WAT=
Pi<e o<y

V<o o<y

1

here we have used ordered indices p,<°*°<p,
and y,<°*°<v,. Note that any terms having two
indices repeated between w and 7 vanish.

From the spaces A’(M) one can construct?:®
other spaces of topological interest. First,
Z*(M)C N (M), the set of closed p-forms consists
of those elements vanishing under 4. That is if
wEZ?(M), then dw =0. Second, B’(M)C A*(M), the
set of exact p-forms consists of those elements
which are derivatives of (p —1)-forms. That is if
TEB?(M), then T =do for some ¢ in A*~}(M). Since
dod is zero [d(ds) =0], every element of B*(M) is
in Z?(M), B*(M)C Z*(M). 1t is therefore possible
to consider H?(M) =Z*(M)/B?(M), those elements
of Z?(M) not in B?(M). This is called the pth co-
homology group for M. X it vanishes, Z?(M)
=B?(M) and every closed form is exact. (I df =0
there exists an A such that f =dA. Magnetic Max-
well equations imply a potential unless there are
line charges.) The nonvanishing of H?(M) is re-
lated to the presence of p-dimensional holes. In-
deed B, =dim[H?(M)] the pth Betti number is the
dimension of H?(M) and counts the number of p-
holes. We will not examine the topological aspects
of manifolds here.

The last operation on the exterior algebra that
we will describe is the Hodge dual denoted by an
asterisk. It maps elements of A*(M,) onto A"~*(M ).
That the map is onto is evident from Pascal’s
triangle. Note dim[A*(M,)]=() =nl/plln-p)!. We
use the fully antisymmetric tensor to relate w,
and wj so that

WpAwF=@EN=gpldx'AccoAdx"wye . gw® "B,

8
where n =dimM, and g,, is the metric of M,; g( )
is its determinant. In four dimensions we use
V=g €yurp- See Table IIL

A metric on the space of p-forms is thus in-
duced.*® Set V=g =1; then

[(Audx")* A(BUM)]* = (AuBu_sl’- euaeyeaay'l)(d4x)*
=(AuB,g"")[=A*B 9)

and

Apyp=Apyp—Apyy. Further, d is an antideriva-
tion d(aw +b7) =adw +bdr for a,b constants and

w, TEN M), and d(w A7) =dw AT+ (=) wA dr when
wE N (M) and 7€ A* (M). The product form is

WA TE A** (M) with coefficients defined by

Whyo ooty Tuyosony X 1A oA dxfoadx”1aeco agyk (N

r

[(Fp”dx“l\dx”)* "(Gasdx“l\dxﬂ)]*
=(—IF;;,,GaBgJ‘Eg”B-)(d4x)*
==2lF,, G"I, (10)

for example. By omitting the second operation of
the asterisk, a natural Hilbert product is formed:

(A|B) =f (A,,B")Jig—d4x=fA*aB, (11)
for one-forms or
<F|G>=-f (F,,,,G"”)s/-_g—d“x=f’-§—F*AG, (12)

for two-forms.

Two important facts about * should be noted.
First, * maps p-forms into (z —p)-forms and
thus changes the scale dimension of a form. For
example dim(A4,dx") =0, but dim[A ,(dx")*] =12,
Second, in the canonical basis, #*, one can
naively apply * twice because €,,** is just+1. In
a coordinate basis such that v=g# 1 the second
application of * requires dividing by 1/v—g . Using
6! =Y} dx" and det Y =V=g allows one to verify the
sense of these statements and to discover that
or=t],

III. QUANTIZATION IN FIBER BUNDLES

In this section we will relate the theory of
moving frames to the theory of fiber bundles.*®
And we will see that the Faddeev-Popov approach
to the removal of gauge degeneracies can be
(essentially) understood as quantization in a fiber
bundle. 37

The basic idea is to extend the manifold from

- just the space-time manifold, M, to admit extra
degrees of freedom corresponding to the gener-
ators of the internal-symmetry group, G (called
the structure group). This new manifold, B,
called the bundle will have a dimension equal to
the sum of the dimensions of Mand G. For exam-
ple if M is the usual space-time and G is the
group SU(2), then the bundle will be seven dimen-
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sional. We will see that in that setting gauge
degeneracies are removed naturally and that it
is the natural place to do a sum of paths quantiza-

tion.
J

dpP =eydx*
dey=0

de, =¢,BB,ax"

becomes dey=0

where 64 is an su(2) algebra-valued one-form such
that 464 +5e4.6% A 6° =0, and [e,,2;] =€$z8c. We
will write the coordinate differentials, dx", in the
bundle using the same notation as in the base. We
will introduce the Euler angles ¢ such that 6“‘
=Y4d¢® (see Sec. IV) and the matrices A, with
components (A,)§ =€§;. We will rewrite the con-
nection (BB.dx* +B5.6°) as BA(A,)2 or (Bfdx"
+B2d¢®)(A,)8. We can readily compute the curva-
ture P* from 1[d, 8]e, =2 P*(A,)E or from
PA=dBA +Leh BB A B°
=L(BAy +€AcBEBE)ax" A dx”

+(Bfiy - By + AcBEBR)dg A dx*

+3(Bphy +ehoBEB])dg" ndg” . (14)
Recall that A=A, p—Apuy.

In order that B# be a “connection on a fiber

bundle”® the coefficients of the vertical pieces
(d9® A dx* and d¢® »d¢’) must vanish. We can

solve the equations obtained by setting these co-
efficients to zero by taking

BAA, =[BA(x, p)dx* + BA(x, p)de®IA ,
=Q(x, ¢p)Bji (x, 0)dx" A ,Q*(x, )

+Q(x, $)dQ ™ (x, ¢) (15)

with (x, ¢) =exp[7°(x, ¢p)Ac]. ¢ labels elements,
g, of the fiber at x. For each x, @ must be a
diffeomorphism of the group at x into the group,
G. 7°(x, ¢) is a parametrization of this diffeo-
morphism. Identifying the origin in the fiber with
the group identity fixes all points in the fiber.
Thus if pe Band g&€G, then Q(pg) =Q(p)g. We
find that P=P4A, =QR4A Q"' =QRQ"! where

R* =3[B*(x, Q) +€hcB (x, 0)BY (x, 0)]dx" »dx”
(16)

is manifestly purely horizontal (contains no
d¢* adx” or dx" adx” pieces).

Now we are confronted with two possibilities:
either we construct the action on the base mani-
fold or up in the bundle. To define the curvature

dP =e,dx"+¢,04
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We will concentrate on this example first and
return to the general definitions at the end. We
will consider a flat space~time. Thus if (e,,2,)
denotes our moving frame we find

) (13)

de, =e, (BB, dax" + B2, 6°)

r

in the base manifold, M, we must identify M with
a particular slice through the bundle. This is
analogous to identifying the x-y plane with the set
of points in x-y-z space determined by z =f(x, y)
with f a function of x and y. Choosing such a slice
is called taking a section. We will define this in
a general context later in this section. Here we
merely set ¢* equal to functions of x, ¢%=f%(x").
Then 7°(x, %) =7°(x,f%(x)) =0 (x). Define

(FAA ) =exp[o® (¥)AC](RAA ) exp[~oC (x)A (] .
17)

The operation of Hodge duality (cf. Sec. II) de-
pends explicitly on the dimension of the manifold;
we will denote the four-dimensional dual by * and
the seven-dimensional dual by *. One uses the
appropriate Levi-Civita tensor. In the basis
dx",d¢® the seven-dimensional metric is
diagli,-1,-1,~1; -1, - (sing?)?, —(sing* sing?)?].

Now find the actions

base (FIF)=§ftr(F—*AF)

=—% fFﬁvF.‘;udqxs
(18)

bundle (P|P)=1 f tr(P*AP)

=-vol[SUR)|(F|F),
since
(dqude)* A (dx“l\dxﬁ)
=+3n" “n'Fatx sin’¢* sing®dg'dp°de’®
and

(dx* A dx”)* A(dx® AdxB) == Ln* TP Batx .

The SU(2) matrices have been normalized to
1,tr(A4Ag)=06,5. X tr(A,Ap) =Nb,p, then use

tr/N in defining (F|F). Note that in defining (P|P)
we can either rescale the connection, B—~gB with
(g?) vol[SU(2)] =1 or replace the trace by
trace/vol[SU(2)] or generally, trace /(@ vol[ SU(2)]).
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Vector space of n-forms

Description

Name

Dimension of basis

Basis

Ad(v)
AL (M)

one I

points (functions)
line element
oriented area

element

0-form
1-form

A, =4 functions of M}

{fI|f=function of M}

A, dx* |

{
A2 ={f, dx* Adx"| f,,=6 functions of M}

3

four dx*

dt,dx,dy,dz

dtAdx, dxady,
dtndy, dyadz,
dtndz, dzadx
dx AdyA dz,
dy ndz At

2-form

six dx* A dx?

oriented

3-form

{B,, ;dx"A dx¥ ndx®| B,,,=4 functions of M}

Apn=

four dx* A dx¥Adx®

three-volume

element

dzadtn dy,

dtndx ndz

dix

{P,, padx" A dx” Adx® ndx*| P, = function of M}

At

one dtx

dtrdxAdyndz

oriented space-

4-form

functions are antisymmetric on indices

time volume element

To form a quantum field theory we will intro-
duce an integral over paths. But, as Faddeev has
pointed out,® field theories having a geometric
interpretation lead to singular Lagrangians. By
geometric interpretation he means field theories of
‘“cohesions in a vector stratification,” i.e., “con-
nections in a fiber bundle.” He goes on to ex-
ploit gauge invariance to resolve the singularities.
But since these problems arise for theories of
connections in a fiber bundle and since the connec-
tion in the bundle explicitly includes the gauge
term Q (B=QAQ~!+QdQ"Y), it is interesting to
examine the concept of quantization in the fiber
bundle. There, a sum over paths must involve
all of B, including . Of course to uniquely split
B into A and © we should have an unambiguous
procedure for choosing A. Picking a gauge condi-
tion is not always unambiguous. However, some
ambiguities are canceled out. For example in
U(1) with 8 *A =0 gauge transformations with
82\ =0 preserve the gauge condition. Nonetheless
the zeros in the ghost kinetic term precisely
cancel the zeros in the gauge-field kinetic terms.
Gribov has shown that for non-Abelian groups
extra zeros may arise.?* These occur for finite
gauge transformations. No problems arise if all
fields (including gauge transformations) are per-
turbatively small. Abelian theories appear to be
without problem in gauges such as 8°A =a.

Another minor problem presents itself. A
zero-mass field should have only two on-shell
or three off-shell components. A gauge field in
4 +n dimensions will have 4 +» components.
Therefore, there should be 1 +n constraints on
each gauge field. From the formula for B the
additional components are in the form of a pure
gauge term, £9,2°!. By taking the n additional
constraints to be ¢, =f,(x), we define B on a sec-
tion. This reduces the dimension of the indepen-
dent variables from seven to four. All ¢* depen-
dence can be completely integrated out of the
theory leaving a theory depending effectively on
the x” variables only. This is essential for re-
normalizability.

We will write a class of gauge conditions for
U(n) as follows, y? =adPAp +Bd3, A%-A. We
define d4, by the U(n) equations ${Ag, Ac} =dAcA,.
This constraint includes many of the usual gauge
conditions for Af, Landau, Feynman, and Dirac-
Nambu (quadratic), by selecting various values
of @, B, and y?. We note that G =GPA, =*(ad
+BAA)*A =y"AD is the dual of the gauge-covar-
iant derivative of the dual of A when a =8(=1).
For U(1), y=ad°A+BA% A calculation of the Cou-
lomb force requires the introduction of ghosts in
such a gauge.

Now we can define an action functional by
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TABLE 1. Action of exterior derivative.

Spaces Elements
AV— Al df=f,dx" =20, fdx" ; flv=0,f
Al— A2 dA=d(A,dx") = Ay dx VA dx" =LA, | dxVA dxc; d(dx¥)=0
A%2— A8 dF=%d(F,,dx" Adx")—— wy 1p%°A dx A dx? -_ ey 10X A dxt A dx”
A3 — A4 dB=%d(B,,,dx" A dx” adx®=3By,p ) dx " /\dx“/\dx A dxP=oBy (A A dxt A dxV A dx®
A= A5=0 dP=d(Pd*) =P dx*AdtndxndyAdz=0 by antisymmetry and symmetry

W) =f [aBlA, (H5(¢a - f,,(x))) exp{:,l;;,—z f tr[P* AP+ (G =7)* A(G —y) +T* ABQ]}

- J 141 [ (aala, exp{:} L 1F8, P2+ (6 =4 G =) +JaA:]d4x}. (19)

We have taken vol[SU(2)] =87% and trA ,Ap =25 4.

F and * G are (up to coupling constants) the gauge-
covariant derivatives of A and of its dual. P is the

gauge-covariant derivative of B. We have defined

it lank, 2§ LIEE9) | L OIS
(20)

Agte f 169 exp{ _Ti a*x[(G* - v*)(G, -n)]} .

In going from product to Gaussian form extra
factors are absorbed in the W(J)’s norm (which

r

factors out of matrix elements).
Under a gauge transformatlonA Q(x)AQ " (x)
+Q(x)dS2(x)™* ,
GAA, =G{GAA, +B2* (AA%d) +*(da%d)] Q-
+(a =Bk (dBA*dQ™"Y) . (1)
Infinitesimally (') =I+7°A., and
GA=GA +eA.GP1C +2BdAc AP+ 970 +Bo%T4 .  (22)

The conventional ghost action is therefore

Ag = f [ac][de] exp{i f d*x[B(a"cayc ~2¢,d5, A% - 0cF) '—E,_eQEGBc"]}. (23)

It may be that in spite of the difficulties mentioned
by Gribov? for small field values (perturbation
theory) the Feynman rules are still accurate (if
only small gauge transformations are allowed).

Mathematically, a connection is a splitting of
the tangent space of the bundle into horizontal

r

and vertical. The one-form B =BfiA  dx" + BAA ,d¢*
=BAA, can be related to such a choice as follows.
View B* =Bidx*+B2d¢® and B"=dx" as a basis for
the one-forms in the bundle. The BA’s are the ver-
tical basis and the B"’s are the horizontal. Choos-
ing a basis amounts to choosing a vertical sub-

TABLE IIl. Action of Hodge dual.

First application on a coordinate <

Spaces Canonical basis 6*=Y}dx*

basis (dx*)

Second application on dx*

A% At "= €i ALY RN AN =5 V"ge, ,dx"a dx¥a dxta daP=Vgdlx I™™=_I
i 41 VA P

ATE AP (o‘) =3y €l 6l A otag! (dx*)* =FV=g €& ,dx¥ adx*a dx®
V=g evdx*a dxP
(dx* A dx® adx®)*=V_g ¥ dx*

A2E A2
ASE pl

('~ ei) =Freljorn et (dx* A dx")*=
(6 A 67 A G7)* = €jikgH

S5 AY (6%n6la 62a %) = (@) =v=grI

(@x*)** = (dx*)
(dx* A dx¥)**= (dx“A dx")
(dx*a dx’a dx®)** = (dx*a dx”a dxP)

(d%)**=_d%
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space. We remark that since (dx*|a,)=6}, ete.,
B* annihilates the “horizontal” vector fields

X =X", +X%,=X"2, — B4BiX"s, with B4 B2 =62
since (B4| X)=BAX* - BAX®=0. There is a four-
parameter family, determined by X*, of such
horizontal fields for each choice of BA. The
others, which do not vanish, have “vertical”
components.

We will return to the technical properties of
fiber bundles briefly. Let B be the bundle, M the
base, and G the fiber. B has a right multiplica-
tion by elements in G. K b€ B and g €G, then
bg € B. This allows us to write M =B/G. The
map 7: B—~M =B/G is called canonical projec-
tion. It is differentiable. The inverse image of
x& M, m='(x) is called the fiber at x. The union
of these fibers is the bundle. It is not always true
that if M =B/G, then B=MXG; when that is true,
B is called trivial. What is true is that for every
x & M there exists a set S, such that M =U,,, S,
(with I an indexing set) and such that 7,: 77%(S,)
- S,XG is a diffeomorphism. 7, is called the
trivializing map. It says that around each point
there exists a “trivial” neighborhood (a cross
product of Sy and G).7,(d)=(7(d), p,(0)). ¢ maps
7~(Sy) into G and satisfies ¢, (b)g = ¢ (bg) for
bET"(S,) and g G. On intersects of the open
cover {S,} of M one defines 7,5,(T(b)) = pg(b)p(5)2,
called the transition function. It depends only on
x=m(b). It satisfies 7,,=7,5°Tgq On triple inter-
sects. Note, 74(0) =(7(b), T3¢ (d)) =(7(d), $p5(d)). -
Under such a change what happens to the connec-
tion? First, define a section to be a map 04:S,

- B such that me g, =1. Thus ¢, picks a unique
element in 7-!(x) for each x. Take o, =7, '(x,I)
where x € S, and I is the identity of G. 7, is the
trivializing map. Let 6 be the left-invariant,
algebra of G-valued one-form such that 0(A)=A
for A the algebra of G. X A, is a basis for the
algebra, then 8=64A, and d9+0A 8=A,(d6*
+1eAc084 6°)=0. It is dual to §,, a vector field
satisfying [6,, 65] =€550c. Duality means that
(64165 =62.

Any map, f, from a manifold M into N induces
a linear mapping, f,, of their tangent bundles.
Thus if X isa vector field in T(M) acting on a
function g, then (f£,X)g =X (go f) defines f,; Xf
=X"9,f. Similarly if w is a p-form then
(FrolX,, ..., X)) =(wlfyX,, ... ,f+X,) defines
f*w.® Let B be a connection in the bundle. Con-
sider the intersect U, NUs. Set B,=0%B and 0,4

=7%g0. Then By=ad(r3})By+04p.° Remember
J

that @ and B refer to sets, not components. This
formula can be translated to read

(BitA4) g =T5hBEAg)uTap + TohOu Tap - (24)

Changing from U, to Uy is just a gauge transfor-
mation with the transition function 7347 (5)]
=¢5(0)po(d)~* as the gauge map.

In the language of moving frames we see that
g, = Ve, together with d¢, =¢,;B}(d) allows us to
infer that \

de,=e,B,(d), with
L (25)
BY(d) =V3idVi+Bi@) V=B, dx*.

In the theory of fiber bundles, going from one
frame to the next occurs in going from one ele-
ment of the open cover {S,} of M to another. When
the theory of frames was made precise in terms
of bundles, it was this property which determined
the transition behavior. Of course, in most
gauge theories the change of frames, V,‘,, is re-
quired to be a function taking values in some
representation of the group. An exception to this
is the theory of general relativity, which can be
viewed as an SO(3, 1) theory disguised by V}’s
taking GL(4) values. This is obvious since
Vig"'vi=n" and wf,=Vie, VI¥+Virg, vy isan
SO(3, 1)-valued connection. If one introduces
ISO(3, 1) the V’s can be viewed as the other
pieces of the connection, rather than mysterious,
external objects. We note that an action such as
f tr(F* A F) is invariant under extended gauge
transformations B~ QAQ~! +2dQ~" where £
=exp[1'g)20] and T, generates any group whatso-
ever in any vepresentation. General relativity

is the only example in which such a transforma-
tion is commonly employed. But there, because
dx*—~ Y} dx" under the transformation, the require-
ment that coordinates be used as a basis selects
the usual procedure.

Use of this technique (of extended gauge trans-
formations) allows one to introduce extra fields to
which the gauge field can be coupled. Let Q be
an extended gauge transformation. Introduce a
fixed vector » normalized to m, wu =m?. Set &
=0Q~'u. Note that |8, — B,®|? is proportional to
m?tr(B, B,n"*) if Qis unitary. Anexample of this
idea is to start with a U(2) bundle, restrict
A,dx" in B to U(1) and view the extra “extended”
gauge transformations as matter fields. W(0) is
given as

w(0) = f [ae][dAla, exp[% f d4x(A,,a2A"+m2trA,‘}A"“)]

=f [a8][d®][aA]s(3e —mz)AFexp[Eifd"x(AuazA"+|a,,<I>-A',t1>|2)]. (26)
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Ap is the determinant for the gauge 8-A =0. See
Sec. II and Ref. 24 of the second paper in this
series.! Actually the notation in (26) may be
somewhat confusing. Two measures are possible
[D(Q-1d Q)] or [D(Qu)][D(Qu)]. The first is the
usual Haar measure; the second is what we have
used in (26). The second measure is similar to
that used in the Weinberg-Salam model.

IV. LOCAL ALGEBRAIC STRUCTURES, LIE AND OTHER
ALGEBRAS AND GENERALIZED MANIFOLDS

In this section we will examine the vector field
formalism we have been using somewhat more
closely. The first point we wish to emphasize is
that the use of vector fields (or covector fields,
one-forms) shows manifolds to be “almost” Lie
groups. To study a Lie group one considers its
Lie algebra. Usually one considers the space of
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tangents satisfying [6,, 6,] =€%,6, where 6,=Y"3a,
=%,. €}, are the structure constants and 7 and
both run over n =dimension of the algebra. How-
ever, a formalism in terms of cotangents §*

=Yk dx" can also be considered*!; then

do* +1ek 6t a7 =0, (27
6% is dual to §, in that
(0|0 =YE Y (ax"|a,)=YE Yol =5 . (28)
Let us give a specific example: SO(3) tangents
and cotangents are as follows,
tangent cotangent
[6;,6,]=¢€5;6,, dO*+3€k,0%A07=0. (29)

One can verify that these are satisfied by the
following vectors and one-forms:

—

= sing . )
6, cosy Sin6 siny cotf |[|og
6, F—| siny ——:—?—:g cos¢ cotd |5, | tangents (vectors), (30)
6] Lo o 1 ey
o) [cosy sindsing 0)(d6 ]
62 |F~|siny —sinfcosy O |/d¢ | cotangents (one-forms). (31)
6°) 0 coso  1Jldv

Here 3,=[3,, 9,,9;] =[8¢, 84, 8,] are Euler-angle
derivatives and dx" =[dx*, dx?, dx®] =[d6, d¢, dyp] are
Euler-angle differentials. The matrices Y} and
Y,‘, are the coefficient matrices given above.
In what sense are manifolds almost Lie algebras?

The answer is found by introducing the concept
of first and second structural equations. First
define

wh=1es, 0. ' (32)
Then consider (1)

T* =d6* +wi a 07, (33)
the torsion two-form, and (2)

Rt =du? +whawi, (34)

the curvature two-form. When €, is a constant,
T*=0 and R% = (~€},€}, +€* €})6™A 6". We have the
usual structural equations of a Lie algebra. We
hope context will distinguish the curvature two-
form from the Ricci tensor. Please note that we
have not explicitly used the Ricci tensor here.

—

The coefficients are the components of the Rie-
mann tensor of the group manifold

R%,.. =%(- e’},e’l‘u+€i,,,e’£,) =§(e'j,_je’ﬂ, (35)

which are constant.

A manifold is obtained by replacing the constants
3¢}, by functions I'%,;(x). The two structural equa-
tions are the same but now the equation for Rf is
slightly more complicated,

R} =dw} +wf A w}
=%(r§l|_@+r’rz_n!ri£1—rflriul)eml\en) (36)

when T* =0, because of the derivative of I'?;,. None-
theless we see that this formulation is well suited
to both Lie groups and manifolds; one is just a
special case of the other, or manifolds are “al-
most” Lie groups having varying structure, r“;m,
instead of constant, €.

This leads to an amusing speculation on “al-
most” manifolds having higher structural equa-
tions. For example )
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(1) Tk=d9k+w;*9“, wlu':r\’:!gl’
(2) R* =dw*? + QL A ™,
Q’;:n =r’:} mn w” = l} mn F?BP’

(3) PXL =aqkl +Qkla Q.

37

n
For a manifold take Q}} =€k}, w™ with ;% the
structure constants of the rotation group. When
these become functions the local rotation group
becomes a local “rotation” manifold. One could
introduce K®,; =w®™ A w,; and then minimize the
Hilbert product (K|P). Fourth and higher struc-
tural equations can be considered. These are
looser structures than manifolds just as mani-
folds are looser than groups.

We have described the idea of “almost” mani-
folds to illustrate the structural similarities of
general manifolds and Lie group manifolds. Fun-
damental to the construction of general relativity!?:*!
is the set of prinicples that, one, an orthonormal
Lorentz frame (or basis) can be chosen at a point
(or that the metric can be chosen Minkowski), and,
two, the symmetric part of the connection can be
chosen to be zero (torsion is assumed zero,
usually). “Almost” manifolds allow one to deal
with the idea that the local rotations may not
form a group.® But another generalization is
possible. Instead of defining the local structure
by choosing the basis and connection forms, it is
possible to pick a flatter structure by placing
requirements on the higher derivatives of the
local coordinate functions.!?

Specifically, let x',...,x" be a local coordinate
system in the manifold, M, and letz',...z" be a
coordinate system in R”", then we can take

) =YPe) Ve 4 Y 2zt +E Y, 22kt .
7 I 7

(38)

The set (Y¥, Y¥, Y}, vh,,) defines a local coordin-
atization of the three-frame bundle, P*(M). The
Y’s are symmetric on latin indices. In general
the bundle of »-frames, P7(M), is given by the
equivalence classes of functions whose Taylor’s
series agree (pointwise) up to the 7th derivatives.
These are also referred to as r -jets.?

One can proceed to introduce one forms on
(e.g.) P3(M) in the following way:

ot =Yhdy*,

wi=vi[avh -2y} Yidy’]=vi[dY} -2Yw'],
wh, =Yi[aY}, - 27} 0} - 37}, 0], (39)
ete.

By watching the indices the generalization is
obvious. These forms satisfy the following rela-
tions:

dw* == wirw,

dw} = - wh a0} =20}, A 0", (40)
dwj, == Wi AW} = W} AW} = 3wje A W',
etc. The w’s are symmetric on their lower indices.
For r-frames only » — 2 of these relations can be
proved from the formulas for w.

Let us consider a space for which not just the
point, the orthonormal frame and the connection,
Y*, Y{, and Y}; can be chosen, but also the
“three” connection Y};,. We remind the reader
that (up to equivalences) the usual choice is
Y*=0, Y{=5}, and Y}; =0 at the given point
(equivalence principle). Let us consider a
manifold for which Yf,k can also be chosen (for
definiteness set Y}, equal to a constant matrix).
From the frame structure we can immediately
infer

0=T"!=dw' +w} Ao’
and

0=[r}j]-[c]]

=[dw} + wia Wf] - [20], A *]. (41)

Under gauge transformations (which preserve
these equations)

0*=Y

wi=Yav§+wfYi], (42)

wgy =Y VY ywi, .
The gauge-covariant curvature of w}k can be con-
structed as

P}, =dw}, +w}, Awp +w}, A0} + 0], Awh. (43)
This format arises from requiring gauge covar-
iance of P,. There is no obvious analog (in four

dimension) of Einstein’s linear action (n,; is the
Minkowski metric)

G =f[w‘ AW [*AR Ty, (44)

for P}k because of the gauge properties of ¢he
connections. However, a quadratic is available

‘G"O :_[ [P}k]* AP Ty - (45)

Appropriate dimensional constants have been
omitted. A more complicated structure would be
the sum of squares of 7th-order curvature.

To see a concrete example of the various con-
nections and forms involved here let w' be the
three one-forms for SO(3) (formulas in terms of
Euler angles were given at the beginning of this
section, i.e., set w!=6'). Then take w! =€, w*;
calculate R}. Since R} =2w}, A v* a formula for
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the coefficients w}, =€},;w’ can be found (sym-
metrize on jk) in terms of the structure con-
stants (or metric in this case). Then calculate
Pi,.

From the jet bundle standpoint the usual theory
of curved manifolds is not the simplest structure;
a theory of pure torsion is. Einstein’s is the
second simplest nontrivial structure (see Sec. I-II.
of paper I).! The simplest theory would just
gauge translations 7' =dw! with an action
G=[dw'* adw,.

Other, more commonly applied, local structures
are certainly available. Next we will describe
some of the simple generalizations®**® of Lie al-
gebras which can be easily employed in the frame
language.

There are a number of algebraic structures
which are almost Lie algebras but have a nonzero
Jacobi relation. Let ¢, be a basis for the local
algebra. Introduce a product, e, e, =M e.. I
M, =-M;,, thene,*e,=—e,°e,. The product is
antlsymmetmc and is sometimes said to be a Lie
product. If it is entirely symmetric it may be
called Jordan. Supersymmetry algebras have a
mixture of Lie and Jordan products. If the pro-
duct is antisymmetric and satisfies the Jacobi
identity, that is, if

Jlessep,)=e," (e, ec) +e, " (et el)+e.* (e,° €;)
(46)

vanishes, then the ¢,’s form a basis for some
Lie algebra. If X=X%,, Y=Y%,m, etc., and if

J(‘Xy Y-yXZ) =J(X, sz)X ) (47)

the algebra is Mal’cev.'® If J(e,,e,,e,) is cyclicly
alternative on abc the algebra is alternative. The
octonions are alternative, but not Lie; indeed,

all alternative algebras can be constructed over
the octonions.

Break M¢, into symmetric (Jordan), d“, and
antisymmetric (Lie) f¢,, terms. Since dx” adx*
=—dx"ady’, only the fS, terms play a role in a
gauge theory of these algebras, in the following
sense:

connection: B=Bfdx'e,, (48)
curvature: P=dB+BAB
=4[8,B8+f2. B Ble,dx” A dx*

=3P gie dx’ adx", (49)
current: j=j,dx"
=" [Poul +f3.B 0Py
=+[d+P +BAxP — P AB]. (50)

A simple example is given by an algebra near
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to u(1) +su(2) whose product is entirely antisym-
metric. e, and ¢;, i€{1,2, 3}, are the bases
ep*e;=—e; ep=le; and ¢;* ¢ =e’,‘,ek. A going to
‘zero recovers the u(l) +su(2) algebra and e; ‘e
=[ey,¢;], ete. Define BAB=B'A B¢, e,

=B} By e;* eydx" adx” with I={0,} and for the con-
nection, B=B]dx"e;, one discovers the curvature

P=4[(BYy)eo+ (Bliy + €L BLBE +1BY Ble,Jdx* adx” .
(51)

By normalizing e¢,’s square to minus one (extend
the product), one can form the action as usual.
These algebras are interesting since they provide
broken Lie algebras and could therefore have in-
teresting experimental consequences.

V. SIMPLE EXAMPLES OF MOVING SPINOR FRAMES

In this section we take a closer look at some of
the effects of viewing the space-time basis ele-
ments e, as composed of spinor structures so
that e, =5,(J); s® where (J,)} are the components
of some matrices such as y, and the basis ele-
ments §, transform under some group which at
least contains the Lorentz group. We say at .
least because if S, transforms only under the
Lorentz group then one is not led to gravity since
&uv =ey° e, can be chosen globally constant. Re-
member that A%TgA =g is a way of finding the Lo-
rentz group. We will consider this point in some-
what more detail when we look at two-component
spinors S, in a short while. We will thus find that
there must be more generators J, than just those
Jy giving rise to ¢,. For example in the case e,
=5,(p)§s® there are also ey, =5,(0u,)§s®. In gen-
eral there are sixteen e, =S,(y)3s®. There is
therefore a sixteen-dimensional manifold (possibly
complex) of which only a certain four-dimensional
slice is to be identified as:space-time. Displacing
a point gives dP = dY’ ey (with I referring to the
W, v basis) that is

dP =dYSeg+dY e, +dY" ey, +dY *¥e, +dY *e*,

(52)

By settingdYS=dY"’ =4Y ** =4Y * =0 we restrict
displacements to a four-dimensional subspace.
Clearly, taking Y’ =vT(x" selects a general four-
manifold, d¥T=v[,dx". Of course if ¥T=xy7x_
and x =x(x) and ¥ =y(x), then dY! =dxy’x +Xdy"x
+xyTdy can be written as

dvT = (FuvIx +xvifox 0y xpax*
=(xyTx)pdn® = YL ax* . (53)

We can examine the effect of an infinitesimal
transformation on the current basis ¢, by compu-
tation from knowing the effect on the spinor basis
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«- Thus if 6s%=[Qf(y,)36x"] s? and 65,
5[ (v,)86%*], where ¥, =y; =vv]7, (a factor of
i must be included with y, if yf=v,), we find

de; =S(6Q7y v +vrv,607)s . (54)

And setting 6Q =6a +i68 allows us to write

S

6er =S {vs,vit* s 60 +iS:[y,, v, s6p’. (55)
These can be found from the following list of non-
vanishing relations. Take

7= {1, 2 ,%[n,v,] =ok,,y57,,i75},
Y =N % Yss (56)
Y =1.

The anticommutators are
{Lvs} =2y,
{%s 7?} =2n1,
{')’is ) =%€iku7’5'yi s

s v} =8Gvoy;

{0155 0nat = 5 [M30m0 =ngani ) +i€ gyl 5 (57
{owsvemat =t
{ous, 17t =2(ivdoyy
{rns vyl =—2nyl.
Note (i y5)o;; =3€;;'05;. The commutators are
[, %1=- 8ioy, ,
(%5 002 =507 44 Y »
(%, 73,1 =2imy, Gv)
[%, @)l = =2ivy,
(58)

[O'{j ’ ka] ‘_‘%im‘&'flz MO mn s
[os5 75 Vel =507 g Vs Vim »
[7’57{:,7’5%] =8i0yy 5
[y, Gr)] == 2iy .

Overbarred indices are antisymmetrized together
as are underlined indices.

We can write{y,, 7’1} =d g and [Y.n '}’1] =-iff %
as shorthand. Then

de; =ex(6a’ d% +687F%,) . (59)
If one defines g, =e;* ey, then 8g;, =0 if

60 (A +dmr) +0B"(Frr +Frxr) =0. (60)

Thus only those 8o’ associated with vanishing
Apx +dp can survive by antisymmetry. We re-
mark that we have typically used 0 v = tr(y %)
for the metric in evaluating the action (p|P).
dyg +d g can vanish.

We can see why gravitation cannot be included
in a pure SO(3, 1) or SL(2,@) theory and develop a
model heaving some of the features of the Dirac
algebra described above. Here we set e, =5,(0,); s°
where o, =(I,¢) with & the Pauli matrices. We
introduce the inner product, o, between X =x"¢,
and Y =y"e, as follows,

Xoy=3(trXtrY-trXV), (61)

XoY=x,9,-X'Y, (62)
and

XoX=x?2-%*=detX. (63)

- The product X oX is invariant by GL(2, @) under

adjoint action X - X’ =GXG~! with G GL(2, C).
This can be seen not just from X e X =detX but
also from the characteristic polynomial of X,
det (A = X) =A% = trX +3[(trX)? - tr(X?)]. Clearly

det(J~X’) =det[G(\ - X)G™1]
=detGG~' det(\/- X)
=det(J-X) . (64)

Of course under Hermitian conjugate action
U'X'U' =UXU with U’ =LU we find X’ =LXL and
det(\I— LXL') =|detL|?>det(x =X). Invariance sets
|detL|?=1. Then LE U(1)® SL(2,€). SL(2, €) gives
rise to Lorentz transformations on the basis

ey. However, we will be interested in the full
GL(2, @) group. The transformations are given as

6s® =[(6% +iak)ox (0,)8]s?,
65, =S,[(0,)2 (6% +iak)6x*], (65)
06" =68 ox™,
6a" =ak ox,
and since e, =5,(0,)§s®,
0 sa \’
den=es|00Tu+ o5 (si)x), |

56" =(56°,60), (66)

dat =(6a° 6a) .

Note 5a° does not affect the e,’s. (5&)x¢€ denotes
the cross product. Now in order to make connec-
tion with our earlier work we set e, =y, 'e; and

set
(0 56 \*
V= > -> .
5‘”{“ 66 (6a)%/, (67)

oe; =e,[(6Y Y)Y +66%4 + Y} ow) Yi]=e,w]. (68)

We want to find e,’s such that 6(e, * e;) =6(n;,) =0.
This implies w,; +w;; =0. Note that wj =w;n* can
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have slightly different symmetry for n* Minkowski.

We see that Y{sw), Yin;,~ Y ¥6wy, Y} is antisym-
metric on the indices ik. Thus (6Y )Y +6% =0
for i =j. Further (6Y})Yin,, =Y}, Yin;,6x" must
be skew-symmetric on the indices ¢k for i+ k. I
it happens that 56°=626x” can be expressed using
65 =\, for some X, then Y{=¢ ¥ and

0 o6 Y
= - 69
bei=ei\o5 (53)x/, (69)

with e; =e™*Ie,. Then

= = ,=2\ uyv
eite; =Ny =e Tepey Iy,
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When A =0, 69=0, and

1

Buv =

-Uu

can be chosen globally. In this case we restrict
L to U(1)®SL(2, €). No gravitation is included in
such a globally flat theory and therefore there
must be more than four currents in a theory with
gravity, unless extended gauge transformations
are allowed (cf. Sec. III). Including two-component

1 spinors, ¢°, with A# 0 we find
-1 05, =5, (65 +iab)ox’al,, 63=x,
Sy :ezx (70) a - b\Yp p Hta> v v (71)
-1 85 =S5, ¢".
- U The curvature is found using §X§ =4[5, 5] =45,
J
3[a, 613, =5,G{iad o 15 +[(6p o +2i6,% 6) +i(@p, - 28, % &p)]* T}dx® adx), (72)
4, 815 =5,[¢%, + iy +ia)¢" + (B, +id,) - 55 ¢*)an” . (13)
The action is taken to be
e =f{—£(ag,ga°ﬁ'5 +6pg* gro +&,, » BPo)e™
AF[B+ Oy —ial) + (B, —i8) - o] [2” + AP +ia®) + (¥ +id) - o]ghePd'x (1)
with .
%UE avay
8o = (Bp1g +26,%8,),
and (75)

KPU =(&£|2 —260X&p) .

Setting A and 6,=0 [x =0 amounts to restricting the group to U(1)x SL(2, €), 6,=0 amounts to restricting

the group to U(1)xXSU(2)], then

a=f {-~Haf @™ +(@py —28,%dp)* (@77 207X aP)] +1 (+18, +a0+&, * 5) (=0, +a0+8,* 5)d} dix .

When functional integrals are constructed care-
fully, the Minkowski metric is replaced by a
Euclidean one. The covering group of SO(4) is
SU(2)xSU(2). The two-dimensional representa-
tion is no longer faithful. Spontaneous breakdown
is possible by including another term, —(|¢[?
~-m??, in the manner described in Sec. II of paper
IL* Remember that ¢ is still a fermion potential.
This model can be related to SL(2|1) in the fashion
described in Sec. III of paper II.!

It is amusing to consider the possibility of con-

(76)

)
structing vector-current bases from other groups
than U(1)xSL(2, €)or U(1) X SL(4, ) which cor-
respond to two- or four-component spinors, For
example one mightbeginfrom a three-component ob-
jectintermediate between the other two objects.
Thenwe startby taking the generating matrices Az
=(I, A ) with A , the usual Gell-Mann A matrices. In-
troduce a set of complex gauge fields, Qff = 64 +iaf,
with the proviso that 83 =1, or zero asfor the two-
component case. The transformations of the basis
frames is given as
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5%, =§,,(€r§ +iaf)6x”(A;; ¢,
st =[(Az)3 (6% - iaf)5xt]s?

_ (77
A=(0;1+++8)=(0;A),
Az=GA,).
The current bases transform as
5(ez) =6(5A35s)
=[085z +ofir§a)on" les, (78)
where
AxAs=dasAs ~if §5As (79)

for Az=(I,A,)and &5 and &5 the symmetric and

antisymmetric structure constants for U(3). For
definiteness take e, =S(I,A ),s, where A =(A,, A, Ay)
withthe SL(2, @) subgroup is defined by taking

these generators with complex coefficients. The
action, after including matter fields 65 =5,%%, can
be written as the Hilbert square of the curvature

af[——

Here g, =ey* e, can have constant determinant,

Ff, = (9é|£+ia£|,,_) +f;~‘5(9§+ia§)(ec+za,,)

A FY) +3 VPP V=g d*x (80)

=complex conjugate (F ‘5,,) , (81)
Pab=—io,0° + (04 +iaf)AG ¥ (82=0). (82)

VI. SUPERGRAVITY FROM THE VIEWPOINT OF MOVING FRAMES

In this section we will see how to obtain the spin-2—-spin-3 supergravity Lagrangian using frames.'"+18
We then extend this theory to include gauge fields and spin-; particles. Consider the following connection

for spinors:

—_ _ — ir\i i Béx" B dxl‘
6[seu Ss/z] =[§B9 ss/z] < K (0")0( Xu ’ “ _—’1[7’“7?] (83)

0 0

The connection is not in any of the simple superalgebras. It is in an inhomogeneous subalgebra of OSp(1]4).
The curvature is readily computed by considering the difference in two displacements. Y‘ is used to

switch indices, 6! =Y} dx",
[5,S,/.) [P]=4[4, 518, 5,.)

=[S, Sys) 0
Since

d(xi6"S,) = (dx 0™ +x5do™S,, +x% 6"dS,,
and

o™ =(T7, = TT)67a 6 =2],67 20" .

(Rﬂugk" 91)(“10j)5 Z[Xmlk +2ngn _lr;z'l(at)ﬁ)(m] ok A g™

0 : (84)

(85)

(86)

In a coordinate base Zf, vanishes. We now introduce a K structure as we did for Einstein’s action but
include an index saturating term for x> which is a two-form

(—%Kvm 6 ng! =iyt et a0l )
K= .

0 0
The action is the Hilbert product (K|P),

@ =f{"Rs +%€“"m ik'}’s'}’t[améf. +Etnn + (= io-j’)éf, Ixiv-g at

Here %= (G/41)€ ¥y, v, 4,7 in the p basis y ¥
spin-2 term becomes

ze"” )‘PX;")’s'}f; [3)\ +PU (—10;)])(;7

=(det Y‘ )'y

(87

x. (88)

, (Idetgl)/2=dety. In a coordinate basis the

(89)

If one required the connection to be in the simple superalgebra OSp (1 |4) additional terms would arise;
four of these can be associated with torsion (as described in Sec. III of paper II).! Or at the least a cos-
mological constant arises from those generators.'® Note that if y, =y the action reduces to a standard
form for the spin-} field, x. This is not true for the equation of motion.

For the case of both spin-% and spin-% fields on a curved manifold the augmented connection can be
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given as
-iTh,(01)Box" xBox* yPb
6[Sas Sa/ar S1/2) =[S Sasas Su/al 0 (90)
0
The curvature as calculated from 3[d, 6] has the following matrix:
3R}, 0% A 0™ (=i })] [Xmlk +Zhm X5+ Iy (- i07)G Xl 0% 2 6™ [9f, —iTH (6} E 16"
P= 0 0 0 . (91)
0 0 0
The K structure (from index saturation) is given by
—5ry 0 07 =5l yylx 60 A0 iyl
K= 0 0 0 . (92)
0 0 0
The action is @ =(K|P) (appropriately symmetrized),
a= f{"Rs +5 € Ve N[00, + By + Thp(—0)87] x4 + P57 +iT My y myhV=-g d*x, (93)

where I'}=T7,¢&'*, and ' =Y}dx*" and g, =Y}n,,;Y}. If the connection is not ina simple superalgebra, then
classically there is nothing to stop one from considering a colored supergravity Weinberg-Salam-type model

having gauge group SUy X U, X SU,, 0.19 20 See also Sec. Il of paper II.* Itis amusing towrite out the action

Q= f[KR -3

+ PR P T +5T v + (CIAL +A; )y 107

F"u 1F’ F’w'—‘F;U/F"v+¢’L[zl#+4r*m7’57’m+BAAA CIAI ’)Yj]lpL

+3€¥ (L vy {lo, + T, (—do?) —i(BAA , +CI A, +3A,)] 68 +23 1 xF)

+2 € MU(XE Y5y {8 + Thy (- i0)) = i(C A, +A,)8; + 20,1 D

=i (BN, +54, ][0V +£(BH AN , + 54" 9] XU I — m?)?

+ 6 PR +TRHYE) +BRE dxX® +X2oxM) V=g dix

A, forms a representation for SU,, A, forms a representation for SU,,.

dent,
=3 T+v)x, xF=3-w)x, etc.

VIH. SUMMARY

The purpose of this paper has been to provide
more detail on the mathematical and theoretical
boundaries of the theory of moving frames and to
suggest possible avenues of future development.
Motivated by Faddeev’s treatment of gauge degen-
eracies,® we have shown the relationship between
the theory of frames''® and the theory of fiber
bundles,*:® since it is in a fiber bundle that the
gauge degeneracies are naturally removed. Some
of the details of this relationship are given in de-
tail for the fiber group SO(3) in Sec. III. To pro-

(94)

The fields ¢ are color indepen-

(95)

r

vide the setting for this discussion (as well as that
for a number of the detailed calculations in papers
I and II) we have tabulated a number of the natural
structures on a four-dimensional manifold such
as p forms, duality, exterior differentiation, etc.
By formulating the usual physical assumptions
in a more general framework, we have shown how
they can be extended to produce a finer control
over the local structure. Numerous detailed ex-
amples were given: First, a space whose local
“rotations” could be elements of a manifold which
was not necessarily a group (generalizing the
Lorentz structure) was considered. Second, a
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space was given whose local coordinates could be
flatter than general relativity’s'®!! (jet bundles
generalize the usual tangency assumptions of rel-
ativity).!? Third, a space with a vertical struc-
ture which was more general than a Lie algebra
yet “almost” one (up to a parameter) was con-
sidered (by violating the Jacobi relation, nearly
Lie structures can be created which, if the viola-
tion is soft enough, may produce useful general-
izations of Lie algebras).’®-!® Fourth, theories
for graded!®** Lie algebras which have some of
the features described in paper II without the full
complexities of general relativity, are described
(these models may provide useful insight into the
more complicated structures). Fifth, an easy

derivation of the supergravity action was presented
(showing its relation to the gauging of a local su-
peralgebra'”+'®) and from that a generalization was
constructed.®:2°
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