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We begin with a general introduction to the theory of moving frames. A moving frame is a tangent vector
basis equipped with a connection (gauge field). We then construct extended moving frames by adding extra,
normal basis vectors to a basis for the tangents. The coefficients of transformation of the basis under
infinitesimal displacement are the components of the connection (on tangents) and gauge field (on normals).
The action is constructed from a generalized Hilbert product of the curvatures, the coefficients of the bases
transformation for a closed, infinitesimal (second-order) loop. We give the Einstein-Yang-Mills action as an

example. Bose matter fields are included by first adding on at least one more basis element. Then one can
either introduce an auxiliary coordinate differential, d 8, which may be Bose or Fermi, with which the field
is associated. Or one can extend the concept of a connection to one which takes values which are
functions (as well as coefficients of differentials). This technique is actually related to the use of graded Lie
algebras. A description of the simple superalgebras which we will use is included in the Introduction. From
the generalized curvature the action for a scalar matter field coupled to its gauge bosons is formed. Fermi
fields are introduced by establishing spinor bases which transform as the spin-1/2 Lorentz representation of
the local orthonormal vector bases. The Dirac-Einstein action is given as an example. The connection acts as
the gauge field for the fermions. Interestingly, they are coupled to the connection via an axial-vector term.
This leads to a problem with anomalies. When spinor bases were introduced, the vector bases appeared as

composites (currents). We discuss the idea that vector coordinates may be composites of underlying spinor
coordinates.

I. INTRODUCTION

The idea that all the fields of physics, gravita-
tional, internal, and matter, are manifestations
of a single underlying structure is compelling in
its beauty. A long history of attempts to construct
such a unified theory exists. ' But it was not until
the concept of supersymmetry was developed that
any reasonable hope of including rnatter fields pre-
sented itself. ' In this Introduction we will sketch
the development of the local (algebraic) approach
to unification presented in this series of papers.

Since our intention is to include gravity, we have
looked for a formulation which allows one to under-
stand all the fields in a pictorial or geometrical
fashion. We have chosen a technique which is not
as rigorous as possible but which can be translated
into a strict formalism through use of the theory of
fiber bundles, " and yet employs notation which is
only slightly different from the usual. See Secs.
II and III of paper III (Ref. 4) for a sketch of how

the rigor can be improved. It is interesting to
discover that being more rigorous involves think-
ing about gauge freedom, a problem examined by
Faddeev and Popov. ' Though similar in many re-
spects to the constructions of Utiyama and Kibble, '
the history of this idea dates back at least to Car-
tan. '

Simply put, the idea is to extend a description of
the base manifold in terms of independent, basis
vector fields to include eXtra, i~tern83. , basis
fields. A vector field is then written by giving its

components in this basis. In the general case both
components and bases can change under a displace-
ment. To visualize this concept imagine a sphere
being described locally by two independent vector
fields. The normal vector field provides a picture
of the extra, internal vector fields. As one moves
about on the surface of the sphere, the local inde-
pendent vectors tangent to the sphere will trans-
form in some well-defined fashion. The normal
vector field(s) can shrink, expand, or rotate in
some other, quite general, fashion. The coeffici-
ent of transformation of the internal field which
gives the difference in magnitude of the normal
basis vector(s) between nearby ', (infinitesimally
separated) points can be identified as the internal
gauge field. ' Similar differences between the tan-
gent local basis vectors are identified as the
(space-time) connection. Thus we will refer to the
set of coefficients. as either the gauge field or the
connection.

By transporting this triad of vertical and horizon-
tal vectors along two different small displacements
and by finding the difference in values as the dis-
placements shrink to zero (or by taking a smaQ
closed line integral on a singly sheeted surface)
one can obtain the Riemann curvature of the mani-
fold as the coefficient of the tangent (or horizontal)
bases and the gauge field tensor as the coefficient
of the internal (normal or vertical) bases. Details
are found in Sec. II of this paper.

The extension of this idea to higher-dimensional
base manifolds or more internal symmetries is
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conceptually similar and is only slightly more
technically complicated. This use of independent
vector fields for a description of curvature is
familiarly known as the vierbein or tetrad formal-
ism" when it is applied to the usual space-time
manifold.

This local geometric formulation of curvature
and gauge fields allows one to study topological
aspects of these theories; see Sec. II of paper III.'
Indeed an increasing number of papers exploiting
topological concepts for an analysis of gauge theo-
ries has been appearing. " It might even be hoped
that the increase in clarity of description afforded
by this differential geometric language may lead
to further insight into the physical nature of gauge
theories. Such an apparent miracle of language has
certainly happened before. Think of the Lagran-
gian formulation of classical mechanics. In fact,
part of what we will be constructing is a theory of
Lagrangians. We will view them as a kind of Hil-
bert product" of curvatures (generalized, as above,
to include internal-symmetry fields).

The Hilbert product of two functions is viewed
as the integral of a function times an n-form
(volume form times a function; see.Sec. II of paper
III).4"" The generalization to line elements or
area elements proceeds by viewing them as one-
or two-forms, respectively, etc. They are then
multiplied by (n —1)-forms or (n —2)-forms, etc.
and integrated over the n-manifold. If complex
matrices of forms are considered, an. appropriate
adjoining operation (e.g. , Hermitian conjugation)
is included on the (n —1)-forms or (n —2)-forms,
etc. For those unfamiliar with forms, descrip-
tions and discussions can be found in Sec. II of
this paper and Sec. II of paper III.4

But what about the inclusion of matter '7 In. Sec.
III we see that there are a number of approaches
to this question. Since in this viewpoint gauge
fields B turn out to be coupled to the infinitesimal
space-time displacement &x" through the label p,
B=8 dx" and since matter fields Q do not carry
this space-time vector index, one has a variety
of options to explore. Gne can associate a matter
field &f& with the differential of an extra (fifth) de-
gree of freedom, d8, which could be Bose matter,
in which case it must effectively disappear from
all relevant quantities. This can be effected in a
manner similar to that suggested by Kaluza and
Klein. " That is, it must be a small, compact
(or circular) degree of freedom attached to. each
point of space-time, and fields are independent of
it (the cylindricity assumption). If, however, the
extra coordinate is a Grassmann (anticommuting)
variable getting rid of it is quite easy and cylin-
dricity is almost automatic.

Another approach is to extend the concept of con-

nection. From the four independent displacements
dx", one can construct six independent arc ele-
ments, four independent three-volume elements, and
one four -volume element; see Table I of paper III.'
However, we have omitted the basis element I as-
sociated with points. Just as Ch" is a basis for
B=B„dxf', the g.auge fields, it is possible to view
the identity I as a basis for functions 4 = $1 'W.e
extend the concept of connection from just things
proportional to displacements to include things
proportional to the identity. We call such an ex-
tended connection an augmented connection. No
cylindricity assumption is required at all. Fur-
ther, when one computes the curvature of an aug-
mented connection (the augmented curvature), one
piece is the gauge field tensor and the other is
the gauge-covariant derivative of matter, unless
the base manifold (space-time) is curved, in which
case there are curvature contributions also. With-
out space-time curvature one simply takes the ap-
propriately defined Hilbert square'" of the aug-
mented curvature to find the action of the gauge
fields coupled to matter. With gravity, minor
complications arise and a special Hilbert product
yields the action for the full system. The cur-
vature is multiplied by an object which ensures that
its indices get contracted to form the curvature
scalar. The gauge and matter fields are squared.
This yields Einstein gravity coupled to the gauge
fields and matter fields. " That there is not a
single principle for both sectors is a curious and
interesting feature which we consider in some de-
tail. Ultimately we do suggest a single principle
for both internal and space-time sectors. How-
ever, the fact that such a splitting into horizontal
and vertical exists is certainly not incompatible
with two principles: e.g. , a linear action for the
horizontal and quadratic action for the vertical.

Such a geometric picture is pleasing as far as
it goes, but a way of including spinors mist be
available (Sec. IV). One might try viewing some of
the gauge fields as currents, but that does not
yield a framework which gives a natural structure
leading to the usual Dirac action. "' By going
back to the early works on spinors, " a reinter-
pretation of the local basis vectors as local
basis matrices constructed as currents of
spinor and conjugate spinor bases is the easiest
framework in which to formulate a theory of spin-
ors. Thus, initially, we adjoin an extra set of
internal bases: four spinor bases and four conju-
gate spinor bases. As these bases are transported
from point to infinitesimally separated point their
coefficient of infinitesimal transformation (connec-
tion) is taken to be the spin--,' representa-
tion of the transformation. That is, if a
spin-2. representation of a local Lorentz trans-
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formation gives the relation bebveen nearby
bases, the vector bases, formed as a Dirac cur-
rent from the spinor bases, will transform as a
spin-1 representation of this local Lorentz trans-
formation. All possible vector basis transforma-
tions can be generalized in this fashion (using the
vierbein formalism, in which one transforms co-
ordinates to local Lorentz bases). Thus it is suf-
ficient to consider transformations of the spinor
bases.

We introduce the notation of fiber bundle theory
and briefly review fiber bundle connections. More
details are found in Secs. II and III of paper III.'
The idea is presented that a rational action in a
fiber bundle can account for the effects of gravita-
tion.

Because of the applications of the OSp graded
Lie algebras as structure groups for curved real
superspaces, we consider the possibility that the
real physical manifold could be imbedded in a
complex manifold so that a similar application of
the SU(n ~m) supergroups could be made. This re-
quires viewing the coordinates as being constructed
from the complex coordinates. There seems to be
no way other than the rational action fiber bundle
approach to do this.

By augmenting the spinor basis connection (or
by using one of the other techniques described
above), one obtains spinor fields coupled to
gravity via the connection. The augmented cur-
vature has as one sector the Riemann tensor
and as the other sector the gravity-coupled gauge-
covariant spinor derivative. If the horizontal ac-
tion is taken to be linear, one finds Dirac fields
coupled to Einstein gravity a beautiful and simple
unification. However, we find that the spinors
couple to the connection via an axial-vector cur-
rent. " This could lead to anomalies. "

Having laid the foundations of the theory of mov-
ing frames, we develop the physical applications
to full interacting theories in the second paper.
By extending the spinor bases to include an ex-
tra lable (spin and color symmetry) and by having
extra bases we can form a colored, curved, and
flavored Weinberg-Salam" type model, having a
geometric interpretation. We try to emphasize
the closeness of this model to a particular super-
group (Sec. II of paper II). The action is related
to the flat-space version by minor but intuitively
plausible modifications: The metric becomes
curved, the determinant factor must be included,
spinors are coupled minimally to all fields includ-
ing gravity (in the tetrad basis), and the curvature
scalar gives the kinetic term for the metric. The
contributions from the horizontal sector are linear
in the gauge-covariant derivatives of the fields
(spinor and connection) and the contributions from

the vertical sector are quadratic in the gauge-co-
variant derivatives of the fields (scalar and gauge).

In order to have a truly unified theory, it is de-
sirable to have a single prescription for both
sectors. To this end we study the relationship
between linear and quadratic actions. Motivated
by the work of 't Hooft and Veltman" and Deser
and others" in which it was shown that in order
to one loop renormalize gravity, one must include
terms quadratic in the curvature, we try a formal-
ism which i:s entirely quadratic. We argue qual-
itatively that through the use of local Lorentz
frames and gauge theory one can infer renormal-
izability of the full theory. The general transform-
ation of a four-component spinor allowed by the
Dirac Lie algebra, U(2, 2), leads one to a curvature
tensor consisting of the usual terms plus extra
pieces arising from the mixing of momentum and
special conformal generators to give angular mo-
mentum generators. The Hilbert square'" of
this term consists of three pieces: a cross term
which is the usual Einstein curvature scalar, a
term quadratic in the Hiemann tensor (this term
can be related to a specific sum of the kinds of
terms appearing in the renormalization program),
and a cosmological constant term. "

By examining the action for pure electromag-
netism we see that (see Sec. III of paper II)' elec-
tromagnetism can be described by an action linear
in the first derivatives of the fields (Dirac formu-
lation) or quadratic in the first derivatives of the
potentials (potential or Klein-Gordon formulation).
In analogy we suggest that the action, quadratic
in the first derivatives of spinors, is actually an
action for spinox potentials and that the usual
Dirae spinors are related to these potentials in
a fashion analogous to the relation between field
and potential in electromagnetism. The idea of
using spinors obeying quadratic equations of mo-
tion first appeared in a slightly different guise
in the V-A paper of Feynman and Gell-Mann22;
indeed it was these potentials which suggested
V-A. Feynman also points out that there are
advantages to using quadratic actions in consider-
ing path integrals. "

Thus a single prescription for the action can be
used. It is the Hilbert square of the curvature (or
augmented curvature) for both horizontal and ver-
tical sectors.

Now we approach the question from a different
direction in order to join up with concepts in super-
symmetry. For those unfamiliar with superalge-
bras, Eats" has elucidated the simple graded Lie
algebras (and thus the others). Those of current
physical interest can be described by block m+n
by m+n matrices. The on-diagonal m xm and
n xn sectors represent the I0, or Bose sector,
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and the off-diagonal n xm and m xg sectors repre-
sent the L„or Fermi sectors. These algebras
have a graded Lie product such that [a, b]=
—(-I)'~[b, a] and [a[b, c]]=f[a, b], c] +(- I) ~J[b, [a, c]]
for a(=L, and b cL& and c in either sector. The
two principal series are the orthosymplectic,
OSp(2m ~n), and the special linear, SL(m jn) super-
groups. A vertical line distinguishes the special
linear supergroup from the special linear Lie al-
gebra. on an indefinite-metric spa, ce. As in the
Cartan classification of the orthogonal groups,
e.g. , there are different series depending on
whether n is odd or even (but more than two or
equal to two). The Hose sectors of the OSp (2m~n)
graded algebra are the 2m x 2m symplectic mat-
rices and the nxn orthogonal matrices; the Fermi
sectors are a real 2m xn matrix and its symplectic
adjoint which is nx2m. The symplectic adjoint is
minus the transpose followed by multiplication by
the symplectic metric.

The special linear graded Lie algebra consists
of complex special linear m xm and nxn algebras
with one extra generator (along the diagonal). The
Fermi sectors are not related to each other. We
consider a subalgebra of SL(4 tn) which we denote by
by D(4 ~n). It consists of all those elements in
SL(4

~

n)'s algebra which are skew-Dirac conju-
gate. Dirac conjugation for these (4+n)x(4+n)
matrices is defined by introducing an extension
of the y, matrix which has y, in its upper 4x4
corner and minus the identity in the lower nxn
corner. Thus we take the Hermitian conjugate
sandwiched between two of these extended yp ma-
trices and require it to be minus the original ma-
trix. This procedure yields i times the Dirac
algebra in the 4x4 sector, andi times the SU(n)
algebra in the n xn sector with a piece proportion-
al to the nxn identity matrix adjusted to give zero
tra, ce in combination with the 4 x4 identity contri-
bution. The-4xn matrix is a fermion in the funda-
mental representation of the Dirac and SU(n) alge-
bras. The n x4 matrix is its Dirac adjoint.

Further internal symmetries can be included by
taking the upper diagonal to be a higher-dimension-
al representation of the Dirac matrices (4p by 4p).
By allowing only the subalgebra consisting of four-
by-four Dirac matrices and p-by-p SU(p) matrices,
we can obtain an additional invariance group. We
will take this symmetry group to be that of color.
Of course color can be unified with flavor instead.
But since color and spin have historically been re-
lated via parastatistics, we have explored this
possibility. " We denote these groups by D(4p ~n).

We consider a connection on a manifold having
four Bose coordinate differentials. Matter fields
are included by using the basis for functions, I,
the identity. This is an augmented connection, as

described previously. The other techniques (in-
clusion of extra coordinate differentials) can also
be used. One can either extend the base by in-
cluding extra Bose or Fermi coordinate differen-
tials. For definiteness consider a manifold having
four Bose and one Fermi coordinate differentials.
Consider a connection with components in a graded
Lie algebra [such as D(4

~
n)]. The Bose (L,) com-

ponents of the connection B„are associated with
the Bose coordinate differentials dx", forming
B„dx". The Fermi (I,,) components of the con-
nection LI are associated with the Fermi coordin-
ate differentials d8 forming +d8.

When one computes the curvature of this con-
nection, one obtains the Yang-Mills-curvature ten-
sors on the diagonal and the gauge-covariant de-
rivative of the fermions on the minor diagonal.
The action is given by the unique prescription that
it is the Hilbert square of the curvature.

'This action can be precisely the same as that
which we obtain by considering the transformation
of spinor bases. The reason is that the spinor
basis transformation law can be taken to be given
by a connection with coefficients in a superalgebra,
ds, =is,Q',py'. Here dy 'denotes the set (dx", d8)
or (d~&, I), for example. The matrices 0"„take
values in a graded Lie algebra as described above.
Thus the superalgebra matrices act as coeffici-
ents of "rotation" for the spinor frames providing
a picture of the effect of gauging a superalgebra.

Requiring that, the connection close to form the
entire superalgebra D(4

~
n), e.g. , thus provides

a unified description of gravitation, matter, and
internal-symmetry fields. If we place no arbitrary
restriction on the L, subsector consisting of the
SU(2, 2) generators identified with-the Dirac Lie al-
gebra (the identity is included also) we are led to
the covering group of the conformal group SO(4, 2).
In the vierbein view of gravity there are ten fields:
four vierbein fields F', and six connections, e' ..

COP

The connections co',. are related to the usual con-
nections I',", by I"~~, = Y",(Y'~, + &u'&Y', ) These c. an
be related to the ten generators of ISO(3, 1) or of
its covering group. With appropriate care ISO(3, 1)
can be expanded to SO(4, 1) [or SO(3, 2), possibly]
or their covering groups. But one still has the ex-
tra generators in the conformal group. For de-
finiteness let Y„' be associated with P, = ,'(I+y, )y, —

and (d'& be associated with M', = o, , the momentum
and angular momentum generators. What are the
additional fields implied by the superalgebra
D(4

~
n) & SV(2, 2) which go with K, = —,'(I —y, )y,

and with D=iys, the special conformal and dila-
tion generators? Since any linear combination
of the four 5', and X, and the six M& form a closed
subalgebra perhaps that is all there is, physically.
One might also speculate that in this region of
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space only ten are important and that elsewhere
the others can be significant (depending on coup-
ling strengths). If we make the assumption that
the P, and K, fields and the I and D fields are
proportional we are led to the idea that there
might be axial contributions to electromagnetism.
This possibility has been considered by Wolfen-
stein and by Herczeg. " The coefficient of propor-
tiona)ity can be quite large with the axial current
term down from the vector current term only by
10 ' and not be in conflict with existing data on
lepton-hadron interactions, if the axial current
is conserved (no scalar terms, e.g.). In that view
there is an interaction eA~(j ~"'+fj ~"'); f is 10 ',
j~ and j"denote the vector electromagnetic cur-
rent and the hadronic axial-vector current. "
They examined this point in the linear Dirac for-
malism.

Motivated by Faddeev's use of "cohesions in a
vector stratification, " i.e., "connections in a fiber
bundle, " to solve the problem of gauge degener-
acies in quantum fields, ' we show how the theory
of moving frames is related to the (more precise)
theory of fiber bundles in the third paper. "Es-
sentially a fiber bundle is a manifold which has a
given space, such as the group SO(3), "attached"
to each point in the base manifold. In our exam-
ples the base manifold is spa, ce-time. The bundle
has a dimension equal to the sum of the base and
the fiber dimensions [in the SO(3) example, see
Sec. III of paper III,» it is 4+ 3 = '7 dimensional].
When a connection (gauge field) is given in the
bundle, it has extra components which are as-
sociated with the extra degrees of freedom. These
precisely remove the gauge degeneracies. This
shows that quantization in fiber bundles is a, worth-
while problem to examine.

In the first two papers we have omitted refer-
ence to the extra degrees of freedom arising in a
fiber bundle, since they add technical complexity
to an already detailed subject. Once one under-
stands how to handle them in a particular instance,
the generalization to arbitrary bundles is easy.
That is, we have ignored them for the same reason
everyone else does.

To establish the language which is commonly
used in the theory of fiber bundles (and in the theo-
ry of moving frames) we have reviewed the con-
cept of differential forms and their associated op-
erations (exterior differentiation, Hodge duality,
and the Hilbert product of p-forms) in four dimen-
sions. Detailed tables are provided (see Sec. II
of paper III).'

The purpose of this third paper is twofold. One,
it is hoped that providing further detail on some of
the mathematical structures will flesh out those
abstract constructions. Two, we hope to suggest

possible ways in which this theory may be devel-
oped.

In this spirit we have suggested the fiber-bundle
quantization problem. In the fourth section of
paper III4 we show that this formalism allows a
uniform description of both Lie groups and gen-
eral manifolds (through the use of local quantities).
From there we show that many other structures
can be easily included. For example, the postu-
lates of general relativity about the local structure
of space-time can be expressed a,s statements
about the local choice of coordinates on the mani-
fold. It is usually assumed that at any given
point an orthovormal vector basis with vanish-
ing (torsion-free) connection can be chosen. This
corresponds to choosing the zeroth, fi.rst, and
second terms in a Taylor expansion of the coor-
dinate system (with respect to local ff" coordin-
ates)." But what about manifolds which are local-
ly flatter (such as a point onthe bottom of a bowl) '?

The curvature information would be carried in
higher terms of the Taylor series. We show how
a manifold with third-order structure can be con-
structed. We also indicate some of the things that
can happen if the local Lie group of rotations be-
comes a local manifold of rotations, a locally ani-
sotropic situation. The Lie algebra of a bundle
can be altered in a number of ways: by becoming
graded or by having the Jacobi relation fail (as it
does for the octonions or for other Mal'cev alge-
bras) "The.se possibilities are of interest because
they provide other mechanisms for breaking sym-
metries than that of Higgs and Kibble. We describe
a model in which the Jacobi identity is broken but
revives in the zero limit of a particular parameter.
At that value the algebra becomes u(1)+ su(2).

Since the graded Lie algebra used in the second
paper was designed to include the effects of gravi-
tation, it was quite complicated. Simpler models
are described in Sec. V of paper III. The first of
these is based on SL(2

~
1)." Since the group

SL(2, 8) only covers the Lorentz and not the Pion-
care group the structure is greatly simplified.
The spinors are two- component spinors. None-
theless some of the features of the model in Sec.
III of paper II will be present and the smaller ver-
sion may give some insight into the structure of the
theory.

Finally (in Sec. VI of paper III) we show how the
standard spin-2-spin-& supergravity action can
easily be derived using moving frames. We point
out that a simple supergroup is not being used [the
nearest simple supergroup isOSp(1, 4)]"and write
out a general model arising from a nonsimple
supergroup. It has a supergravity, colored Weiri-
berg-Salam- type action.

Glearly the infinitesimal viewpoint, we have been
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describing unifies a great variety of beautiful and
useful structures. But more importantly it gives
us a tool with which to study these fascinating new
objects.

II. MOVING FRAMES, CURVATURE, TORSION,
AND ACTION FORMS

(3)

ing the components in terms of e„(0),

e (P) =e„(0)texp[(u ~(P)Z ~]]",
where ~ ~(P) is a single-valued function of posi-
tion P (and the initial position 0) and Z ~ is the
vector representation of the given orthogonal
group generators. In this case

We will ultimately be extending the local frame
of tangents to a point from 4 to 4+kg. But to be-
gin, the usual basis of tangents to a point P is con-
structed by moving that point in each of the four
coordinate directions an infinitesimal amount to
neighboring points P& ~

where (p) labels in which
of the four directions the new point lies. Thus in-
finitesimally,

9P
~P(y) P(y) P y dx

& co~t'
de, =e„'(P') —e, (P) =e„„d~'(Z,~)"„

or

dx

where

and we express g in terms of the metric

(4)

when P is varied in the first direction. If P' is in
arbitrary relation to P (but only infinitesimally
separated) one finds'

8P
dP =P'- P = dx" =—e dx~.ex~ (2)

FIG. 1. Frames at neighboring points.

Please see Fig. 1.
The point is simply that an infinitesimal dis-

placement dP can be described in terms of a basis
of tangent vectors e and infinitesimal displace-
ment dx" so that dP=e„dx". This should be no
more confusing than writing v =e,v' for a vector.
What may be slightly more abstract is the idea
that as one moves from point to point one's choice
of basis, e„, can change. Thus it is important to
consider the change in e„ from P to P'. As with
the well-known introduction to the connection,
this is a primitive concept. It can be motivated
by the concept of globally integrable orthogonal
rotations [which includes the indefinite-metric
Lorentz group SO(3, l)]. For this case a frame
at P is given by flatly translating to 0 and express-

for SO(p, q). To generalize to a curved manifold
one can begin with the statement de„=e,~" dx~.

Then, only if the change in frames is independent
of route, can one integrate the connection. ' But,
as we shall see shortly, if such route independ-
ence exists, the manifold is said to be flat. When
we consider internal symmetries such globally
integrable connections will correspond to gauge
fields which consist only of pure gauge transform-
ations of the vacuum such as' =9 ~. Here the
analogy is A, —u, and 8„A,—8„~ . The intro-
duction of connections which are not pure terms is
in analogy to the introduction in the action of kine-
tic pieces for the gauge fields which were initially
only required for gauge invariance of matter
fields.

Now if the tangent basis is arbitrarily extended
from the four legs (vierbein) e to a 4+n basis,
er=(e„,e,), where there are n e, 's, while main-
taining the idea that there are still only four dis-
placements dx", one arrives at an extended frame
which is capable of including internal-symmetry
structures. We can refer to the e„as horizontal
and the e, as vertical. To make this pictorial
think of the usual two-sphere, S'.

One can construct not only the two tangents
e =(e„e,) but also a normal e, . See Fig. 2. Here
there are manifestly only the two infinitesimal
displacement;s associated with moving about on

'the surface of the sphere. And yet it is possible
to consider still further basis elements such as
the normal e, .

Thus, in general, for a four-dimensional base
manifold consider eI=(e„,e,) and er=(e„', e,') at
P and P', respectively. See Fig. 3.- Then if e~
and e, are infinitesimally separated we consider
the following changes in the frames:
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e
I psx

X p

/ep
sx

FIG. 4. Second-order displacement for points and
frame; P3&P4, on a curved manifold.

FIG. 2. Tangent and normal bundle for- the two-sphere.

Horizontal: de„=e„e~ dx" and dP=e„dx&, (3)

Vertical: de, =e,B,",dx'. (9)

Horizontal: 5dP = 5(e~dx~) =e ~8,6x&dx",

5de„= &(e„uP~ dx")

=8 (4d" + (d" (a)™) 5x~dx"
Xp I p pe

(10)

ea

FIG. 3. Moving frame for space-time with internal
symmetry.

These will be identified with the connection, basis,
and gauge fields, respectively.

No terms mixing horizontal and vertical bases
have been included. Vertical fields are not ming-
led with horizontal or else "matter" or "isospin"
could become "position. "

Now let us consider the route dependence of these
coefficients by examining the difference between
two second-order paths. 'Thus let dx' and Qp de-
note infinitesimal displacements. We will con-
sider the effect of making first one displacement
then the other and then doing these displacements
in the other order. See Fig. 4. When two dis-
placements are made, &de~, there can be contri-
butions not only from the change in basis but also
from the change in the connection coefficients,
cu", and 8'„„which, to leading order, is just their
first derivatives. Thus

Vertical: 5de, = 5(e„B"„dx')

=e,(B'„...+8'„8;,) &x'dx' . (l2)

By doing these displacements in reverse order and
then comparing the difference one obtains the fol-
lowing relations (note that quantities with barred
indices are to be antisymmetrized on those in-
dices; e.g. , A,~„~A,„„—A„„,):

(d5 &d)P-=e~ [-,'~ ~(~ x' dx'- dx'& x')],

(d& —&d)e„=e„[~(uP (
+u)" (u )

x (5x'dx' - dx'&x') ],
(d& —Rf)e, =e, [2(8'„~,+8',8;,)

x (~x'dx'- dx'&x') ] .

{13)

(14)

(15)

The combination -', (~x'dx' —dx'&x") is the antisym-
metric tensor product of infinitesimals. It is
written as dxp~ dx'. See Sec. II of paper III.4 'The

connection symbols ~~ are usually written as 1"~.
The nature of the internal-symmetry group is de-
termined by placing conditions on the matrices
B~. For example, for SU(n), 5~8~, =0, the trace
vanishes, and B~, = -B», the matrices are skew-
Hermitian. We can write these relationships in a
more familiar way by setting B~—=B»e,Se'. Then
trB~=O and B~ =-B~. Qr still more familiarly
write 8"{fA„',) for B~~, and note that trA„= 0 and

A„=A„. In particular, if there are three e, 's,
we could take the matrices A„ to be the well-
known Gell-Mann matrices" for SU{3). Another
related case which could be considered is one in
which there are eight e, 's, then we could take
A'„, =-&'„„ the structure constants for SU(3).
These correspond to the fundamental and adjoint
representations, respectively.

We remark that in the rest of this paper we will
write an overbar as a generic symbol for adjoint
Thus 8~ =8~~ but on fermions, P, will mean Py, .
e is written without a bar because of its reality,
e„=—e

Now we are prepared to write the relations given
above in a more familiar fashion (recall that I'~,
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,'(d—6 -sd)P =e~(2I'—~~,dx'ndx")

=86(2T ~calx ndx ) =e~T (ls)

g(8', 8') =q"=8' ~ O'=Y„*Y~dx" dx"

= Y' Y~g'"= Y„'Y~g(dx~, dx")

2(d'-

6d)e„=e„[-,'(I'"„,, I", I'„)dx'n dx ]

=e„(~R"„„dx'ndx') =e„R"„, (17)

%l)e,=e, [—,'(B" +i@:cBeB~~)(iA„)',dx'n dx']

=e~[~F,„(iA„)~dx'n dx~]=e, E"(iA„)',.

g(e&, e&) = q;&
——e, ~ e& ——Y~ Y&e„~e,

(24)

(18)

T~ is the torsion, A„" is the curvature two-form
(not the Ricci tensor, which we do not use without
explicit mention). F is the Yang-Mills field ten-
sor. We remark that the torsion is the antisym-
metic part of the connection in a coordinate basis.

Equivalently, one can consider a closed line in-
tegral. By taking an infinitesimal square [PQRSP] „
where P, Q, R, S are the four vertices in sequence,
we can write the line integral of ~e a,s

6e = ge = 5e„- 5e 19
ts qR~& ts qJ" ts sR j

and obtain R„"e„as the result. Similarly

6e, = &e, = &e, 5p
ts gzspl ts gal ts sz3

=(F"iA„'.)r„-=F.'V;. (20)

Using the basis (e', e') dual to (e„F,) (where
(e ~e„)=~„', etc.), set 8=dP, v=—de„8e; and

B=de, (se,. Now we can write basis-independent
formulas for the torsion, curvature, and field
tensor'4 ~"

T =d8 y~~ 8 = T~e,I'1

B =d&+~~ ~ =-R„'e„e",

F =dB+B~ B—=Fb.e, e'.a. b

(21)

(22)

(23)

Here the exterior derivative d, whose action on
a one-form A~dx~ is given as d(A~dx~) =2A, ~,dx'
~dx, has been used. A short computation will
then show that these are the objects described
above. See Sec. II of paper III' for sample cal-
culations. It is worth noting that this formalism
is well adapted to treated Lie groups and mani-
folds on similar footing. See Sec. III of paper III.4

It is convenient to introduce the notation 8 = e 8~,
and then T~=d8"+„"I 8", where 8"=dx~ in a coor-
dinate basis. It is not necessary to restrict a local
frame to being associated with a coordinate patch;
any system of four independent vectors would work,
Indeed a natural choice is one which is orthonor-
mal everywhere. Thus introduce O' = Y~ dx'= Y~8t'

and e,-= Y";e with Y",-F'= &~. Y„' is the vierbein or
tetrad field. Then define the symmetric bilinear
map called the metric:

Equivalently g„„=Y Y~q~,-. The use of the vier-
bein field reveals the underlying Lorentz group
structure. In the new basis T' =d8'+ && ~8' with

&& = v~&8 the connection, T' the torsion. Now

d(g, z) =d(e,. ~ e&) =de, ~ e,. +e,. ~ de, = e,&o. ,
' —

~ e&+e. ,. ~ e,"&

= 40-&+ (d&-
&

(26)

Basis: 8=e;8'=(e Y'", )(Y„dx"), .
Connection: ~ = , -~e&e 8'

(27)

Yang-Mills; B =B~g8'(iA~) =(B~Y;)8'(iA~).

(2s)

(29)

Here ~ „=F, a,re the connection coeff~~~ents on
a coordinate basis. They bear the usual relation
to the metric pimp when there is no torsion. Indeed

since w,- ~ e~ ~ e,. =co,-,-. We can choose the basis
e, so that d(q") =0, andwefind&u, .

~ is skew-sym-
metric (generates the orthogonal group). For q;&
the global Minkowski metric, e,-& generates the
Lorentz group. If e,- is actually a,

' coordinate basis
(such that 8~ =dy'), the metric is globally Minkow-
ski", the space is flat. Gauging only the Lorentz
group is not enough to yield curvature; the vier-
bein, Y' (translations) must be gauged' (see Sec.
III of paper on extended gauge transformations').

When spinors are included, use of the vierbein
field allows us to view gravity as coupling through
a gauge-covariant derivative. Thus under a Lor-
entz transformation g'=e ' 'iiP with o,.&= —',i[y,-,
y,]. So a gauge-covariant derivative is V,. =';
—i(u; o, with'5, -= Y'8„ in analogy with t/r'=e '

t/r

producing a gauge-covariant derivative & =8„
—iA„. The fact that a,-,. = -o&,- is compatible with
a skew-symmetric connection v" = -~".

We note that using forms O'= Y'dxf' or direction-
al derivatives 8,-= Y~B„emphasizes the similarity
between Lie groups and general manifolds. See
Sec. Ig of paper III.4 A single description can be
used for both. '

It is possible to express the relationship be-
tween the connections in coordinate and noncoor-
dinate bases as follows:
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the general relationship between connection and
metric can be obtained from dg„„=& „+(o„„=
=g „~ dx . Using this three times, one finds

Xe(~( p=~g «( Nip+gee&( gu( il) (30)

for a coordinate basis. In a noncoordinate basis
one finds, in general, '

1 1
V —[2(C if% + ikj — Ski)+ ~(gU(li +giki j -ggki g/]

(3l)

Here differentiation is performed with respect to
the forms 8~ (with respect to II& = Y~& &„). Thus
N'„'=Z „' ~„Y"8~, for example. The coefficients C,.„
= C,'-&g,~ can be found from dB '+ 2C&~B~ A 8 = 7' = 0.
&,z can be expressed by starting from g „
= Y„'g&& Y~ and using this formula. First we find
C fgk~

«ya =«'y&ii =(Yi i~ Yi Yf")i)n

= Y~~l Y, Yq q, ~ Y~~(-„Y) Y~i il, i, , (32)

and then

= Y~dx" is a one-form (has one dx~ in it). The ob-
ject B=B"„(iA„)dx"is also a connection one-form
for the internal-symmetry sector. %e could call
it the Yang-Mills one-form or gauge-field one-
form. The objects T, R, and F are all two-forms
since they can be expressed as T = T„„dx"~dx",
R =R„„dx"~dx", and F=F„„dx"~dx". p-forms in-
volve the p-fold product of the dx"s, of course,
as described in Sec. II of paper IlI. In that section
we also tabulate the effect of the operator denoted
by an asterisk, the Hodge dual operator, which
takes p-forms on an n-manifold (in our ca.se n =4)
into n-p (=4-p)-forms on that manifold. We can
use this fact to introduce a natural Hilbert product
on p-forms for a given manifold, generally with
nontrivial topology. 4 As we shall see shortly, this
will allow us to define the action as the natural
Hilbert product of curvature forms.

The Hilbert product for functions, zero-forms,
is given as' "

(f I
a) = Jl f"a =f (gn ar =fy( ~z ~'».

since

1
y 2(C;y——i(+ C w —Cyi(c) 8 (33)

Iff and h are complex

~ill a
—

~kgb a —0 (34)

See Sec. Ip of paper III for the relationship between
Lie groups and manifolds.

We remark that the metric g„„can be viewed as
a composite of the quartet of vector fields Y~.
Here one views the index i as an internal index and
the index p, as the space-time vector index. In
fact some authors refer to the p. index as the
space-time index and i as a Lorentz index. The F„'
are both Lorentz and space-time vectors in this
language, whereas g„„is a space-time tensor and
a Lorentz scalar.

The connections ~,z can be written out in full
detail as

For orie-forms (raising is done by g„,)

(A la) —fA' B f(A„d*"=)' (B.d ")

A„B" -gd x.

For two- forms

(c la) =,fc"a

(38)

(39)

if 2( i J (» l&)mii (0 0 I& ) i((Lf ll (»l& )mi)

(35)

where

C „dx"+dx" *~ R qdx~~dx~

C „R~" -gd4x. (40)

8"= Y~dx'. (36)
For p-forms

It is this object contracted with the tensor o'~
= —,'i[y', y~] which appears in the spinor gauge-co-
variant derivative V~ = Y~~8„+ co~,&0'~. We remark
that ~[y', y&] = q'~ and y" = Y(i'y' satisfies —,'(y~, y'j
—

g pv

So far we have not made much use of the Grass-
mann algebra notation except incidentally. 4' We
will note that when one writes the coefficients
~„,z contracted with 8~ as co,&8

= ~,&, the object
~,&

is called a connection one-form, since 8'

(E ~F) = — g+gy'.
pt

(4I)

The factor I/pl is an optional normalization. For
matrices of forms such as B=B"„dx"(iA„) or
E =F",„dx"*dx"(iA„) a scalar on the A index is
formed by taking A„OA~ = -6». The centered
circle wiQ denote an inner product. In case the
A„matrices are normalized suitably one can set
jA„oiA = -triA„o iAB =+6». So, for example,
we can consider the Hilbert product of matrices
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of two-forms such as the Yang-Mills force tensor
and find the action on a manifold having a topology
consistent with the fields4

—F dgu A tv g+F dx~A dx~

x(yA„oiA, )

F" F gu g"86 4-gd'xuv (42)

Here F = ,'F"„„(iA—„)dx"n dx" and (yA„) =-iA„=-iA„.
This choice of metric on the matrices may be
somewhat clearer in the skew-Hermitian basis
E„=iA„. E„=-E„and E„oE~=-~», therefore
E„OE~ = &». We recall the theorem that a unitary
matrix is the exponential of a skew-Hermitian
matrix. The overbar of course is Hermitian con-
jugation in this context.

Indeed, with these conventions we can recognize
the Hilbert product (F IF) as being the usual ac-
tion for a Yang-Mills theory written in a basis-
independent fashion. Here the analogy is V V
= V~VJe,- ~ e,- = V'V~g,-&. On the one hand, we have
a basis-independent notation, on the other, the
explicit component notation. Each has its own
advantages.

It is possible to express the Einstein gravita-
tional action in this notation also. However, an
interesting distinction between the internal-sym-
metry action and the Einstein action arises. For
internal symmetry we consider the inner product
of the Yang-Mills two-form with itself but for
gravity the inner product with a constant curva-
ture tensor (tw. o-form) is taken. This is what
introduces the gravitational constant v = c'/GS
-2.61 x10" cm ' and allows one to recover the
Newtonian limit as we shall see. Thus define the
"constant" metric two-form (constructed from the
metric on bivectors, the coefficients of two-forms)

C = v(g~g, -g)'gi)B 8'Z,.

Here v=c'/Gfy; Z,y-~(E,y
—Ey;), with E,y

the
matrix whose components are (E;y)» =g@gy,
The coefficient yc(g,'gy) -gy~gI) =C", is the Riemann
tensor when the curvature is constant; 8 = 7"„dg" as
usual. %e can write the curvature as follows: R
,'R,'y) 8' n 8—'g„.; then note that tr(E, y E») = ,'(g«gy~-

-gy, g;~). Now we can write the Einstein action
as

(C i))) f-', tr(C' R)=

If we had introduced (R ~R) as the action, which
equals —f d4x(R~yy, R~yyy)l-g, by analogy with gauge
theories ((F

~
F)) we would not recover the usual

matter coupling, since we would not have intro-
duced the gravitational constant, z or 1/G. How-
ever, one can construct a theory which has the
same set of metrics, g „=F~q,-,.F~, but is derived
from a quadratic action.

Note that d8'+(d&~8~ = T' allowed us to find the
connection coefficients by using the fact that the
coefficients C&k could be computed from

d8' (—'C 8~) *By =d8'+&oy8y = 0 = T', (45)

since

d8'= —,'(I'y („Y~F~y)8 n By.

Then

Cy~k=Fy Yk 7 )„.
Thys formula was used to obtain

1 k
tuyy = 2(cyy))+Cyay —Cy)),y8,

which can in turn be used to find

k l k~R«J)(kr)8 ~8 =d

Indeed

(46)

(4V)

(48)

(49)

~;y ——&),y~ ~&));y ——~(c;y))+C ))y-Cy;~)

Thus

~(Ryyi))8 "8 =2(~syy)y+~myy~) r+~))y~~my)8 *8 ~

(50)

To include torsion add (-&u,y T~, ).
From this formula the symmetries R«&&&»&

= -R
tJ„z»= -R «z&, »& can be read off. The cur-

vature scalar Rz can be calculated

R,-g g R„krik fr

kl kl m km l
ia +m~ r )~+))rm) ~

Rs =&"Rajya=&"(r'yaiy+r'irya+ry rFa)

Now

(54)

r,', =-,'q™(c„y„+c„„-c„„)

Using the more familiar I',-» symbols we can write

R'year=(r'yi)a+r~r"yr+r, ' r. » ry"-=& *r*ya ~

d4x ~R', ~q &-g = z R~l-g d4x, (44)
k l Ckr&

where R~ is the curvature scalar of space-time.
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ef g ek + TS ef p gA' (56)

we can reinterpret the Lagrangian. R~V-g, using
Eq. (56), as a theory of pure torsion (e&~=-0, but

T&~ =—,'Cii~)——. The higher derivatives of r„' in
C»"', can be removed using by-parts integration.
Of course, in the gauge C&, ——0 these terms are
also missing. However, when one integrates by
parts, the symmetric part of the Y' derivative
also appears. Thus define

(59)

analogous to C,'.k. Now find the quantity 4', k de-
fined implicitly by

":.= Yi Y,*YN2[ii"«i a+ci~-i)+Di J]
Yaf Y» Ykgl

l P v ik

pV '

~,'k = 4k', implies that I"„„=I'„
The by-parts integrated action is simply

(60)

A =tc q Ak A~l,- Yd4x . (6I)

Note that this is not the naive action Tf» Tfkl or
C k,C' ' for the frame to which one would natural-
ly be 1ed by analogy with gauge theories.

In fact in a gaugelike theory for both 8' and. ef

R, =[ 3c„'"+-.'c'"'(3c„„+c„„+c,„,)], (56)

ci r lmc cimi, alii}mugs

each is raised in place. Observe that for a fully
antisymmetric constant C&» which occurs for the
rotation group C;» = e,» where ijk run over only
three values and then R~= -4e' c,~k. See Sec.
IV of paper III.' Since the derivatives of the vier-
bein field Y„' satisfy the equation

the obvious choice would be ii&T IT)+&R IR) as the
action. Here v has dimensions of length to the
minus second power. Introducing' the Planck
length L satisfying L' = I/a' and noting that dim[R]
is zero and so is dim[(l/L)T], we can write the
action using T =(1/L)T as

or,

&T I»+ &R I» =I L I &T I »+ &R R)

=.&T I»+&R IR), (62)

kl +R,yklR'fk g d4X.

Note that when functional integrals are evaluated
carefully, they are defined in Euclidean space.
The metric q~f is replaced by 6 ~. The internal
structure becomes ISO(4) and ghost fields are re-
moved. Here the connection coefficients and the
vierbein fields are to be varied separately. We
will not examine thispossibility further here; even
though this action is the one, one would be led to
based on analogy with gauge theories' quadratic
actions. See Secs. III of paper II and IV of paper
III.' Here the gauge group is the Poincare group,
ISO(3, 1), where ~& is associated with SO(3, 1) and
8' with R4, translations.

(~i gi

o oj
is the matrix' of connections. This matrix can
be obtained by contracting the group SO(4, 1) or
SO(3, 2) connections.

It is important to note that the actions differs
from the gauging of a purely internal ISO(3, 1) be-
cause of various factors arising from derivatives
and differentials. More specifically we can ex-
amine the purely R4 piece of the action and find

I Ti Tn (1&ii gs gt) giAgm = (i~ ~ ri yn )peik &yvaa(y+ rx)(re Y„)]d4

= -(-,'q, „Y.',„r.i,.g( ', Y; r', r™Y-B)[det(r'„)](q"q'" q'"q")}d'~— (64)

A purely internal R' would yield only

g,-„Y,'i ~
Y"

~

—,'g' g &d'x with g ~ = g ~. If it. were
not for the factor Yf Yk Y, Ya detY', the internal
and space-time actions would be the same. This
would then permit quantization along the lines in-
dicated by 't Hooft. "

From a gauge theory viewpoint we should quan-
tize Y', notg „; theng„„= Y'g,-f Yf is a composite
of the r'„'s. Even if the torsion squared (or trans-
lation squared) action is renormalizable (possibly
under some conditions on the coefficient
Y;Yi, r", Ya det Y'„, appropriately symmetrized),
it is far from clear that the action of Eq. (61) or

(65)

would then be renormalizable. We remark that

gauging only translations is structurally simpler
than E instein's theory. For further remarks see
Secs. III of paper II and IV of paper III.'

What happens in the case of Yang-Mills fields
on a curved manifold'P Here we take

(c 0) (R 0)

(0 z) (0 sp

R =den+co Ace, F dB+8'~B& C =Ckl8ff k l
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and define the action (Y,' and B"are the dynamical
fields)

of the matter fields. When transporting a frame

F, along a line x(&), we found

Kg~ —gF „F~ -gd X. (67)

dx~ (x)
6e, = lim F, B'„(x(X)) dX

X~~ O p

In the rest of this paper we will suppress ref-
erence to the choice of topology on the base mani-
fold. We will assume it to be quite general and
consistent with the, field dynamics. In Ref. 4 it is
pointed out that sources and holes in the manifold
are intimately related. Manifolds with holes ad-
mit regular connections which can behave as if
there were distribution valued sources. E.g. , let
gD(x) be the characteristic function of D, a subset of
space-time M, and letD be its complement. Then if
D is excised fromM the actionis J~(- ,E E~)d-'x.
The equations of motion are y~(x)(8'A„—8 8 A) =0.
(8'A —8 8 A) can be arbitrary on the interior of
D; only the surface is-relevant. By extending the
action using conservation of energy, effective equa-
tions of motion for D arise. In the limit as D be-
comes a set point moving in time, one finds that
they obey the classical equations of electrodynam-
1cs.

=— lim F,[B,(X)]dX.
kg~ p 0

(68)

Bbz
[F'„F]= lim [eb, e] ' dX,

0 0
(69)

where

Here x(X) is a curve in space parametrized by
X (= [0, A.,] with x(0) the initial point and x(&,) the
end point of the arc. Bb(X) -=Bb,(x(X))dx~(&)/dX
is an SU(n)-valued function of &. To introduce
matter fields we must extend the number of basis
elements by at least one: F, (F„F). Now in the
limit that X, 0 we found 5F, =Fb[B,(x)6x~]
=FbB,(x), which depended on the initial direction
of the arc through 6x~. Since matter fields are
not dependent on the direction of the arc (they
carry no index), we expect the coefficient to be a
function. This can be obtained through the arti-
fice of a distribution valued connection as follows:

III. BOSE MATTER FIELDS B'.(~) =B,b.(x(~))
dx" (X)

(70)

Now we will cons'ider a formalism leading to
actions having matter as well as gauge and vier-
bein fields. We will wind up with actions having
a conventional expression in terms of their com-
ponent fields, but we will start from a viewpoint
which may ultimately lead to a deeper understand-
ing of the role of matter fields in the geometry
and topology associated with gauge theories.

Since matter fields Q interacting with gauge
bosons B„carry no space-time index p. , they
are scalars, that is, zero-forms or functions.
We will deal with spinors and other objects car-
rying Lorentz indices shortly. Thus it is natural
to consider an object which has sectors containing
gauge bosons (one-forms) and matter fields (zero-
forms). Another technique"" for including matter
fields is to go to a (4+1)-dimensional space-time,
but this approach is somewhat artificial since the
fields depend only on x, the cylindrieity assump-
tion, if the extra direction is Bose. 'The matter
fields are associated with the fifth direction which
is to be integrated over. We will give details at
the end of this section.

To make this idea more concrete let us con-
sider a specific example. Let SU(n) be the gauge
group and let C' (complex n-space) be the domain

eb(~) = y'(x(~))& (~). (71)

5[F„eg= [e„e]
0 0

(72)

5x"(= A'(M), forms, I (= A'(M) functions. We will
suppress the I as understood. We notice that the
relation

6[F., e] =fe, e] " =[F. F][fl]
0 0

(73)

defines the augmented connection A. In the (4y1)-
dimensional approach"" the I is replaced by d8,
an infinitesimal for the circle or a Qrassmann
manifold. B and Q are independent of 8 and B~~

=0.
By making first one displacement, then another,

we find

6~(&) is the Dirac & function and represents I for
line integrals. Just as the first term B, can be
associated with one-forms (infinitesima, l displace-
ment) the second can be associated with zero-
forms [functions at x(0)]. Indeed we find the limits
above to be given as
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—', (d5 —5d)[F„F]=d[F,B'„,5x",F,(f)'] —5[F,B'„,dx", F,Q']

=(F))[—,'(Bt, [„+B„',B',)](dx" 5x" 5-x"dx'), F,($~)„yB„',(t) )(dx" 5x")]

i~a~ ~
0 0

—= [F~, F][P], with P the augmented curvature, (74)

E„„=B„[„+[B„,B„]. (vs)

We note that P =—dA+~+0 can be defined and calculated using the standard rules of exterior differentiation.
But we have introduced these ideas in a pictorial fashion using "real" displacements. The forms and the
displacements can be distinguished: dx"Adx"=—2(dx"5x"- 5x"dx" ) and dx" = —,'(dx" —5x"). However, the carets

A A

have been dropped. 'The product dx"~dx" can be associated with an area element and dx" with a line ele-
ment as in Fig. 5. Note that

i

(dx")*A dx" = )(}""d4x. (V6)

The action can now be obtained. from P, the augmented curvature. By taking its Hilbert square, the open
circle denotes another product such as trace

E* 0 o E D, 1 E+E . EaD—tr
D* 0 0 0 D+E BnD

l

[=4E„"„E„'"+2 (Q [„+pB„)(p'"+B"y)]d'x,

=1D —= ((1)[„+B„Q)dx", E = (E„„)dx"Adx", A„oAs —= —tr(A„Ae) = 5~s,

which is recognizable as the action for C" scalar fields interacting with gauge fields in SU(n).
In the five-dimensional approach the connection is assumed to have the form

„B",(x)fA„'.dx~ y'(x)d8
a~8, , e~ =[e» e]

0

where

B~,=B"iJt ~, defines B"„.
The curvature is

[F., F]P =-,'[d, 5][F., F]

=(~~~ ~j
0 0

(V7)

(78)

(80)

(81)

With an appropriate definition of the product o we find that the action is

(P [P) =
Jt [=,'E"„„E"„"+ (P,„-i/A„B„")(Q ["+ iB""A Q)] d4x d8. (82)

Since the integrand is independent of d8 we can integrate over the fifth variable (normalized to one) and
find the usual action

(P[)') J [-,F„F„.+(( ~—i(A ))~)(('"+iB"i) ())d'x" (88)

This choice of connection makes the mathematics of the "augmented" connection obvious. The point is
that a connection with values as described above, B„(x)dx and $(x)d8, can always be associated with an
augmented connection B~(x)dx and $(x)I in this fashion. The physics is the same. The main difficulty
with the (4+1)-dimensional version is a philosophical one. Why no dependence on this fifth variable'P"
It acts only as a crutch to get the usual action.

Indeed this procedure can be extended to larger groups. One can form a unified theory on a space of
4+1=5 dimensions, and then break the unified group by a special choice of connection. That is, if G„ is
the initia. l group [having an action on an n-dimensional space as SU(n) does], a breaking to G~ xG, with
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to

p+q =n can be performed. Let dye=(dx", $8); then a G„connection on five-space is broken by restricting
it from the most general

B'„,(y)dy" (j&'„~(y)dy" B'„,(x)dx" Qq(x)$8

y„',(y)dy" B„',(y)d.ys $~(x)g& B„',( x)d x~

Define ggb to be 8'd8' (or dg~) if d&*~dg~ is symmetric (or antisymmetric). There would therefore be no

diaton gauge fields. The Yang-Mills two-form is given as follows (ding terms are omitted since their
dual vanishes):

(s5)

(--'F" P"~ '7 "F-"-" IT"B" D'B" )d'xvg al 4 vp. f/+ 'v ef + v ja

where

ab ab a cb fj ij i &1+vg-BI [v+BvcBI ~ +vie, -Bp, lv+BvoBp, y (sv)

D ibyag Bb' fbi yaBbj
v tv+ vb 0 v

Dfb y jb y jBcb Bf ebb
v Iv c v + vk

(ss)

Appropriate definition of the product o has been
used. The effective action is invariant under

G~ XG,. When unitary groups are decomposed
in this fashion, an extra u(1) invariance arises,
since

su(n)- su(p)+ su(q)+u(1)+(C )'.

The action is found from (P(P) =6. After $8 inte-
gration it is

This symmetry breaking by use of an extra di-
mension can be represented diagrammatically.
See Fig. 6. The coset'"' generators (Cb)' are as-
sociated with de, the generator for S'. It is pre-
cisely this sort of identification of cosets with de
which allowed us to use augmented connections.
That is, instead of considering B„dx with B
c su(p)+su(q)+u(1) and Qd& with pc (Cb)', the
augmented connection uses the same B„dx" but
replaces Qd& by QI. The pair (I, dx") replaces
(d&, dx"). After integration on 8 the effective
actions are identical. Distinctions between SU(n)
and SU(p, q) with p+q =n are being ignored here.
Please note that this technique is reminiscent of
Kaluza and Klein's. "

The concept of Fermi coordinates permits an-
other interpretation of augmented connections.
Knowing that, if 8,. is a Fermi coordinate, fdgb
=0 and f 8&dg&-—1 for each i, and remembering
that duality can be viewed as the operation which
yields the appropriate volume element, e.g. ,

g„~[(dx")"A dxbl = 4v'-g d'x (s9)

dx"

as noted in Sec. II of paper III, we define a gen-
eralized duality operating on supersymmetric co-
ordinates which has a similar effect. Thus on a
two-dimensional Fermi manifold

d&a A Hadg, =1. (9O}

(b)
(

sx" Or for a (4, 2) (Bose, Fermi) supermanifold we
define the operation * on the various kinds of two-
forms in the following way:

dxv

FIG. 5. (a) Area element de ~ dx . (b) Diagonal line

element.

FB

BB:

(d&, dg, )*.(gg, dg, )

-=-(H,d&, ) ~ (8@8,)(v'-g d4x), (91)

(QH, A dx") + ~ (gg, A dxb)

—= (H,dg ) A(8 d8 ) [4-g(—g"b)d'x] (92)

(dx'~ dx") + ~ (dx'~ dx')

(g,dg, )*(g,d&,) [4-g (g"g"b)d'x]. (98)
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Algebra of Fields su(n) su(p) + su(q) + u(&) + (~ )
p+q =n

Components of Algebra
iA dya

i$ dy

i$ dy

iB dya

iA dx i(I}ge

gee iB dx

Differentials in
Base Manifold

dy' = &dx",Ze) dx"; ge

FIG. 6. This is a diagram of the breaking of su(u) to su(p)+ su(q) ku(l) by associating a coset decomposition with
either a fifth infinitesimal (or one can replace d8 by I for the augmented version); d8 can be a differential of a Bose or
Grassmann variable. The coefficients are functions of x" only.

For the case of a (4, 1) (Bose, Fermi) manifold
we find

EB: (ff8Adx")*~(ff8~dx")
=—(8d8) *(g-g g" d4x),

BB: (Cx~ ~ dx")*~(dx'~ dx ~)

Bose coefficients have a nonvanishing Hilbert
square. It forces the cylindricity condition. "

Thus consider the following connection on a
(4, 1}(Bose, Fermi) manifold. .We omit any 8
dependence since its Hilbert square would vanish:

B„',(x)d x' Q'(x)$8
(8«--) (& gg.-—.g'~ ~'x), (9~)

and similarly for (4, n) (Bose, Fermi) manifolds
and for P-forms with P + 2. Note that this defini-
tion of the asterisk implies that only forms with

0

It has the following curvature:

(98)

P=dg+Q + Q

2(B'„~~+B'„,Ba',}dx'A dx~ (yg+B;,y')dx' A ff8

(9V)
0 0

Taking the Hilbert square yields, on a flat base
manlf old ~

(P~P} =
Jl (--,'E'„', E~," +D;D", }(8d8}d'x

($8)

with

E,"„=B~~„+B'„,B'„' and D'„=Q~„' +B,'~ P'. (99)

Generalization to other coset decompositions of
other internal-symmetry groups is obvious.

IV. FERMI MATTER FIELDS

Now we will show how to include fermions. To
do this we follow the lead of Pauli, Cartan, Dirac,
Vfeyl, and others. " Simply stated, the idea is to

replace the basis e„by matrices y„with respect
to a spinor basis & „(we will employ Greek letters
near the beginning of the alphabet for spinors and
the others for vectors). Thus y„=y„"Ss Ssa;
these 8 will be the four spinor basis vectors for
the spin- representation and y„will be the usual
Dirac y matrices. Thus e„~e, =g„„becomes
2(y„, y, jI=g„„I, where I is the matrix, I = I ~&s „
Ss8, identity in spinor space. In general the y„
matrices are 2"& 2" if p takes on 2n or 2n+1
values. We can think of spinors (Dirac spinors)
as being the 2" component column vectors on which
these matrices act, though, more accurately, the
spinors are the elements of the full Clifford alge-
bra (all 2" elements) on a space of dimension n."
Thus, in four dimensions, a spinor is an element
of the two-dimensional Clifford algebra (y =y'I
+X'&, +g'0, +y, "&p„here the a matrices are
Pauli's). There is a linear map relating the g's
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to the g's. For details Cartan's Theory of Spinors
is as clear a reference a.s one is likely to find. "
Now, as described above, we use the vierbein
(tetrad) formalism, since this is compatible with
an Rntisymmetric connection ahd a constant met-
ric. Thus we replace e; by y;, where e; ~ e,.=g, j
and —,'fy„y, )=q;;I. The spin--,' representation of
the Lorentz generators is &&~= &i [y„y,.]. Here

t
~ (mn)

i jy kl J ~(i j)(kl) mn (100)

with

(mq) m
&(kj) (k r) O f k O s O j

—'Oik'Ol 'Of +'Ojl'Ok Qi —'Oi iOk lj —'Ojk'Ql'Oi ~

(101)

Underlined indices are antisymmetrized together
as are those with overbars. The matrices y& and
0;j can be written as

6y; =6(y,. 8s„ass) = I'&», y &(s pss}Y'~6x"

=Fj,.yk8 . (105)

Since y; corresponds to e;, we find that the change
of basis y; is the same as the familiar change of
vector basis 8;. Thus we can proceed to calculate
the curvature associated with changes in s„and
relate it to the curvature of a space-time mani-
fold. Let us see this in more detail.

Consider the transport of the frame [s„,s] around
a loop

by e,. and [o',. ]8 becomes replaced by the spin-1
representation of the Lorentz generators
[-,'(q™g»—q, q', }). Indeed one could generalize this
procedure to other representations of the Lorentz

. group.
Kith this choice of connection for I"&8 one can

show that

y; = y; es s 8 and o', j = o', j Bs 8s 8 . (102)

We will suppress the symbol 8 and write, e.g.,
y& =s y;Bs8. Now the frame we will be interested
in is s and s (in analogy with e„and e). The in-
finitesimal change is given as

—,'(d& —6d)s =see,!»g' ~ g' ,'[of]-s]

2(d6 —6d)s =s„(y~;"-i I',"~ps) g'

=s 4 t' IQ&l-]"O']8'.

Here'

(106)

(10V)

(108)

&s„=s,(- ir, '. I"„&x")=s,(- i r, '„8'),

S =S~g

(103)

(104)

&g»r I»~»+I m» I» +Iy»(I'as Ta~)y

e' = r'dr~
P.

(109}

Here I';„=I„[e~]„'Ifins. tead of the spin-; repre-
sentation we had used the spin 1, s is replaced

In order to obtain the action we can first extract
the coefficients of the augmented curvature

(

»(d6 —6d) [s„,s ] = [ss, s ]

—'R,', 8 * 8'[ j]„ [0" il'. (&l }8&-'l8'

0

(110)

To obtain Einstein's action for the curvature of space-time it was necessary to introduce the constant
curvature tensor C,", and an associated two-form which we denoted as

C = ,' g(6» 6~ —6—»6 ', ) 8» A O'I';;,

where (Z;;;)', =»(F.;; —E,;)~& was the vector representation of the Lorentz generators. Here we replace
(2;,.), by (e;,.) s, the spin--, representation of those generators, and

C =2s(&» &f —&,'&', ) 8» ~ 8'o» =mr+8» ~ 8'. (112)

Just as the introduction of the constant curvature form leads to an action linear in the gauge-covariant
derivative of the T';jk's we find that by introducing an appropriate one-form we can have Dirac spinors on a
curved manifold. It seems that there may be a. deep relationship between Einstein's action and Dirac's
action. Thus we introduce the augmented version of the constant curvature two-form. C is no longer con-
stant and instead it is given as follows. Vfe will refer to this as the K-structure:
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0

—xv„,8 ~ 8' —iy, 8'g.

=2

0

e, P indices suppressed on next lines,

0 0 0

Vfe can construct the action. Here the open circle will be proportional to the trace, and, for typographi-
cal reasons, we will use parentheses with bars, (, ), to denote that the enclosed matrix is to be (Dirac)
conjugated Th. us (R) ~K.

,'~i /*i' —if' *

0 0- 0

; zR~+i y' ~; —i F „cr'. Q-g d'x v'-g =det Y'„'

The bar denotes Dirac adjoint. To recover the usual feqmion action we need the contribution from the
adjoint basis, s and g. %e use a formalism which admits mixing between g and q . The connection is

1~j~[ k]8ej ~8 0 0

0 0 0

0 0 ( i 1',i, [oJ ]„6')

0

5r„=s~i I', [a',. ]Be',

5s =spy

5s =[i I';~J(r',. ]8s8,

5s =P~",

since &[s, s, s, s] = [ss, s, s, s]Q in this peculiar notation.

a&&I ii * ~ +f (0(( —i 4i~yk) ~ 0

0 0 0 0

0 0

0 0 0
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', ~(ip Ap) (i oy)

(1-18)

S=(K~P) = [«,+Q[y'( —'i ~ s, )+-,'I" (y', o'q}]y)Q-g d x

(119)

with

P=y'is; =y', (a& —a;) and I'*=I', e," . (120)

K„,=P, P(T„,p
—T„p, +Tp„,)

the contortion and

(125)

Note that

~i jul

Y5 ~ g ] Yi +j4+l
Z ~

I"*=2e'";Y~ ~, Y," Y„' . (123}

Not only is there axial coupling, there is deriva-
tive coupling to the vierbein field, unless the Y„'

and ~'„' are varied independently as in a first-
order formalism. %hen flavor or color is included
there will be vector coupling. This could lead to
anomalies. "

While this term may present problems for the
quantum version of the theory, it is there because
it was required by local Lorentz invariance for
the spinor fields. Several authors"'" have pointed
out that this term leads to an a.ction which is no
longer invariant under index exchange for the
connection (I'„,—I;„}.What one can write is
that if V~g„, =0, then

( X) (124)

with

changes in another coordinate basis to v'- ~y, .
Let us consider the term —,I'*gy, y P. By return-

ing to an examination of the idea of gauging the
Lorentz group we see that since P'= e ' '

g under
SO(3, 1), the spinor gauge-covariant derivative is

(121)

The symmetrized Fermi kinetic term is

i g(y'v; —v, y')p =g-', ipig+ I'*gy, y tp, (122)

(126)

the torsion. f p„j is the usual Christoffel symbol,
Since F„„is no longer symmetric, there must be
torsion when there are spinors. But because of
spin averaging most macroscopic consequences
are minor.

In the theory whose action is given by Eq. (119),
called the Einstein-Cartan-Sciama-Kibble" theory,
one ca,n show that

Note that all three indices p, v~ are antisymmetrized.
Where there are spinors there must be torsion.

Clea, rly one can form other basis currents be-
sides y,~ss (3s and a,~»s Ss . In addition, there
are

ass s, (y~y, ) ss 8s, and (i y,}ss„8s

(128)

Denote by y„ the set of 16 Dirac matrices satis-'
fying y„=yoyxy, . %e will show in Sec. III of paper
II that these transform as the 4 4 representation
of U(2, 2) [or SU(2, 2)] the covering group of the
conformal group, SO(4, 2). Further, the fermions
P themselves can be included to form a closed
graded Lie algebra which we denote by D(4 ~1).
Sometimes this graded Lie algebra is called
SU(2, 2 ~1}. But since Dirac conjugation is used
to form the adjoint spinors P —= g~yp instead of just
g, we will symbolize this graded Lie algebra
by D(4]n); see Sec. I.

Let us ignore the spinor fields g temporarily.
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The Bose piece of the structure we have been
considering has the following set of basis trans-
formations:

ds„= ir~[(u„',(o', )g.]&x~,

de, = e,[r„~,]dx",
dZ = e~[ I'j )dx" .

(129)

des = ~&[1pa]dx

dI'=e, [Y', ]dx".
(130}

We now require that F„~~ = ~„'~ a,nd m P~& = ~~&. m
has the dimensions of mass; see Sec. III of paper
II.'

For those familiar with fiber bundles we note
that this is an SU(2, 2) bundle over a curved base
manifold whose structures have been "pinned"
together. For those not familiar with fiber bundles
a brief review of our notation and some of the
concepts involved is in Secs. II and III of paper
III.4

I will briefly describe some of the essential
features of connections on fiber bundles. Intuitive-
ly, one likes to think of a bundle B as the union
of local copies G~ of a given gauge group G where
the union is taken over all points P in a manifold
iV called the base manifold:

We have implergented the idea that ej transform
like y,.8~@@Ss"by requiring j."&'~ = u&~~. Thus we
have tied together a piece of the internal-sym-
metry gauge fields with the connection for the
space-time manifold. We will refer to this opera-
tion as pinning.

For the D(4) or SU(2, 2) structure we can intro-
duce the connections

d 8~ = g ss[(d~ I~ + &d~ yp ~ + (dp y(o'y )~

+ ~g'(ysy„) 8+ &of(i y, ) 8]dx",

expressed as

Q. 'A„(x)dx" Q+Q '9 Qdx~+Q-'s Qdy'

(132)

wh~re, for each x, Q(x, p) =exp[r~(x, g)A~] is a
diffeomorphism of x '(x) onto G. fA~] is a reali-
zation of the generators for G. Note that if (p j
are differential operators, B is a. principal
bundle. If (AD] are matrices, B is an associated
bundle. W'e note that by changing the frame v
reduces to A,

dF„'= esvg(x, P),
de„= eQg(x),

e~ = ~a~~.

(133)

Thy action is independent of frame. As lang as we
are not concerned with the details of gauge choice,
we can get by with the bases in which the connection
takes its more restricted form. The consequences
for gauge choices are considered in Sec. III of
paper III.~

The curvature two-form is horizontal, that is,
it involves only dx"+ 4g" terms:

A=-,' tr I*~I'

tr E*~E

~ Q '[dA+A*. A]Q

= Q-'[z]Q

= Q '[~(8„A„+[A „,A„])dx" ~ dx" ]Q. (134)

Introducing ~dx" &.dx" =&-g (~s""qp)dx ~ dx' we see
that the action is independent of P':

B=U G, = U(P}xG. (131)
E" ""4 gd'x (135)

But in fact it is more accurate to say that a bundle
B is a manifold having a right action by a sym-
metry group G ca1led the structure group, which
allows one to define equivalence classes. The set
of equivalence classes M =B/G is called the base
ms, nifold. The map n:B-M =B/G is called canon-
ical projection. The set n (P) = G~ is called the
fiber at P. Every fiber is isomorphic to the fixed
group G, v '(P) =G.

A connection on this bundle must respect the
right action by G. This forces the connection to
have a, special dependence on the group parameters.
Indeed, in a local coordinate system (x~, P') for
an open set W = U& G of the bundle (Uc: M; G is
the group}, we can show that the connection can be

In the case of the SU(2, 2) bundle described above,
there are nontrivial connections both in the
horizontal (base) and vertical (fiber) structures.
We have taken the action to be only that of the
fiber while requiring an exact equality of mF'„
with co'„and I'

&
with +„'&. If contributions from

the horizontal structure were included, further
ambiguities in the relative magntidues (coupling
constants} of the terms in the action would arise,
since one has no a Priori way of assigning relative
weights of horizontal and vertical, pieces. We can
of course weight them equally in an ad hoe choice.

Another way out is possible. In this approach
we consider aflat base manifold and a fiber with
the Poincard (or possibly de Sitter) group as
structure group. 9ut we give the vertical gauge
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dP = e'„dx",

de' =0
p

de = ejmY~ dx",

de~ = e~I'~ Jdx" ~

(136)

m is a massive coupling constant. We will con-
sider both the Poincare group and its extension,
the de Sitter gr oup, as structure group. Introduce-

C U —y'~ Ys

and A, , a parameter which will determine if the
group is de Sitter or Poincare. Set

(138)

The limit A. = 0 is the Poincare group; A. g 0 is the
de Sitter group. The metric is

g'(ec, eg) =8;g,

g(e, e) = -1.
(139)

Given a form dx" ~ dx" we will define the map
(which will not actually be the Hodge dual, it will
just look like it) using the gauge fields Y'„or 8'
= Y' dx"

p y

*(8' ~ 8') —= —'e'~» 8» ~ 8'.
Now

*(8t A 8if) A (8m ~ 88)

(140)

~f~J%80 A 81 8»

q'Q~"det(Y, )dx' ~-dx' ~ dx'. ~ dx». (14])

fields an action which looks exactly like the action
for a curved base manifold. It will be a specific
rational (ratio of polynomials) action in these
gauge fields and their derivatives. When the
solutions are examined, we will find exactly the
same solutions as for a cruved manifold, since
the equations of motion will be the same. We will
not deal with questions about patching together
solutions, asymptotic flatness, and singularities
in the equations here. Only the interpretation will
have been changed. Indeed this is the sort of view-
point that many particle theorists tend to favor.
The gauge fields may have a complicated set of
interactions but they are on a flat background. In
fact, in terms of computing the relevant diagrams
one is effectively led to this viewpoint.

Thus instead of considering a curved manifold
we consider a special fiber bundle whose struc-
ture group is related to that of the symmetries of
space-time but whose base is flat. The infinitesimal
transformations are given by

Therefore

*(dx"~ dx") ~ (dx" ~ dx')

[Y-", Y~. Y» Y„']g' g+[detY»]d4x (142)

To do this we need F„' to be a nonsingular 4 && 4
matrix. This requires that the vertical structure
have a four-dimensional coset. We can therefore
construct the action for this fiber bundle as

8= —' tr *T

m II»
g v $ g~g p + &~g v~ ik~jL~xp

Yy YxyvY e eP

If A. 0, the de Sitter group reduces to the Poincar 4
group. If m -0, the ', Poincare group reduces to the
I orentz group.

It we take the structure group to be the full set
of symmetries of the flat manifold, we are 'led to,
SO(4, 2), the conformal group. We remark that
the infinitesimal action on a coordinate is given
by

dP = e„dx',
de„=0,
ds = -is,y', u)ldx".

(146}

The reader can show that the objects yes S s~
transform (under displacement) just like the ex's.

By extracting the vector piece of the connection,
~„'dx"y, , we can define a map * as above which

5x„=5a„+5&"„x„+25b xx„—Q) „x + gpx„

where 6a „, Geo"„, 6b „, and 6p are 15 small param-

eterss.

We pick the structure group to be (at least locally}
isomorphic to the group of symmetries of the base
manifold. Of course, they do not act on the
tangent space in this viewpoint; indeed the con-
nections are given by

dP = e„dx",

de„=0,
der = ez&~rz(o~dx~

The e„are tangent bases. The er are an adjoint
basis for SQ(4, 2). ex~„are the SO(4, 2) structure
constant. In fact we choose to work with the
covering group of SQ(4, 2) called SU(2, 2) so that
we can introduce spinor s. Thus we work in the
fundamental associated bundle for SU(2, 2}. By
including the identity we can add on one extra
U(1) to form U(2, 2). The connections are there-
fore
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yields an effective gravitational Lagrangian:

*(dx Ad%)a (dx Ad%)

-=[(u,"(u,".(o'a)„']q'+q~"[det(o,']d'x .(147)

Note that the coefficient of d4x has dimension
zero. Now define

yr -dv yI ~co~.yg~ v~'Yi

and take the action to be

tr["(&Y&}" (P'~,)].1

(148)

N is a normalizing factor.
Of course, given the richness of the Polynomial

SU(2, 2) structure (without the ratio of &o„''s), it
may be that the solutions to its equations of mo-
tion already fall within the envelope of current
gravitational experiments. Such a polynomial
theory would be conventionally renormalizable.
But then we would lose the natural relationship
between ~'„and the vierbein field.

Just as SO(3, 1) is the structure group for a
real four-manifold with local metric (1, -1, -1,
-1), SU(2, 2) is the structure group for a complex
four-manifold with local metric (1, 1, -1, -1).
The orthogonal groups can be extended to the
orthosymplectic group as a structure group for a
real superspace (having Bose and Fermi coordi-
nates). The SU(s) groups can be extended to the
SU(n ~m) groups as structure groups for a com-
plex superspace. But space-time is a real four-
manifold (unless one admits Kaluza-Klein" type
modifications). Thus it seems unreasonable
to view SU(2, 2~m) as the physical manifold's
structure group unless there is some natural way
to select a real, vector four-manifold from the
complex four-manifold. "

As far as I know there is no natural way cur-
rently availa, ble to embed a real four-manifold
in the complex superspaces whose structure is
given by SU(2, 2 ~m). But I will describe what
is currently known.

Penrose and MaeCallum" have related the
column matrices on which SU(2, 2) acts to null
lines in space-time (equipped with spin information).
They call these SU(2, 2) column matrices twistors.
By intersecting two Minkowski null lines, points
in space-time can be selected. But, because the
null-cone structure is tied to the curvature, it
does not seem to be possible to replace coordi-
nates by global twistors for use in the field theory.
Thus we are led back to the flat base with a curved
bundle.

Of course, there we can make such a relation-
ship; however, other difficulties persist. Each
twistor has eight real parameters. Two of them

(required for intersection} have 16. But a position
contains only four parameters. It is not clear
how the connections should depend on the rest of
these parameters. One might think of forming
vector coordinates out of the bilineax s, but even
then there are problems. There are 16 bilinears:

S=XX,

p"=q-,'(I+r')r q,
~ "=x-' [r",r"]x -=xI:""x,

K=X (I —Z)I X

D=qir5x.

(150)

They are formed from the eight real parameters
of X using the r matrices for the base manifold
(r",1")=2q""I. But, of course, they do not de-
pend on the overall phase of y, leaving only seven
parameters. Thus there must be nine constraint
equations among the bilinears. Some of these are
the following:

P'=0

SP =0,
SD=L -B,
S' D2=K 5-,

(151)

+ ~"-,'(I —r') I,+ eir'],
~~ = -iKrKX,

58= 0,
5P„=8p M~„—2z D+ ~"„P„—2gP

6K„= -8giMi„—2p++ (o„"K„+2&K„,

5D = p "P„+tc"E„.

(152)

(153)

(154)

But under the action of an infinitesimal SO(4, 2)
transformation on coordinates x" with param-

where i.' = —~'~e'
jk'

We note that V' =(P+K)'&0 and A' —= (P-K}'&0.
The sum is in the forward light cone. The dif-
ference is in the spacelike region. Neither com-
bination spans all of space-time. A combination
that does is S(P"+K")+D(P"—K') =SV"+DA". -
But it covers space more than once. V"= (P"
+K") would be admissible only if one accepted the
idea. that space-time is in the forward light cone
of a. single point.

The transformation properties of the bilinears
under an infinitesimal SU(2, 2) transformation are
as follows:

r I KrK
K

=I-f[p~(1+r')r, +~"z„
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~"yr = 0 'err(x)dx"yxQ+ 0 'dQ,

0= exp[-if(x "y"Z~„)) .
(156)

The dependence on the extra parameters can bq
gauged away as in a fiber bundle.

This entire approach is fraught with ambiguities
and apparently arbitrary decisions. The hope that
a curved vector four-manifold can be "naturally"
embedded in the curved spinor four-manifold
seems unrealistic. The theory ends up (at best)
looking like the SU(2, 2) bundle over a flat vector
base. There appears to be no advantage in adopt-
ing any other viewpoint than that of moving frames
(fiber bundles).

V. SUMMARY

In this paper we motivated the concept of local
frames as bases for the infinitesimal displace-
ments in the manifold. ' In the case of four di-
mensions they form a system of four independent
vectors tangent to the manifold. We extended this
basis to include extra "legs" which did not cor-
respond to space-time displacements (they can
be related to internal displacements; see Sec. III
of paper III). A visual, simple example is that of
the normal bundle to the two-sphere. The extra
"leg" is a basis for the line attached to each point.

eters (a",&u~", b„,c] we find

5x„=a„+&u"x„+2b ~ xx„—b x +cx„. (155)

The special conformal action (parameters 5 „) is
quadratic; the bilinears transform linearly. Of
course, one could simply use some vector sub-
set of the bilinears which spanned all of space-
time such as SV~+DA~ as the parameters, x".
Then equivalent sets of parameters can be reached
by using either SO(4, 2) or SU(2, 2) reparametriza-
tions. But, of course, the SU(2, 2) reparam-
etrizations lead us out of the initial four-param-
eter set." We are obliged to examine the de-
pendence of the connections on the rest of the
seven bilinear parameters. Whatever the de-
pendence may be, the result is the same. Since
there is no evidence for further timelike or
spacelike degrees of freedom, the connections
can depend at most on some sort of cyclic fashion.
The result is an action depending only on four-
vector parameters.

Let us suggest one of the possible construc-
tions. Take two vectors x"= [(SV"+DA")/(~ SD()'~',
e.g. ] and y" = [(SV" DA "4'(INDI)' ', e.g. ] that
satisfy x =y'. They have seven free parameters
from which all the bilinears may be found. In-
troduce the invertible map M'"~» -M'&g,.

~
which

sends components into components in the obvious
way. Now take the connections to be

Displacements are only allowed on the sphere's
surface.

Under an infinitesimal displacement the bases
can be rotated (transformed) into each other. We
assumed that the space-time and internal pieces
do not mix. The coefficients of these transfor-
mations are the connection coefficients when they
act on the space-time bases and the Yang-Mills
(gauge field) coefficients when they act on the
internal bases. By computing a second-order
displacement both ways and by comparing the
results (take the difference) we discover that the
curvature and the Yang-Mills field tensors arise
as coefficients of the bases. If the curvature and
Yang-Mills tensor vanish, then the bases are in-
tegrable. When these tensors are contracted
with the antisymmetric tensor product of the in-
finitesimal displacements, they are called the
curvature and Yang-Mills two-forms.

We introduced the Hodge dual (generalized
Mmnvell dual) and formed the action as a Hilbert
p.."oduct of the curvature (or Yang-Mills tensor)
with its dual or some other suitably constructed
two-form.

We then discussed three ways to include Bose
matter fields (Sec. III). First, one introduces an
extra basis element (the others have been used up).
Now there are a number of options. Since mat-
ter fields carry no space-time index p, they can
be associated with a fifth basis element, '" /8,
which may be either Bose or Fermi, or they can
be associated with the element I which is a basis
for the functions on the manifold (this can also
be related to distribution valued connections).
Since the effects are ultimately the same, it is a
matter of taste which technique one prefers.

Having introduced matter fields as part of the
internal-symmetry structure (this is done with
an eye to superunified algebras; see Secs. II and
III of paper II), 4 we compute the action for Bose
matter fields coupled to gauge fields as the Hilbert
square of the curvature "of the full internal
structure (augmented or not). This yields the
usual minimally coupled action for scalar fields
coupled to gauge fields. So far no potential terms
are included (see Sec. II of paper II).

In the fourth section we introduce spinor fields
coupled to gravity. After going to a local Lorentz
basis, one can construct spinor frames by the
condition that they transform as the spin- —,

' re-
presentation of the Lorentz action on the vector
bases. The role of the gauge fields is played by
the space-time connection for a Lorentz frame.
In terms of spinor basis transformations the
matrix format of the connection is similar to the
Bose construction given earlier (Sec. III of paper
II). However, the action is constructed as the
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Hilbert product of the curvature P with another
two-form E constructed by index saturation; this
yields an action linear in both the connection and
Dirac spinor. The question of whether there is
a deeper way to understand this auxiliary form
is examined in Sec. III of paper II. The product
(K~P), suitably symmetrized, is the minimally
coupled action for spinors on a curved manifold. '
It is interesting to note that the connection couples
as an axial vector to the spinors. In a theory with
vector couplings the problem of anomalies arises. "

Having introduced the spinor bases, we consider
the question of whether they may be more funda-
mental than vector bases and whether the coordi-

nates x" can be similarly replaced by spinor coordi-
nates.
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