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Fermions and bosons in a unified framework. II. Interacting models
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In this paper we construct some fully interacting field theories. The first model has a colored, curved

Weinberg-Salam-type action. It is formed by taking the Hilbert product of the (generalized) curvature of a
(given) superalgebra with an auxiliary (generalized) curvature. Note that pieces of simple superalgebras are

gauged; the efFective superalgebra of gauge fields is not simple. The auxiliary curvature was needed to obtain

the linear pieces of the action, and it thusappearsto be somewhat ad hoc. In contrast we show how to
construct an action using only the curvature of a local superalgebra without the auxiliary curvature (it is

therefore quadratic). Nonetheless, linear terms arise as crossterms between pieces of the curvature. In fact,
since we have chosen to use a special-unitary flavor algebra and four-component spinors, we discover we have

already specified a unique simple supergroup whose other Bose gauge fields are in U(2, 2), the Lie algebra

formed by all the Dirac matrices. These fields gauge the spin structure of the fermions. Color causes certain
complications discussed in the paper. The tensor piece of the U(2,2) curvature consists of the usual curvature

plus a term identifiable as the old auxiliary tensor. Thus both linear and quadratic terms for the space-time

curvature arise when the full curvature is squared. The field associated with the identity generator is

electromagnetism; with the vector, torsion; with the tensor, curvature and auxiliary terms. We call the
fields associated with the axial generators axial torsion and axial electromagnetism. When the fields which

couple to Dirac spinors are assumed proportional to their scalar counterparts, an experimental value for a
conserved axial electromagnetic coupling is 10 'e. We present a qualitative argument for the
renormalizability of this action, since it is almost that of a standard Yang-Mills gauge theory, based on
preservation of recoordinatization invariance by the quantization procedure.

I. INTRODUCTION

Having described the foundations of the theory of
moving frames in the first paper, ~ we proceed to
apply these ideas to the construction of physically
plausible models. In Sec. II we show how to con-
struct a model which is essentially the Weinberg-
Salam model2 generalized to include color and cur-
vature. We show that this model can be viewed as
gauging pieces of a local superalgebra. ' lt can
be derived directly from a nonsimple superalge-
bra; however, we do not prove this (cf. Sec. VI
of paper III). For a discussion of superalgebras
see Sec. I of paper I. '3

There are two ways of unifying color in these
models, since there are two Bose subsectors to
the superalgebra. It can be joined with the spin
covariant derivative or with the flavor covariant
derivative. 4' In view of the early relationship be-
tween spin and color, 4 we give the details for that
combination. The details af the other approach
are easily worked out.

In order to achieve an action with the standard
linear kinetic terms for gravitation and fermions
but with quadratic terms for the gpuge and scalar
fields, we are obliged to introduce a two-form
which lacks the immediate geometric interpretation
that the curvature has. ' In view of the recent work
of 't Hooft, Deser, and others' in which terms
quadratic in the curvature were shown necessary
at the one-loop level and out of a desire to have a

single prescription (with geometric interpretation)
for the action, we suggest in Sec. III that an action
which is the Hilbert square of the curvature'8'~ be
considered. We discover that such an action has
terms like those found in the renormalizability
studies. '

Of course the Fermi contribution is quadratic
also. Several years ago Feynman, Gell-Mann, and

others had considered similar quadratic actions.
They point out that then one obtains Gaussian
functionals in the Fermi sector." But these Fermi
fields cannot be the usual Dirac fields. They are
related to the Dirac fields as the electromagnetic
potential is related to the field tensor. We there-
fore call them Fermi potentials. It was through
use of the equations for Fermi potentials that
Feynman and Gell-Mann discovered V -P.~0

We briefly discuss the short-distance (ultravio-
let) behavior of this tluadratic action. And we sug-
gest that, because of the requirement that recoor-
dinatization invariance be preserved in the quan-
tum theory, the short-distance behavior of the the-
ory should be no worse than that of the quadratic
gauge theory which it is near. That theory is re-
normalizable. Thus it may be hoped that this the-
ory is. ~

In closing the superalgebra structure3 we find not
only the generators of the Poincare (or de Sitter)
group but actually the entire set of generators for
the conformal covering group SU(2, 2) together with
a U(1) (and some internal symmetries). Setting U(1)
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xSU(2, 2) = V(2, 2) we can write the 16 generators
as

I, P) ~(I+y5)y), Mq( v)q-—,

K&
—~(I —y5)yi I D =iy~

or as

y~, o'~), y5y„zy5 (2)

By assuming that the gauge fields associated with
the axial-vector and axial-scalar generators (e.g. )
are proportional to the vector and to the scalar
generators (respectively), we are led to a situation
considered by Wolfenstein and, Herczeg. They
indicate that (experimentally) the constant of pro-
portionality for the ratio of axial-scalar to scalar
(axial-electromagnetism to electromagnetism)
couplings could be as large as 10 3 (this is for the
fields coupling to Dirac spinors) when the currents
are conserved. When spinors are massive the
axial-current divergence is proportional to (naive-
ly} mgiy5$.

We conclude Sec. III with the classical equations
of motion for this quadratic action. And we write
out the classical discrete invariances C, P, T, and

12

II. COLORED CURVED INTERACTING FERMI-BOSE

STRUCTURES

In this section we will construct a moving frame
capable of describing fermions and Higgs-type
bosons with color, curvature, and flavor interac-
tions. 2 The kinetic terms for each piece are the
usual. The interactions have minimal coupling.

Since we expect to make contact with a unified
superalgebraic scheme having both fermions and
bosons in the algebra, we wi;ll use a frame whose
connection can be related to pieces of an underly-
ing superalgebra connection. Since fermions in a
superalgebra such as SL(m ~n) (Ref. 3) (see Sec.
I for a description), or one of its subalgebras,
couple to two Lie algebras SL(m} and SL(n), we
must decide on an assignment of gravitation, color,
and flavor interactions. Obviously one either
lumps gravitation (spin covariant derivatives) and
color together or flavor and color together. We
have chosen the first approach for a number of
reasons. First, color was initially related to
parastatistics and spin (via spin and statistics).
Thus it belongs with the spin covariant derivative.
Second, color is massless. Lumping all the mass-
less fields into one of the Bose subsectors is eco-
nomical, since only one mass scale (weak interac-
tions) needs to be introduced. In other schemes,
color is massless, diatons (gauge fields with both
color and flavor) are super massive (or nonexist-
ent) and weak fields are massive. A more com-
plicated symmetry-breaking scheme is required

to arrange the color-flavor breakups. "'3 Of
course, the construction of the standard color-
flavor scheme instead of the color-spin scheme
which we will describe can be made by simple
modifications on our procedure.

The spinor basis transformation law is ~s
=is A(-5) T. he coefficients of the connection Q(5)
may be required to form an algebra which is typi-
cally either Lie or graded Lie (see Sec. IV of pa-
per III). We will start with a connection having
coefficients in a graded Lie algebra and, by making
certain restrictions, obtain an action which is es-
sentially the colored, curved, and flavored Wein-
berg-Salam model.

When we first considered forming the vector
basis 8, from spinor bases, e, =s y,zs, we ex-
amined only the simplest case. Two generaliza-
tions are possible. Additional vertical or flavor
bases 8, may be included such that e& ——s,A&~s'.
This can be called stretching the basis. Or mul-
tiplets of bases s, can be introduced such that
e& ——8,y, zs~'. This can be called thickening the
bases. The bases s, carry an extra label, t. We
will interpret these labels as those of color. We
remark that they are directly related to the spin
labels n and that they correspond to using a larger
Dirac algebra. In this view the vector bases are
constructed from a triplet of four component com-
plex spinor bases. To include leptons one might
consider a quadruplet of flavored spinors.

Since the fact that, there are four of these corn-
plex spinor bases is related to the four dimension-
ality of space-time, in this view of color the an-
swer to the question why three colors is as mys-
terious as why four dimensions? The only hint of
an answer currently available is that this triplet of
eight objects (s ' and 8,) may somehow be related
to a triplet of octonions. '4 But that relationship is
highly speculative (if intriguing), and we will not
discuss it. Color and dimensionality will be taken
to have their usual values.

The bases s, will be required to be an SU(3)
triplet of Dirac spinors. The Dirac algebra as a
Lie algebra is U(2, 2). The piece of the connec-
tion which represents the Lorentz group action is
the spin (3, 1) subgroup of U(2, 2). Spin (3, 1) is
the hvofold cover of SO(3, 1) just as SU(2, 2) covers
SO(4, 2). The Euclidean Dirac algebra is U(4).
We can consider (in Euclidean space) the unified
group U(12). An arbitrary U(12) matrix M can be
decomposed as follows:

M=A. I SI+g I" I++ IA +g) T SA

(3)

where the left matrices are 4x 4 and the right are
3x3. I'~ is a basis for SU(4) and A„ is a basis for
SU(3). The subalgebra we want is obtained by
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taking those matrices for which D vanishes and
such that B~I'& —B—»»($)[y», y&] =B»»v»& .The spin
(4) matrices y, satisfy'„y&)=26»&I. The spin
(3, 1) matrices satisfy (y„y&] =2r»»&I.

We will want masses to be given to the weak gauge
fields. A technique for producing general poten-
tials for scalar fields from curvature calculations
,
is not known. However, quartic interactions
cgn be derived. 4 But first we suggest another ap-
proach to giving boson masses. The scalars are
coupled to a complex, norm-preserving group
[SU(n)]. Indeed SU(n) can be defined as the group
of transformations of a complex n-vector Q' which
preserves its length, tl@ tl2 =m'. ln, ,'previously con-
sidered actions P' was allowed to have any norm.
Now let Q' have afixed norm. P' can either be viewed
as proportional to a unit vector (Q' = m»»') having 2n
—1 real independent components. Or we can in-
clude a specific constraint term, e.g. , V()[ P[[)
=A.(j[ Q)[' -m'), in the action and view P' as having
Rg real independent components. In either case
P' can be used to break the symmetry and give
rise to effective boson masses. Thus the same
end as the usual Higgs potential achieves maybe
available in this fashion. " We have not ex-
amined all the consequences of using such a con-
straint in a quantum field theory. '4 But it appears
lto lead to a renormalizable theory at least in
Abelian theories.

The technique for including potential terms can be
quickly summarized. Introduce a connection 0 on
a (4, 3) (Bose, Fermi) manifold with coordinates
(x 8')

f+(dx"~pe»)]n(dx" +$8»)= (g—»l"")8 de 8 de 8 de d x,

[g(ge» ge»)] (gea~ge») (g»Kg4»}g»d81g2dg2g3d83d»x

[+(dx"~dx")]w(dx'Adx") = (q"'n"—")8'de'8'de'8'de'd x

*(d»fe') =—0 ~ (8)

The metric g»» is taken to be diagonal (+1, +1,
-X}. To produce the Higgs potential discussion for
the motivation behind choosing such a duality oper-
ation is found in paper I' and Ref. 23. Remember
that J de' =0 and J 8»de» =6»». This dual is non-
vanishing when integrated,

I

z++((c ~c)+) ay*+»((I»f~ c))

I»y+ »((MM~ C-}') ((C AC)*)

We introduce (Kg= I7 for typo-graphical reasons.
Thus

g = —— tr P+nP

——'E +D„D +m —
2 d x.

E=F"(»&„)=(dB"+-.'~,",B'~B')(fA„),
D@ =d4+iBn4.

The dual must be extended to include the Grass-
mann differentials. Since we will compute P*n P,
we give the following products (we will use bars
on indices to indicate those which are to be anti-
symmetrized, thus A,„=-A», -A», )

with

»B"(~„)+ fM'(I)

C iM

B"=B"„(x)dx",

e = y(x)[-;(»fe'+ ge')],
c = y(x)[-', (»fe' —Qe')],
M' =m'$8~,

Ilf'=m~»fe',

M =(m'+ m'}»fe'-=m»fe',

m" = [tr(I)]m'.

(4)
(10)

Grassmann integrals have been evaluated.
tr(A„AB) =5„~ is our normalization.

We will consider a connection with components
in a subsupergroup of GL(121', + 1) (Hefs. 1 and 3}
which we will denote by D(121f», + 1}. f=f~ is the
dimension of the left-handed flavor group which
we will take to be 2. Define a matrix 1 with com-
ponents yo(8)I3 in the upper left quadrant and -I& f
in the lower right quadrant (where the subscripts
on the I matrices give their dimension). Then
consider only those matrices in GL(12 If+ 1) satis-
fying M=-I"M~T'=-M. A dagger indicates Hermit-
ian conjugation. Call these skew-Dirac. They
can be written as follows:

Define $8» =8'de' if de»~de» =de»~de» or $8» =de»
if de'&de~ =-de ~de'. The curvature P =dQ+g
AQ is easily calculated d»fe term. s are omitted
since they will be projected out,

12 f 1

I. R 1.2

with

F+4 n 4 DC+iM n 4

D4-iMn C 4n4
(6)

I iBQ f,
It Qt fA 1

where (yoI)Dt(yoSI) =D,
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iB +
( ( iB-~

~

L =L~yoI,

R =R'~,CI.

(12)

L and R are fermionic; the others are bosonic.
The L and R fermions will have only left and right
components, respectively. The other components
will be projected out in the action.

Note that for forms dx" and $8' can be made to
satisfy a Grassmann algebra. " Introduce the dif-
ferentials of four Bose and three real Fermi coor-
dinates: dx, dx, dx, dx, de, dg', de . I,et the
connection have the following special form:

(iD.dx' Lde' Rde'
0 =I I48' iB„dx-~ (I(($8 (18)

/de' ytd e~ iA„-dx" f

A supertrace' condition holds, trD„- trB„—trA„.
=0. The supertrace, Tr, is the trace of the upper
Bose sector minus the trace of the lower Bose
sector. In components,

~pf~gB SIr —C GAPA~~g ~

L I.~~',

R R

and the adjoints. All coefficients are functions of
x only. By temporarily suppressing the differ-
entials (write I. for Lge, e.g.) we can express
the graded curvature P =dO+ 0+0 as follows:

idD + i'DnD
P = dL +iLnD +iBnL + @nR

~ ~

dR +iRnD + iAnR + QnL

dl+tpnI. +, iI +8 +Ra( dR + 8)+8 + dbul +I*0)
idB+i B*B dQ+iBn. g+Ln R+ Qni4

dQ+ipnB+RnL+iAn (T( id'

d(fe terms have been dropped since their dual van-
ishes.

As in earlier sections we will introduce another
two-form K whose Hilbert product with P will
yield the action. Despite the fact that we have not
introduced the most general possible 0 on the
seven-dimensional manifold, we could almost re-
duce the terms in the action to those indicated
through judicious use of the arbitrariness of K.
That is, take K to have appropriate projection op-
erators in its various sectors. E.g. , left and
right projectors for the spinors. Even so, the
restriction of the connectionD„ to include only a
spin (3, 1) piece from the U(2, 2) group is not e(luiv-
alent to the use of a projection operator; although
it is a closed subalgebra, it is not simple (cf. Sec.
VI of paper III). In the next section we will con-
sider the consequences of using a less restricted
connection. The components of P are given as

The terms P'„P „and P, are adjoints of Pa
P ', and P'. The structure constants &&1. and 6gc
arise, respectively, from the commutators
[&r,&~] and [A»Ac]. The components of K are
given by

K ((, ——[ —iY„Y~o~)((1„

+i(C „(„+,'ie»~C „C„)&-g&~„]d»"nd»",
Kn t

(YJy aLA~c)dx"ndef p (Ln t)(((82n((f83

K '=(Y'„ygP'')dx" nde'+(R ')de'nge', (lv)

K; =[ 2iA„(„Z'(+i(B„'(„+~ escB„B„')A„',]dx" dx",

K =(p (
-i2A„Q'-iB"A„',p')dx nge'+(p')$8'nge',

K' =(iA, („)dx"ndx" .

The terms K '„K«, and K, are adjoints of KN ',
K ', and K'. Define

P~=[ ~J.A~I'
+i(C „(„+zip&&C„C „)I((A~ ]dx"ndx

w~ = [L,(„+(ir„',Hp,' ~2 A„zp„')L',"-
+iB"A' I.I']dx" nge' 0 [R"p,]de'nde',

P '=[R („'+(ir„'qv~gI,' —ieA, PqI,')R "] (16)

m Age'+ [L"y']de'nge',

E~„=8

0 „=a„C„+i&&C„C„,
A BBBc

v
R~qg —Y qY)R~~~v

= r,'„,+ r ',", + r,'„(r,", r,"g. -

(18)

P'(, =[2aA„(„I(,+ s(B„)„+21EecB+(,)Jig] dx ndx

+(L,p")de'nde',
P ' = (iA „(„)dx"ndx" .

Remember to include the potential (or constraint)
terms for P' in the action. We will avoid the com-
plexities of dynamical symmetry breaking by re-
scaling E. Recall the definition of the operation *
(see Sec. II of paper I). We write the action as
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6 = (-1/2) tr(I7~ AP) where,

(iG + iG)~
Q8L +L)~T|(8R +R )*)

(8L+L)~ (8R+R)*
-(ikF + iH) (&0 + 4')'
[(D~'+ ~'I*

(19)

[we use |zlT—=g for typographical reasons ] and

(R+IG SL+RR SR4LAI
P= SX+PR i RF+iH DQ+LR

GR+ L, g '+RI. gP

The gauge-covariant derivatives have been sym-
bolized asL, SR, and D. C is the previously
described two-form whose product with R gives
Einstein's action. Hescale the Bose fields by in-
troducing multipliers x, k, k', and k into E:

~ ~

N

F„„—F—" ——G„„G„——H„"„H"„"+xRs ((t)(„—iQB"„A„—aped„R)(g "+zB""A„$+zR4"RQ)

2 2 2 — g&~ l. g m ~ J'+&(ill II
—zzz') +L I yz !z—

I +(Rl'*ysy )+i(G zyzAz) i('—Azy—z)+i(BzyzA~) L

+R(y'—I, +(,'I.'"yy )+-i(G, y'R) —i( Ry') R+(LRR+RAL)iv RR'y-. (20)

Obviously, rescalings permit one to absorb numer-
ical coefficients and obtain a standard form for the
coefficients of the various pieces.

We have seen that a colored, curved Weinberg-
,Salam-type action2 can be obtained by gauging
pieces of an underlying supergroup. In the next
section we will formulate a gauge theory for par-
ticular supergroups which have connection compo-
nents in the entire superalgebra. We will try to
motivate these more complicated connections by
considering the Dirac algebra of the spinors. We
will see that the action one obtains by gauging the
Dirac algebra (with spinors) can be reinterpreted
as a gauging of a certain supergroup. This identi-
fication allows an extension to include flavor in
the manner discussed in this section.

(22)

(23)

«, =ey~, ——~&~„,~+" ~ (24)

Under a general displacement the matrices, x,
could vary in a more general fashion so that

I

of the effect of replacing vectors

(xo&
x =x"e„=

(x] '

with Dirac matrices,

f x' x(z&x=x"y„=l - -
0 I

~

&- x (z -x i
'

Under displacements a point changes by

5P =5x"e„=(5x"Y„')s, .
The basis, e, (or s„=Y„'e,), transforms also,

III. DIRAC MANIFOLDS AND QUADRATIC ACTIONS 5P = (5x"Y„)yz = 8zyz, (25)

In this section we will speculate on a different
approach to manifolds with spinor structure. The
motive for doing this is twofold. First, we needed
to introduce the form C whose Hilbert product with
R, the Riemann curvature form, yielded the usual
Einstein action f v g(zRsd4x-, but this form C was
not derived from a curvature. By examining the
Clifford or Dirac algebra structure we will dis-
cover that C is part of the curvature. Indeed the
tensor sector of the Clifford curvature is R+C.
This suggests the Hilbert square of the Clifford or
Dirac curvature would contain the Einstein curva-
ture. Then the action for space-time and for in-
ternal symmetry would arise from a single princi-
ple, ~3 each being the Hilbert square of the curva-
ture, (PIP) and (FIF), with P the extended space-
time curvature and E the internal symmetry curv-
ature. A further hope is that this parallelism will
allow us to infer renormalizability.

To come to a clearer understanding of the idea
we are discussing, let us return to an examination

where I runs over all 16 matrices instead of just

5P =(5x"Y„')y, =8'y, . (25)

Still, there are only 4 independent displacements,
not 16. A displacement of the bases y~ is given as
follows:

yI —M I V~ —~I (27)

A special class of connections ~~ are those which
are induced from the vectors on which the L matrices

y, act (these are called spinors). That is, we can
represent yz as s (yz)z(s with (yz)s constant coef-
ficients, where (y&, y&$=2zl&&I, etc. Any Lorentz-
transformed y&'s would do just as well but the ef-
fects of such a transformation can be absorbed by
spinor-I orentz transforming the basis s . We
have suppressed the tensor product symbol in
E() =s Sss. Z() has one in the ap th place, zeros
elsewhere at a point, and is the position (and path)
dependent basis for yz ——(yz)()Z in general. Now
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we can find the co I from a law of transformation
for the basis s . That is, taking

5S~ =Sufi, yII5& (28)

we can find a relationship between v r and A
=Q„6&". Assume yI =yoyIyo=yI is a self-Dirac
adjoint basis. The relationship is found as follows:

rr =P,r„rr,r, r5y;, (ir5}}

with

(37)

example. Then P' =dr@'+ or'~ co~ and T' =d Y'
+ 40 ~ A Y~. Since ~' has dimensions of mass and Y' is
scalezero, P'=mT'if v'=m Y'. Here Y'= Y„'dx",

The basis

5yI =5S.'yI'S + S'yI ~ 5S

=ReA"s (y«, yrj s+iImA"s [y«, yr] s. (29)

Using jy«, y }=d«y and [y,y ]=q«ryr, we discover

&AC = &yL (30)

with

2 T
o~&= fr»-rr]»d r5=iroyrrrra8

can be Dirac self-adjoint,

yI =yoyIyo =yr

For example,

(38)

&r = (ReA«)der + i(1m')ez'r . (31)

P g =-&cLg~ =-&6Lg d ——E~gQ AQI . I ~ . L L Z I
2 (35)

or
P' =dA' — z, '„,A"~n' .

And &r =d 8' -A«rr A r 8".
When A= ~I+ ~'y, + co'~o', &, we can identify ~'

with the usual vierbein field by taking 0 =Y y„ for

(36)

We can now find the torsion and the curvature of
this manifold. T =d8 +&a «~8 is the torsion and
P r =d&u r + ~ «~+"r is the curvature. Evaluating 8
on a four-dimensional slice gives 8 = Y„dx" and
u& r ——~„rdx" = I'r„dx". Define 7br ——tr(yryr); global
constancy requires that ~I~ =-~~I. But

tozr (ReA——)d«r gr, r + i'(lmÃ~«r'gr, r ~ (32)

Up to possible cancellations in d&igL& +d~~gLI due
to indefiniteness in gL~ the symmetry condition
picks out su r

——i(ImÃ)q«r. Writing (-A } for ImfP
we can set 5s =ss(-iA"„r«, )6x" and u& r = APE«r. —
The &o r are coefficients for SO(4, 2} or SU(2, 2).
But A can include all of U(2, 2}. We consider the
U(2, 2) theory. A fiber bundle interpretation of
these ideas is in Sec. IV of paper I. ' When func-
tionals are defined carefully, the metric '0'~, be-
comes Euclidean 5'r. In so doing the U(2, 2) struc-
ture is replaced by a U(4) structure.

Now we can find the curvature and torsion in
terms of 0,
P g ——d g + N + g =-&Q,gd~I I I N ~ I I

+ (-i)'(&rr«&r«2}A eA ~ (33)

But

gNGgg gfLEG~g
I N j I L (34)

by the Jacobi identity. Thus define P z by P E
=-+ii«P . This can be inverted for P in terms of
P «since P gr, s ierrrP «with g»——= errre», t—he Car-I E I ~ E I

tan-Killing metric, when P is restricted to
SU(2, 2):

i Y Y.cr (0Y'yr=I 0»d r5=i&-Y O' -Y (I 0

works fine. Here r), &
——diag(l, -1,-1,-1).

The curvature P' can also be found from ~[d, 6]s
=iP 6r sz as well as «[d, 5]yr, =iezz, P y—«. In either
case P"=dA" iver, s-Qi I A . Indeed when

A = &usI+ &u'y& + u&'r(r&r + v+ y5yz + v*(iy5), (41)

we find

P' =d~'

P =du + e „~v + 2+~a, +*
(42)

P "=d +o) „~(u "-8(o +co" +Sea™h~+",
P* =dc@™+e ~nw*"+ 2m*~+

P*=d~*-2q ++'A&'.fj

Note the term 2~*~~™in P . To identify m Y
with ~ we can set 8=Y y +Y* y&y . Now dF
+(J~nY~+2co~aY* =T and dY~' +re ~&F*"+2'*
~Yts Tg Pl

Augmentation yields

(iP,r,'. d+'- iA"y,'.e i
l[d 6][s. s]=[@,sll

(43)

when ds =s 4 . We intend to use tr fP*~P for
the action for A . Thus let us examine the gauge
transformation properties of the connections. We
will consider three kinds of transformations. The
first is recoordinatizations; thus 8 yr ——Y„yrdx"
=Z„yrdy" when Yr =Sr&y "i&x". Expression of the
relevant quantities in terms of the forms 8 will be
recoordinatization invariant. The second is local
I orentz transformations. Since fy„yr}=2q, rI ad-
mits a Lorentz group action. Set y, =A,'y& and
note &'.q„lt', =ri., when &'.(x) =(exp[~ "(x)~ 1}.' with

(x) six arbitrary and antisymmetric functions
(a& "=-&o""). Z „ is the vector matrix representa-
tive of the Lorentz generators with components
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(Z )pa[= p(p)~p)~ p-)~p)„p). Since all 16 Dirac ma-
trices can be found from products of y&, the other
local transformations are easily found, e.g. ,

(44)

By spinor Lorentz transformations on the s 's and
s~'s, the effect of the A,"s can be absorbed into the
s 's. *hus constant coefficients y& can be used in

e g=SafgkPS
The third kind of transformation is the familiar

gauge transformation. When S =exp[iY~(x}yz], set
g'=S ~g and [dg' -iQ'g']=S ~[d[I[ —iQ$]. Then Q'

=iS ~dS+S AS. Now P=dA —iA+A; so P' is seen
to be

dA'=-6 dSS dS -S dS AS

+S dgS -S AdS

plus

-~A'~ A' =Z-'yss ~ds+S-~dSS-~AS

—jS ~A+AS+S ~AdS

which cancel but for

ometrical interpretation or at least lacking geomet-
rical immediacy. Two, we saw that gravity and

gauge fields coupled to fermions led to a problem
with anomalies. If fermion potentials can be sen-
sibly quantized, their quadratic propagators lead
to convergent anomaly diagrams. We will not con-
sider the consequences for partial conservation of
axial-vector currents (PCAC) here. Remember
too that in solving Dirac's equations one frequently
uses the second-order formula*tion.

We have referred to these objects we are about
to introduce as fermion potentials. Obviously we
are thinking of some parallelism with gauge theo-
ries in using this terminology. To show how ex-
tensive such a parallelism is, we will begin by
writing an action for electromagnetism entirely in
terms of the field tensor. This will lead to a first-
order formalism akin to that for Dirac spinors.
Maxwell's equations include

(Z, a, -„;Bl (-,',':f„l
(pp'. B' Ipap f & fp. 1

or equivalently,

S '(dQ —iQ~Q)S =P'. (46)
(M~s" B„)(E„)=0, (49)

Note that (P~}'=(P')* since S ~ and S are not affec-
ted by ~. Thus the action is indeed invariant since
tr jP*'+ P'=tr JP*laP. Replacing P~ by P* only
changes the sign of both integrals. They are still
equal.

The action for 4 insofar as it is coupled to Q

must occur in the gauge-covariant derivative com-
bir stion

d4 —iQ"yr'p+P (04')= (47)

We will now discuss our choice for the fermion
action.

Before writing the action for this theory, let us
consider a somewhat unusual possibility, that the
fermions introduced here are actually fermion po-
tentials, not the usual fermions. A somewhat dif-
ferent application of this idea is already well known
from the papers of Feynman and Gell-Mann and

Brown. ' The introduction of fermion potentials
Q such that P=(P+m)Q and thus (P2 —mP}p =0
was what led them to V -A theory. Feynman states
that he has always had a prediliction for consider-
ing integrals which are quadratic rather than linear
in the fields gauge-covariant derivatives. There
are two other reasons for considering fermion po--

tentials. One, there is a beautiful simplicity in
the prescription that the action be the Hilbert
square of the (augmented) curvature. Nonetheless,
lack of beauty cannot stop one from considering a
quadratic action for gauge terms and a linear term
for the matter fields. However, in that case one
has to introduce a secondary structure lacking ge-

or

a:=[a*,a][ p a+aa, a(
"I (50}

(51)

Here the "gamma" matrices, M„"~, 8, I, must be
doubled along the diagonal.

Now introducing potentials as well as the fields
and varying separately in the Lagrangian,

Z = B~„a A. '-y(a"~'-y ")(BP„-f„„). (52)

There are three equations of motion X, 4„, and

faaaa '

(B"4." f"")(B,4„-f„,}=-O,

B"(B„4„)= a [~(B„4„-f„„)],
and

x(B„4„-f„„)=0,

(53)

where 4, 8 m(1, . . . , 6} and g, b e(1,2, 3) and p
~ (0, 1,2, 3).

We can therefore employ the Lagrangian ~
=E M„~B"Fz. M„s plays the role of (y„), in the
Dirac Lagrangian. Indeed, setting (g)~ =M„~B"

and F=transpose (E), Z =FPF. Of course if
(S')„=-p,', and 4, = ,'p",f„+-if-„, we can write the
relations compactly as (iS B+Iap)C =0; then 2
=4(iS a+Iap)C. Introducing C*,=-p", pf~*, +if,*,

where f„*„=—,a~f~ allows one to find all four Max-
well relations from
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which are equivalent to 8"(««~A„) =0 and f„„=8aA„.
This Lagrangian leads to the same solution set as
the Lagrangians above. Now exploiting the analo- .

gy Wmy«««g~ f„„and @ —A „we consider the
following action for both $ and 4'.

8 =VP«PP —a[4P'4 ——', g (g'+ P')g] . (54)

Here P, =-i8«+ A'«yl in the vierbein basis e, =Y",e„.
As above the solution set can be described by P,
(&my«$ -PP ) =0 and P«P«4' =P«Wmy«$ =V mI'g =0.
If instead of 2 we use Zv —g we find

--' „„""--,'T„„T""— P™P""

where

xTgmZ yves «f ~ f ~v««4, vV & 4 VP

+ ,'O'P«P—P]v-gd x, (60}

f„„=A„,„,

fully defined the Minkowski structure is replaced
by a Euclidean structure; thus U(2, 2) becomes
U(4} and no ghost fields persist]:

1 1
g (~gg) = ~ P'(WZP«+) =0. (55) ~VI =g ~ + ~~~g +~ ~ ~ I

The kinetic term agrees with that of Sec. IV of paper
I in the gauge 8"(I—gy„) =0.

When

-iQ'y, =-i[eA „I+mY„'y, + X(o«„'o„

(6l)

fvv =As(v —2'«)«««dv ~a ~

f

P, = i 8, +A, (I) + m(y, ) + ««««(&««, )
+m*Y~&«y, y«+ e*A +(iy5)]dx",

the classical equation of motion becomes (for
v —g constant),

(56)

when

+"«&*'(yW}+A*«(iy5) =i8«+fl« (62)

PP=[ig+eg +4mi+( iX«d"-y +Ace y&y }

+m*(Y+& Y"y —4iy5Y*„~Y"«o~«)

+e*g*(-iy,)]g =0,
u =--'(u™ and cP -=-'u)~ 'm

(57)

(63)
Ytu)"« =m6««, g„„=Y„««}„Y«, O' =Y„'dx"

& r
&» = [r&,r—~], r5 =troy«r2rs8

The action is written in terms of potentials. The
usual fermion field obeys

It is amusing to note that if one tries to write a
linear action for the fermions, Hermiticity puts
severe requirements on the terms,

with

(64)

—,'(itt~ +g'g) = iP
2

+eg + 4m + &&8"ysy „

-m*4zY,"F*, 0„' y. (58)

P«(P«4 -&my«g)=0.

Of course a mix between quadratic action for 0
and linear for Q as described above is possible.
However, that lacks some of the possible interac-
tions:

(P. P4
—,[6,d][s„s]=[s~,s] ( )-=[s, , s](«p). (59)

The two Lagrangians (quadratic and linear) will

give the same equations of motion if m* and 8* van-

ish and if ~ =~co~ vanishes or if A. vanishes, but

then the matrices I and y, do not close. We note
that I closes and y, and o', f close so a subalgebra
~, y&, &&f closes. The condition co =0 might be
viewed as a gauge constraint. The first-order
formalism is more restrictive; possible too re-
strictive in that it does not even permit the full
tensor interaction. We will write out the action
for the full Dirac manifold and then examine the
restriction to the (I, y, , cr«&) sector.

Let

P'y, =ijf+g + 4mI+iCo "y„+&«f'"«y5y

+ Y",~*„'y, + 4zy, Y",~~«o,'+g*(iy, ) . (65)

by

+ e*A *„(iy,)]d& (66)

0'y, =(eA„I+mY„'y, + z~ „o )dx",

we discover a much simpler action. Define

f,.=A„,„

(67)

If instead of gauging the entire Clifford algebra,
we gauge the closed subalgebra generated by I, y,
and r „, which amounts to replacing

0 yz ——[eA„I+mY„'y«+Au& „o +«d„"(y5y )

The action we will consider is ft =(6'[ (P). The met-
ric for the matrices will be ~ =—,'k tr, where k is
constant and tr is the trace. The result is as fol-
lows [note that when functional integrals, are care-

T~v =Yv) p+&paYv ~

mn en On
gp =C0y) ~ + X4)~gQP ~

Then

(68)
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m2 2

(g id }=+pe'} Jt ', f„-„P"+, T„„q T,",g"'g""+,R„j4„g"'g""r}

m2 2

(R„"„")(Y~Y~)g"'g""7}~q~+ 2 ( Y„"Y„"YY„)g"'g""g~g~—,4P—'P)4' v gd-x, (69)

with

P, =&8, +eA. , +4my, +X~,"o'~. (70)

A factor of e has been removed from + and placed
at the front of the integral. Take ke =1. We can
rewrite the action as follows:

m4
+ 96 y RPx~l&&

16~2 P Px

—2-X™Rq -~%P'P)4 -gg x. ( Vl)

where

=b(Cygne C~gy Cygne) g]dx

= l~l }g~(+.)dx (72)

C Ua =C tgnia =(Y.
i iYgY& &ca

in that case

(73)

(V4)

The term J u&„"i"„Wgd4x can now be integrated by
parts to give surface terms. This allows us to re-
place

«2~m' 4 t t'2X2m2
BWgd'x by —

i l ~ Gg~gd'x

(75)

with

To recover the Einstein limit of the theory we must
look only at connections having zero torsion. We
have already obtained the formula for

(78}

ga 5 ~o 0fg~p ~

They are given as follows:

(80)

to be &10"cm'.
Since the equations of motion are R, +(A ——,'R )

xg»-xT», T» includes R~„'R"",~g contribu-
tions. The pieces of the action consisting of eR&
and R,","R'„'„have been suggested in other papers. 7'

The quadratic Riemann invariant 8,","R~'„has oc-
curred when considering the quantum version of
the theory. ~ By using the Christoffel formula for
~'~~ in the action, fourth-order equations for g„„
are found. For this reason we will examine sep-
arate variations of m Y'„and co',' (the so-called
first-order formulation). We remark that m is re-
lated to an inverse length coming from the de Sitter
group structure. The Poincare group is a contrac-
tion of the de Sitter group. This natural length

ay be important for jnfrared problems when the
theory is quantized.

Vfe will write out the equations of mot;ion in detail
for the following Lagrangian:

2

(A». ~)(g"'g""~i}= 4(Y,i-, +~. n~Y'. )n~~,",

+*(u„i„+cu™q~&o„"—Sm F„"Y")

g g ~Z (79)

where

-&s = ~,",

This leaves the action

m4
(O' I 6') = ,' f„„f""—96 ~ ——,ft '„Qp",

"

(76} + (A""Y -4A™')

(81)

2A'm'
G~ + 24'P'P)4' ~ggf4x . (77)

In the limit of zero torsion these reduce to the re-
lations

The caret one'„'„ is a reminder that it is evaluated
at A.. The multiplier of Gs is x=1/G when 5=c
=1. Thus A2=(e2/2m )x=e /2m2G. 4m isthepar-
ticle mass. The bounds on the cosmological term
A in the equations of motion, A& 10 5 cm experi-
mentally. '6 This forces

PeD Povgug 4galv)1

with

PIP ga zYaggg Ya (82)

(83)
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B~g ——0 and R~~g~„„——0. (84)

The second equation can be related to the Weyls
equations by using the Bianchi identities, R &~(z

=0. These are a trivial consequence of R &
——0.

Is it ever reasonable that A"„„"g ~=44 „+? Let
us consider the Schwarzschild solution. '6 Set

2M''~', t'

co = 1.— dt ~ Qp = 1—r j ' i r

If A"„„",g =4& „"we can take the limit m - 0,
de Sitter radius, the Poincare limit of the de Sitter
group. Then P ~-8 ~, the Ricci tensor. And the
two equations can be shown to be equivalent to

8 (P ~8') -+zz& P 8' (91)

and, unless there are external sources,

~» =(A aR8'&» —4~» g8 Y &z)&g

where

(92)

x e '""with m = k + n and P ~ (cose} the associated
Legendre polynominals. Energy eigenvalues have
a discrete spectrum. Quantization would be like
quantization in a box.

If one considers the full theory (all Clifford al-
gebra elements are gauged, uF„yz) then the equa-
tions of motion are given as follows:

and

=rd8 (85) I=(s,i, [ij ], i~P)

runs from 1 to 16 in the usual fashion. Also,
u&3 =r sinedg .

Now define X =M/~' and then note that R„~ can be
found from

P2P2
—

PSPS
—— i2i2 — iSiS

M=- a~PiPi =- 2~2S2S =& =~ ~r

0 if Itj
1 if I=j

Remember that

& =(~...~)(g" a"'~i),
when

(94)

(95)

(88)

All other components either vanish or are obtained
from these by use of symmetries. Since g~ ——diag
(1,-1-1-1)is the metric for this frame we can
easily see that &,»~ ——$R„„,g &~ satisfies the iden-
tity

0=+~»a(4'g &t»5» 00' 'Om-»)

12M2 M~=4~.„-q.„A =4,— q.„-48 —
6 qr

(87)

Now p &

——0 and p „&~~&= 0 are consistent equations
of motion. We can conclude that as the de Sitter
radius I/m goes to infinity (m - 0) the Schwarzschild
solution solves these equations for zero torsion.

In the case m.'0 0 both torsion, T„„,and curva-
ture, P„„,can be taken to be zero. Then

~I I & I J' E
pl. —(ydl v

—-EJK{dv 4)

and then

~" n=&tr(P'. Paarsrg)

with k a constant. Here it is assumed that

(98)

(97)

m g 2 ts 73 2
v m Yo gmn~v m gvv ~

We note that when J~ =0 the equations of motion
are almost the same as if the Dirac algebra had
been gauged on a curved background manifold ex-
cept that we have constructed the metric as

(98)

m gp, „——m Y„g(gF„—Qpp ggy4p„
j (99)

from the vector fields. When +„' takes values in
the vector representation of the Lorentz group and
when 4„' =0, the equations have the same solutions
as those on a flat manifold for then

(88) m gyv = ~p ~&gv =m 'Opv ~ (100)

The manifold is a de Sitter space. Since that is
the flattest space for the vector-tensor theory (only
&u„"y + e „o' nonvanishing), perturbation theory
should probably be done using de Sitter propaga-
tors. The operator

(d»I = (8» (7 „=Ql» (g+5 ) =0,
and set

(101)

We can see that this system permits flat (or as-
ymptotically flat} solutions. In particular take

m 2L, 2
t (89) (102)

with

& (si 88 4)+ . , (8 4+8 'C).
sing ~ ~ sin'g

(90)

The operator L' has eigenfunctions PP(cos8)e '"~

This is a solution to the equations of motion (all
curvatures vanish}. The solution having zero cur-
vature (P»~„=0) in the case of gauging only y, and
0' is ade Sitter manifold which is not asymptoti-
cally flat. It may be that in some region v*„=0
and the manifold looks locallyde Sitter but may
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gkR1
y5y& =

31& yp'a'R,

y5y)yg —3~)gy+XR p

y5y&y& y& =G~yyyR, and y5y5
——I,

(103)

still be asymptotically flat. Thus one could imag-
ine a number of baglike regions contained in an
asymptotically flat universe of infinite radius de-
spite apparent finite radii in certain regions.
Quantization would not be the same as box (Iuanti-
zation since a continuum of states must be inclu-
ded.

There is an underlying group-theoretic reason'~
for these facts which suggests that another way of
constructing the vierbein from the connections ~„
Imay be the correct way. The Lie algebra structure of
the Dirac algebra is that of U(2, 2) = U(1) x SU(2, 2).
SU(2, 2) is locally SO(4, 2), the conformal group.
Indeed by taking M&& =-o', &, D =—(iys), and P; =- ~(i
+y&)y&, and K& =—2(I-yz)—y&, one finds the usual con-
formal group structure. Obviously P, and && can
be interchanged while switching signs on a .few
commutators. Please do not confuse P, = 2(I+y, )y,
with P, =i D,. the Fermi gauge-covariant deriva-
tive.

Performing the Cartan decomposition g=k+m,
with h = [Sl,&,D] and m =[P„K&], respectively,
generating SO(3, 1)&SO(1,1) and G4, the eight-di-
mensional Grassmann manifold of two-planes in
B 2, respectively, we can organize the conformal
group commutators to reveal a symmetric space
structure for this group acting on the coset space,
G4 2. ~~') '~9 The commutators are [h, h]c. h, [M,»
M~]=in&»&M„„, [M„,D]=0, and [D,D]=0; h is a
subgroup; and [h, m] c m, [M,~,P),] =in&&„P~, [M,&,

K),] =@,)), K~, [D,P, ]=2iP„and ['D,K,]= 2ik, ,-this
property is reductive homogeneity; and finally [m,
m]c:h since [P, ,P&]=0=[+„+&]and [P&,K&]
= 4'&& -ig, &D, symmetric space property. Here
e,»~ ,'())s,))&——ri—&) and et» ar1&)i»——SuPer.barred in-
dices (ij ) are antisymmetrized together as are sub-
barred indices (kl). From these relations it is
evident that the Cartan decomposition h =[M~&,D,
K~] and m =(P~) yields only a homogeneous space
representation for g=h+rn on m. It is neither re-
ductive nor symmetric.

We note that y, plays a role similar to * in that

(P)P)=fJ' P= fp" —I'

when

(108}

in

6=yoyr'yo=yi ~d P..=8„&,-i[&„,&„] (107)

P= —'P gx" ~dx".

The equations of motion are

(108)

(109)

where e~)( are U(2, 2} structure constants for the
basis

and

M~ =(i,P, ,M, ),K~,D)

Z~ = O (~,)(A,g' g"'u '„"

(110)

with

g) ))+a a& (i&))

A„„op——k trP„„P~~, (112)

unless there are further sources.
The pieces of Pv„can be written out as follows:

f., =&e) v

+m„u' +2A. *&'
vg g)v vA

(113)

and

f v —A. sly + 2(d „(d& fJ ~.

As before, the solution ~'„' =m6'„with all other co-
efficients zero is possible. This is flat space.
Clearly, the linear term in 8„„"vanishes if ~„"=0
prior to variation; thus it should not be taken to be
zero before the variation.

The Fermi gauge-covariant derivative is given
as follows:

and M, z generate the Poincare group, it is possible
to assign mF'„=aP„' instead of mF'„=~'„. The
action is constructed as

please see Table III of paper HI for forms. This
property implies that 1)I=8,

(104)

P„4' = (iB„+g„I+(p+„"P„+(()~M

+ ry „K~++~D))P . (114)

We can rewrite the Dirac connection as

0„=((d„I+ v'„' P& + vJ~M&& + (()„'K& + (d~D), (105)

where g =~ + A ~ RIll co~ =47~ —(d ~ . Since PR

Now we will see that we can gauge a subgroup of
the simple supergroup3 SL(411}over a (4, 1) (Bose,
Fermi) base manifold and find the theory we have
described. First let us find the SL(411) subgroup
corresponding to skew-Dirac conjugate elements.
That is, using') =-A, for typographical reasons,
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-(a k~- i» 0'I (a' c''} iy, 0 )
c dj I 0 -Ij qbt dj~ ~0 -1j

i y,a'0 y,-c''j i-a -8']]

d' j
(115)

-Z4 ~ yIt.'( - K

A/8
+if8

-4 „d.»&l ~ (116)

the coefficient of J. We will denote this supergroup
by D(411) for Dirac. Taking a connection with co-
efficients inD(411)

This can be accomplished if a =- & yz, d = -4i~,
Q =4, c =4 y, =4, since try -d =0, where w is

we calculate the curvature (d&A terms are project-
ed out)

-i[P =d(- in)+ (- zn) n (- iQ)

-(i/2}((u»t, —ic~~„(u~(d"„)dx"~ dx"

(4
~
„+ie y»(d» —4H'(o „)dx"~ ])W8

(4~ —iv»y 4'+4i4'(d„)dx"n ][f8

(4i—/2)((), ), dx'~ dx"

Here we have used the graded wedge product and a
connection with base coefficients, as we did at the
end of section three. [4'(x), 4(x)]d8~$8 =0, cf. ,
Berezin, '5 p. 52, since Q8nd8 vanishes by symmet-
ry and antisymmetry. This wedge product is anti-
symmetric for Grassmann differentials just as it,

is antisymmetric for Bose-Bose or Bose-Fermi
two-forms. Now we can construct the action form
for a Bose-Fermi manifold as in Sec. III. To re-

P

A =(6'l [t)) = —,'k tr(d'~A (P ), (118)

the action. We ping"" to [ur'„'q, &(()'~(l/m'}] for
definiteness, and in components we write

cover the (-~) coefficient of f„„f""and (+1) co-
efficient for 4' we take the inner product ~ =(Bk tr)
with k =(9e'/5), set A „=(-3/e) &0„and reset 4
~+' with n =(2v 5/3)e. Then we find

+ [4']„+ir)(eAvl+~„yz)][@'"-i(eA "l+ (d" yg)4] v-gd x, (119)

yo
c d 0 -i„c

b yp 0 =a -b
0 -I„-c-d

where f 8d8 =1 has been performed and y» (I,yg);-—
K runs over the 15 conformal labels. +' has been
written as 4. Clearly, we have recovered the ac-
tion we were describing previously from a more
intuitive standpoint.

Now the extension to internal symmetries can be
accomplished, and a truly unified theory of curva-
ture, matter, and internal symmetry is possible.
In particular, define the supergroup D(4.lm) to be
the subgroup of Si (4l m) which is Dirac skew-con-
jugate under

fermions
~ 'W

(121)c0 +0
where 4 =4 yp and 4 is a matrix carrying both
SU(2, 2), conformal or spinor, labels and SU(m)
labels. If one makes the requirement that the num-
ber of Bose and Fermi generators be equal, one
finds OSp(2nlm) with m = 2n or 2n+ 1 and SU(n l m)
with m=n+1. When n=4, SU(4.l5) and SU(4]3}
are selected. If one puts D(4lm) on a (4, 1) (Bose,
Fermi) manifold, the action can be constructed as
before. Setting trA„As =g 6„s, for A„ in su(m),
and taking

(120)

We define PAT —=A for typographical reasons. One
find bosons [;~o] in SU(2, 2) xU(1) xSU(m) and

m (4-m)'k=~, m&1
e '. m+4

and n' =k/4 one finds [with B"A„dx" in su(m)]

(122)

fvtf" +)4 vv T+v) +
16 +vt) ~en +

4 ~vv T"-v) +
4 fvvf *" +

I 16 I fvvf s

+[v, „+i%(eA„I+to„yg+B„A„)][@'"—t'(e)("I+a" yg+B" A„)v]IWgd x.
The connection is

(123)
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+pe
i[-(4-/yn)(o, I ++A„]dx" (124)

and

r"=(u"
(126)

The factor of m is needed since Y„ is dimension-
less. We will see that the action for the gauge and
spin-3/2 fields can be written without explicit re-
ference to Y'„. The mass scales out. Thus a
third possibility presents itself. In this view a
rational (rather than polynomial) action is given
for the local symmetry structure. One does not
attempt to interpret the theory as being that of a
curved manifold. Instead it exists on a flat back-
ground but has interactions which mock-up curved
space.

For simplicity let us write only the contribution

and duality is defined as in Sec. II. Note that when
the functional integrals are defined carefully, the
Minkowski structure is replaced by a Euclidean
one; in so doing the su(2, 2) algebra is replaced by
an su(4) algebra. This removes the problem of
negative energy states.

It is clear from the underlying group theory that
no parity-violating terms appear in the action;
SU(m) couplings are vectorlike, and the theory will
have no anomalies. ~ '

Higgs fields can be included in the fashion de-
scribed in Sec. II. Also we point out that the base
manifold can be associated with a coset structure
generated by m=[I', ] or by m=[P„n s ] for a (4,
1) (Bose, Fermi) manifold. Here g s' picks out
only one generator. If we want to use a (4, 8) man-
ifold we can replace $8 by e,de, + e,d P.

Earlier in this section we noted that the canoni-
cal one-forms, 8 =Y'„y&dx", could be identified
with a piece of the connection form

0 = (41~I+ idly) + (dg v(g + ' ' ' )dx ~ (125)

if we assumed that co'„=mY'„. Let us examine this
concept more closely. Basically, three view points
on this relationship are possible. First, one can
view the four-manifold as a submanifold of the six-
teen-dimensional Dirac manifold with the basis
one-forms chosen by identification with a four-di-
mensional coset, e.g. , ~„'=mY„' or cy"=m Y' '~'8'~9

Second, one can consider the Dirac algebra to be
a sort of internal symmetry (though noncompact)
on a four-dimensional curved manifold. It is then
an ansatz that the canonical one-forms are propor-
tional to four of the group's generators (e.g. , the

y, sector) and the connection one-forms are pro-
portional to six other generators (e.g. , the o'&& sec-
tor); Thus one might set

mY

due to the gauging of v'„and u„~. The action can
be written as

where

~pv 1mhT pg ++Qv mklnR+pg

(0
g (d~Cc)s(d gr( 'g 4

v p )tfs gt

fy t g g revue
(d~ GOg(dy(0~&

(127}

m
1

vy — p)v 2&& m v

(128}

CO (0 41 (4 f/
e T g f guys

,
CtP~Q)„CO„QP~&

CL or QM

y'Qyuypy glypt

(iso)

The classical solution is viewed as the lowest-or-
der QM solution.

ft is interesting to observe that if a spin-3/2
gauge field is introduced, it will behave like the
other gauge fields. Specifically, let the connec-
tion be

-~ (-'&(nC 'x '~ (131}

The additional contribution to the action will be

with

v X p $s gts Pl(x„&.&~x p~ e ~ s g .u.w
jg~M „M„(d~6 6~ )g—

(132)

[&.x.l™= [(&s.+e&.)C + By~)F

+&~t (&ry)o + & ~ (yw)F

+ 8*&~(&ys)a h' (1ss)

mtl ~ ~ ~ y yg Z m
vg =p)v —

2 &&gaavp —
2&) a&v+p ~

The other terms are included in the usual way (sum
of squares}.

Thede Sitter group can be contracted to find the
Poincare group; &,~ then vanishes. Gr the Poin-
care subgroup of U(2, 2) may be employed,

m ~ m mg & m g
&k ak —

2 Ig Ifa ~ &fS 0& —
4 ~Q.~g. If y

(128}

~& a =4( f)ngn~-.

We point out that explicit reference to Y„' can be
omitted since the bracketed expression is scale in-
dependent. Please note also that what appears in
the bracket is the inverse matrix ~"„not co„'. But,
of course, ~", can be expressed in terms of ~„' by
using cofactors and determinants,
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Now it is not necessary to know the specific re-
lation of ~„' to F„'. The discussion given for 0„
now applies to y„also. We have used spin-&
potentials to obtain a quadratic action. However,
the usual spin-& superaction can also be written
in terms of co„' instead of F„'. No explicit mention
of the dimensionless F„' fields to be made for ei-
ther gauge or spin-& fields.

In the quantum version of the theory a field of
fluctuations h„' about the classical field exists
such that

mgf+hi m gf+ gf m yf
m ")

or (134)

(135)

P„Q =[f8„+eg„)I+ (o„'5( + X(u'„q) g, ~

+ ~ g'rsr( +8*&g(&r5)]4 ~ (136)

There is no similar way to write the quantity in
brackets ink&~2 entirely in terms of u~ without ex-
plicit use of a scale. But typically there is some

~g =~1( +&g =(~p)cz, + (~g)@M

If either w„' or P„' is taken to be fundamental, h„'

still has dimensions of mass. Note that we can
consider fluctuations h„about an arbitmxy classi-
cal solution, (v„')cz, but use only the classical field
in Eq. (130). Then fluctuations occur in the fields
but not in the manifold. This would amount to
quantizing on a consistent, curved background man-
ifold. It should be a less complicated theory.

Because of Ward identities required to preserve
the invariances (gauge, local Lorentz, and reco-
ordinatization}, we expect that &a„' can be set to
mi}„(org„„set to q,„) at a point. Thus after re-
normalization we anticipate that in the neighbor-
hood of a point the bracketed expression will be
led by g"'g"'. So the short-distance behavior
should be controlled by the coefficient of the brack-
ets. "'" In this case it is the Lagrangian term for
a pure gauge theory (when contracted with q"'q"").
Thus the short-distance behavior should be that of
a pure gauge theory. In other words the theory
should be renormalizable. This idea could be ex-
tended to the entire Dirac Lie algebra in a similar
fashion. We have not included a discussion of the
effect of ghosts in this heuristic argument. The
point is merely that the action is expected to be
renormalizable.

Assuming that this idea can be made into a proof,
we still would have difficulty with the spin-&
fields. For them we need the specific relationship
between +„' and F„', since the 7„' are constrained.
fields and u„' is dynamical; because the Fermi ac-
tion for the full Dirac coupling is given as

region (or at least a, point} in which the metric be-
comes Minkowski. There, (d„' =m6„' so that

1
g~v = — --2 CO~'ggg(dv ='g~v ~

m
(137)

u04$. v

(tre)' (138)

to emphasize that the value of m = —,
' trp is a bound-

ary condition. But the critical point is that the
action for spin-& or spin-0 matter fields requires
the introduction of a scale. Still it may be hoped
that the short-distance behavior of the 5&&2 con-
tribution to the action will be controlled by the co-
efficient of the quantity in parentheses in a similar
fashion to that of the gauge and spin-3 fields
since the recoordinatization and other invariances
should be preserved by the quantum theory. ~ ' '
Thus at a point the bracketed quantity

M((try( }
detF~~ 16 tru~~

CL or QM

can be adjusted to be g"" by sending ~ in to &„'. If
in Eq. (139) Y'~ -(ur„')c„not (u&~)oM, then the theory
should be easier to quantize.

Then the coefficient should govern the short-dis-
tance (ultraviolet) behavior. Of course since we
have not worked out the details of the operators,
it is not clear that the naive Ward identities will
be preserved. We intend this merely to be a
plausibility argument, not a proof.

In closing we will give the Lagrangian, classical
equations of motion for the supergroupD(4~n). By
an obvious extension, the Lagrangians and equa-
tions of motion for SL(ml n} can be constructed.

Let

a I
40m Ya (do~I +

D „@=(&, in, )4;—
p„„=a„n„3„n„-f[n—„,n„], (140)

2 g Jm gyv = ~~7l~~QPv ~

&„' comes from an appropriately chosen four-di-
mensional coset of D(41n) such as that generated
by y, or by ', (I+y, )y, . At in—cludes both I and& la-
bels. I takes 16 values; A. takes n —1 values, un-
less n=4. For n=4 the generator with +1 on the
upper diagonal and -1 on the lower diagonal is re-
moved,

Let us denote this special value for ~„' by a special
symbol e„' =m5„'. The existence of a local (ortho-
normal) Lorentz frame at a point means that there
co~ can be set equal to &~. The choice of location
of the Lorentz site (s) is a boundary condition. One
can write
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Define

Auras = tr(P~.Pin)

and

a,„=tr(eD ~„e).
The action is

(141)

-A„„~g"~ ~ + A„„g"" -gd4x .
Let us choose coupling constants such that the

matrices y& and A& are normalized to 1 with the
trace as metric.

Normalization:

(142)

tr(ytyz) =8sz

tr(X„As) =6„s . (143)

1- D „(g""WgD„+)= 0.
(144)

The current J,' can be decomposed into three
pieces: one external piece which is assumed to
vanish and two internal pieces constructed as fol-
lows:

total:

(145)

external:

J,,=o,
gravitational:

(146)

~go = 5&[(A«sg g ~ 4A o8 g ~x)

(g g««««+k ~ gx+I n gx+3 )] (147)

usual:

J„;=i(4', „y'4' -4'y'%, „)—2(u'„4'4' . (148)

Assuming the usual relationship between «1 and g
in the Dirac basis, consider C, PT, and (iy~)
transformations on the Dirac equation (for v-g= 1)

0= [P]g

=[if + (e il' -6g ) - (ie "g~y5 + ) ts "y6)

4mI+ m+Y+~ Yo&y& + 4m+Y+~t Yu(iy5&&)

(149)
Pal

The charge-conjugation operator gives Q, = iy p
(the - on Q will denote complex conjugation) and re
places e and e* by -e and -e* in P, thus defining
P, such that P,(,=0. The operator PT gives

(~) =(r')(ir'r')0(-~), (150)

Any other normalization is easily found from this.
The equations of motion are (assuming the usual
boundary conditions)

B„(g""v gP„;) —-Q; &u~""P„',=J;,1

and sends m, m*, and@ and e* into -m, -m*, and
-e and -e* defining PJ,r such that P~z,g~r =0.
Note g~ =rod. Further, acting on g with D=iy,
to give gn =iysg has the effect of sending m and
m* into -m and -m* in P defining P~ such that
Pngn =0. 8 can be called y5 conjugation. Evident-
ly the matrices of CPTD =I since the' complex con-
jugations of C and T cancel and the matrices yield
(iy2)(yoiy'ys)(iy~) =I. Of course these operations
look slightly different in the second-quantized ver-
sion as can be seen in Bjorken and Drell.

IV. SUMMARY

In summary, we have described a general theory
which relates the algebras of infinitesimal basis
transformations to a number of physically interest-
ing theories. The procedure is quite simple.
First one introduces a basis for the various fields
to be considered, s„. Second one gives a law for
their displacement, 5s„=s~Q„(5). We considered
only the cases for which 0& took values in the zero-
and one-form sectors of the base manifold (space-
time) exterior algebra. Third, one compares the
effect of making a second-order displacement first
one way then the other. The result is

s~P~ 2[~ «~]s„=r'se[5Qg(d) dilly(-6)

+ flc(&)f1~(d) —flc(d)flf(d)]

(151)

The coefficient P„ is called the curvature. Fourth,
one introduces another curvaturelike object having
a similar pattern of forms K&, which may be iden-
tical with Pz. It leads to either linear or quadratic
actions. Fifth, setting K =s„Kes and P =s„Pss
we introduce the Hilbert product (KIP) =0jRe[tr
(K"«n P)]. Here, the overbar denotes conjugation
and the asterisk denotes Hodge duality. %e re-
quire reality of the action. This Hilbert product
is the action. Its minima are the classical equa-
tions of motion. Its path integral yields the quan-
tum version of the theory. Along the way we were
led to several interesting points: (a) Axial-vector
terms occur in the coupling of fermions to gravity;
(b) a unified theory having electromagnetism,
mass gravitation, and possible axial mass and axi-
al electromagnetism arises from gauging the four-
dimensional Dirac algebra; (c) basis frames for
space-time e„can be replaced by currents of spin-
or bases s y„s in analogy with viewing currents
j" as yy"}f; (d) we have also found potentials for
fermions analogous to the potentials for electro-
magnetism; (e) a unified theory of fermions,
gravity, and internal fields arose from gauging the
supergroups 8(41n) &SL(41n). We discussed its
renormalizability.
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