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We present a formulation of quantum field theory as a path-integral representation for elements of the U
or S matrix in the coherent-state basis. These n&atrix elements are shown to serve as generating functionals
for all the usual S-matrix elements between states of definite particle number. The coherent-state formalism
for general bilinear quantum field theories is described and then incorporated into the construction of a path
integral such that the formulation is independent of any canonical formalism. We discuss the relationship of
this formulation to the usual path-integral formulation and show in what sense they are equivalent for
canonical theories. We also discuss how this formulation is more general than the usual one in that it is well
defined even for theories having no canonical form and for which a Lagrangian action and the usual path-
integral formulation may not apply. Applications of this formulation to specific calculations are exhibited for
the cases of a quantized field interacting with a given external .source and for the renormalization of the
simple quantum field theory model of a scalar meson field interacting with a nonrelativistic nucleon field.

I. INTRODUCTION

We consider the formulation of a quantum field
theory that combines the path- integral representa-
tion with the coherent-state representation for ele-
ments of the U or S matrices. This formulation is
useful both for proving fundamental properties of
quantum field theories and for performing specific
calculation. s.

The path- integral formulation of quantum field
theory has been very prominent recently in ele-
mentary particle physics, and there exist many
fine reviews of the subject in the literature. ' Some
of the earliest work in this subject was by Feyn. -
man, who developed a path-integral representation
for quantum amplitudes and applied them to inte-
grating out (the degrees of freedom of) the elec-
tromagnetic field in quantum electrodynamics. '

Coherent-state techniques have also been rising
to prominence in general quantum field theory and
elementary particle physics as well as in quantum
optics. The application of coherent-state tech-
niques to problems involving large quantum num-
bers in quan. turn optics is by nom rather mell
known. ' Recently coherent states have been used
as the foundation for statistical theories of cor're-
lations of many-particle production processes at
high energies. These statistical theories and
other phenomenological theories correspond to de-
tailed microscopic field theories at a stage at
which some subset of the interacting field variables
have been integrated out as mentioned above. Also
Bolsterli' has used coherent-state methods, with-
out path integrals or lattice limits, to study co-
variant theories of mesons with static sources.

He has shown these methods to be powerful.
The power of combining the path-integral formu-

lation and the coherent-state representation has
been shown in the recent solution by Dente' of the
long-standing problem of demonstrating that quan-
tum electrodynamics has a classical limit. In this
work it mas shown by integrating out the electro-
magnetic field in transition matrix elements be-
tween nonvacuum coherent states that @ED in its
usual form has the expected classical limit with-
out the necessity of imposing any artificial altera-
tion of the theory as was done in the "absorber
theory", of Feynman and Wheeler. '

The coherent-state formalism for general bi-
linear quantum field theories as described by De-
Facio and Hammer' is incorporated in an essential
way into our path- integral formulation. The for-
malism of bilinear field theories, including their
quantization, derives totally from their free-field
equations of motion and associated currents and
does not depend on a canonical quantization pro-
cedure. """This generalization makes our
path-integral formulation in the basis of coherent
states of general bilinear field theories applicable
even for such theories for which no canonical form
exists.

Earlier work" uniting the coherent-state formal-
ism and path-integral formalism has been done by
Klauder. and Schweber, who adapted the lattice-
integration methods of Feynman, much the same
as we do here. More recently fundamental work in
this area has been done by Faddeev, Berezin,
Klauder, and others. " Thus, the basic mathema-
tical details in this area have been, with the ex-
ceptions of a few possible lacunae, rather thor-
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oughly developed. In the present work we as-
semble the formulation with modest innovations Bs
described above, emphasizing the extended gener-
ality and the potential for modeling 2nd treating
important phenomenological problems. We start
on a program of explicit calculations using this
formalism.

A path-integral representation for U- and S-
matrix elements in the coherent-state basis is thus
constructed. Because of the properties of the co-
herent-state matrix elements of field operators,
the quantum field theory problem is reduced to a
quantum mechanics problem. The path- integral
formulation then reduces the quantum mechanics
problem to a consideration of an effective classi-
cal action problem. Thus a convenient and natural
formulation is obtained for the treatment of tran-
sitions between initial and final. states, i.e. , end
points of the functional path integral that are non-
trivial, nonvacuum states such as classical con-
densates, solitons, "vexictons, "vortices;" etc.
This, combined with the fact that this formulation
is in terms of the U- and S-matrix elements,
means that we have a powerful method for ap-
proaching spontaneous symmetry breaking in quan-
tum field theory in a way not previously used for
this purpose.

In this paper we describe in Sec. II the general
formalism of the coherent-state basis for a gener-
al bilinear quantum field theory. In Sec. III we
show how the S-matrix element in the coherent-
state basis of a given field may serve as a gener-
ating functional for all the usual S-matrix ele-
ments between states of the occupation-number
basis for that field. We also discuss there the
time dependence of the operators of a general bi-
linear quantum field theory upon which is based
not only the asymptotic condition but also the ex-
tension to the coherent-state formalism of a meth-
od of quantization that is independent of any postu-
lates of canonical quantization or locality condi-
tions. """In Sec. IV we construct a path- inte-
gral representation of U- and S-matrix elements
in the coherent-state basis for general bilinear
quantum field theories. In Sec. V we demonstrate
the application of this formulation to the calcula-
tion of a specific problem with the prototype of a
quantized field interacting with a given external
current source. In Sec. VI we extend application
to the renormalization of the simple scalar meson
model of interacting fields. In Sec. VII we discuss
the relation to our formulation of quantum field
theory to the usual path- integral representation.
Specifically, we show that our path integral is
equivalent to the usual one for the case of canoni-
cal field theories. However, our formulation is
more general in that it remains well defined even

for theories that have no canonical form and for
which the Lagrangian and its action, and there-
fore, possibly, the usual path-integral formula
tion, does not exist.

(2.1)

This inner product can be formed with any pair of
suitably well-behaved functions. It will be inde-
pendent of time t whenever P and X each satisfy
the field equations from which the conserved cur-
rent J„is defined.

Instead of the usual canonical commutation re-
lations (CCR's) we adopt the more general form'"
required by the symmetries of the equations of
motion:

[g, S]=sf,
where S is a symmetry operator

(2.2)

S= g'x Jo(g, sg) .

This expression, coupled with the locality as-
sumption for independent fields

(2.3)

can be used to obtain the remaining equal-time
commutators. They are not necessarily CCR's. '"

Of particular interest for our use is the operator

(2.4)

where Q(x, t) is any suitably well-behaved c-num-
ber function; g(i, t) is an operator-valued solution
of tl".e field equations, and z is a renormalization
constant. For bosons g~ = q~= g~ = 1, and for fer-
mions g„=g~ and g„=g~ are a pair of anticommut-
ing c-number quantities for which

The commutator of the operator 'E~(t) with the
field operator follows from the form of Eq. (2.2)
as

[g(x, t), z~(t)]= z* 'i'q„P(x, t) . (2.5)

II. THE COHERENT-STATE BASIS

For a field theory of the usual class' in which
there exists, as a consequence of the field equa-
tions of motion, a conserved current Z,(g„g,) that
is bilinear in g, and g„which are any pair of so-
lutions of the field equations, the timelike current
component J,(g„g,) defines a bilinear structure
that can be used to construct invariant inner pro-
ducts as
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This commutation. relation implies that the oper-
ator E~ generates transformations of the field
operator g of the form

e-c'"|t(x t)e &'"= tt(x t)+e*' 'q Q(x t)

D'Q DReg DImg
I (w l el)"' (w lel)"'

DP DQ*
(2~x)'" (2~x*)"', ' (2.14)

(2.6)

This means that exp[Z~(t)] generates coherent
states of the field |t(x, t) as

e'o"'In&-=Iy(t)&,
(2.7)

where IQ& is the Fock-space vacuum state. These
coherent states are eigenstates of the field oper-
ator g(x, t) as

(y(t) I tt(x, t)14(t)&=e* "'g„4(x,t), (2.6)

or if g,(x, t) is the pure annihilation-operator part
of g(x, t),

|t,(x, t) Iy(t)&=a*-'"q„y(x, t) Iy(t)&. (2 9)

x exp[—z ' 'q„(P(t), tt'(t)))

-p[-!I I '"(~«), ~«))],
e~x (t)=e~4+x&t)

(2.10)

and therefore

x exp(-,' Iz I-'[(y(t), 4 (t)) (4(t), q(t))]j,

(2.11)

g&(t) I )f(t) &
= exp&--' I& I '[(y(t), X(t))+ (@(t)., 4(t))

-2(4(t) X(t))]], (2 12)

where Q(x, t) and y(x, t) are arbitrary coherent-
state wave functions and g(x, t) is the quantized
field operator. The coherent states IP(t)& satisfy
the completeness rela, tion

f i i

l~("~~~"'~=' (2.13)

The function P(x, t) is arbitrary; with the condition
tha, t it is well behaved wi. th respect to the inner
products that it enters for the specific theory un-
der consideration in a, given case. This coherent-
state wave function P(x, t) can also be used as a
variational parameter in our formulation of quan-
tum field theory in the coherent-state basis.

Using the Baker-Campbell- Hausdorf theorem
we obtain the important relations

yen( f &

exp[@/
1 /2(y(t) y(t) )q ]

Here we have adopted the notation for any con-
stant b,

[Dbp]=]g(bdp~) = (bdp, )(bdp2) ~ ~ ~,

where P~ are the expansion coefficients of the field
Q expanded in normal modes.

All the relations for coherent states mentioned
above apply for any operator-valued field g satis-
fying canonical equal-time commutation or anti-
commutation relations and their associated con-
served currents. '" However, in what follows we
will always be using complete sets of states that
are coherent states of free fields and so the inner
products involved in the generators and matrix
elements of such states will always be based on the
conserved currents of the free fields; i.e. , the
usual type of inner products. In this case the com-
mutation relation Eq. (2.5) on which our coherent-.
state formalism is based is well defined and de-
termined even if no canonical commutation rela-
tion or locality (or quasilocality) condition ex
ists.""Quite generally, all operators of a
quantized field theory may be expressed in bi-
linear form such as we use for the K~ operator. '"

III. S-MATRIX ELEMENT IN COHERENT-STATE BASIS
AS GENERATING FUNCTIONAL

FOR USUAL S-MATRIX ELEMENTS

The S-matrix element in the coherent-state
basis of a. given field in a, given theory may serve
as a generating functional for all the usual S-ma-
trix elements between states of definite numbers
of quanta, of tha. t field. The mechanism of this
generation is the variation with respect to the pro-
jection of the coherent-state wave function P onto
the single-particle modes of the in-states of this
field. The reason that all the usual particle S-
ma. trix elements may be obtained from a coherent-
state S-matrix element is because a coherent state
is comprised of a definite combination of all the
n-particle Fock states of all modes of the field.
This may be shown by projecting the in-field oper-
ator g„and the coherent state wave function Q on-
to the positive-energy free-particle wave function
of the kth mode Q, (x) as

g„„=(Q,(t), g,„(t)), independent of t

The differential element for our functional inte-
grations on the coherent-state wave-function space
is written in the forms

p, (t) —= (p, (t), Q(t)),

where the Q„(x, t)'s are assumed to form a com-
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Z» „(t)= (it'„(t), iti(t))/)„ - q„(@(t),it'„(t))

= Q [$».,„q„P»(t)—q„g», „I»(t)], (3.1)

from which follows

l4(t)),.= ""'"l~~)„

piete orthonormal set with (Q», Q,) = 5»,. So then
the generator of the coherent in state

~ $(t)),„ is
expanded as

duct based on the free-field conserved current is'
used in both terms of this relation.

The generator of the coherent in/out states,
Z»„/, „„ is given by Eq. (3.1) in terms of this
free-field-based inner product and these same
Q»'s. If we now use this same free-field-based
inner product in

Z, (t) =z+ '"(it'(t), y(t))iI„z '"q„(y(t), it(t)),

(3.6)

[ e»», in"Aa»i ice u/»~ »»«&~ ~II)
2

k

P (f'l]~y

tip

(3 2)

Thus the general particle in-state of the Fock
basis is

~ ~ ~ I ~ ~ )
=' (8/BP )'»(I l) i/

i

then it is clear that

wk-lim [Z (t) —'8 „„„„(t)]= 0.
ce (+co )

(3.7)

Justification of the use of the free-field inner pro-
duct in the Z»(t) defined in Eq. (3.6) will be more
apparent after a discussion of the t dependence of
these operators, which also leads us into our U-
matrix treatment in Sec. IV.

The time dependence of the Heisenberg-field
operators is described as

q(t) i H t g(0) EHt-
&&e

(i /» ) I»»l »
J y) (3.3)

where the t dependence has been suppressed, as
it goes away after the $-0, P»-0 limit. This im-
plies that the usual S-matrix element between such
states of definite particle number is

We can also define a set of fields i', (t) that pro-
pagate as free fields with the Hamiltonian Ho
=H- V and coincide with the interacting fields of
the Heisenberg and Dirac pictures all at time t
=0 as

x el/2 (I»»'I»+1»ql2) (yP ( y) (3.4)

/

with P(t)»—= (it»(t), iti'(t)). These relations are di-
rect consequences of the definitions of the coherent
states.

The asymptotic in/out limits of our coherent
states require some discussion. The usual as-
ymptotic condition is given as the weak operator
limit relating (matrix elements of) interacting un-
renormalized Heisenberg fields g(x, t) with the
free asymptotic in- or out-fields it„,„,(x, t), each
in terms of their particle-mode projections as

= U, (t, 0)q(0),

where U, (t, 0) is the c-number time translation
operator for the free field i/io. For example
U, (t, o) = exp(it V'/2m) in the case of a Hamiltonian
theory of nonrelativistic particles of mass rn.
Then

e '""(4(0),4(0))e'""= (0(0), U. '(t, 0)4(0))

= (U, (t, o) y(0), it (0)).

.For the purposes of the rest of the present paper
we shall restrict our considerations to coherent-
state wave functions that satisfy the free-field
equations, so that U, (t, o)i'(0) = iti(t) [and incidental-
ly P»(t) defined above becomes time independent],
and so

wk-lim [(Q (t), ii'(t))- z' '(P (t), il/„,„,(t))]=0,
-~{+m ) and

e'"'e '""(Q(0), t/r(0)) e o'e = (it'(t), itj(t))

(3.8)

where z is a wave-function renormalization con-
stant. The term (Q»(t), i'„,„,(t)) of this relation is
independent of the time t since both P»(x, t) and
it„(x, t) satisfy the free-field equation which deter-
mines the, conserved current that is used to con-
struct these inner products. The same inner pro-

iHt -iHot~ (0)eiHote-iHt

Thus the coherent state evolves in time as

~ P(t) ).= e '"'e '"o'
~ it (0))

=e, '"~Q(t)),

where

(3 9)
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~Q(t)&=e("'e '""~Q&.

The asymptotic inlout states are given as

wk-lim [e'"'e '""I(I)(0)& —
I P(t)& ]= 0,

t-+-oo (+ao)
(3.10)

and the 8-matrrix element in the coherent-state
basis is given by

wk-lim [&(I)'(0) I V(f', f) I y(0) )

where

P(f I f) e (BO&'e ((i ( i' i)e -ii(-o&-

(3.11)

= lim (8jsp'*))&(8/sp, )"~(f (n i) ' '
t~-~
t~~oo

XgX + 0.12)l sl ~ fig'l2+fg t2)

x &y (f') I g(t)& I, , (3.12)
g t Q

is the familiar time evolution operator. " The
time t = 0 is when our free and interacting Heisen-
berg fields coincide and when the Heisenberg and
Dirac pictures coincide.

This justifies the use of the free-field inner
products in constructing the generator Z~(t) in

Eq. (3.6), beca, use all our coherent states can be
viewed as being built at time t = 0 when the free
and interacting Heisenberg fields coincide and
then they evolve in time to other values of t ac-
cording to the above descriptions. Finally, in
terms of the above limits and the Heisenberg field
operators, the S-matrix element Eq. (3.4) is

~ In, ~ n,

Then the U operator above in the limit that t' —t
= & becomes infinitesimally small is

P(f+ ~ f) e (-vI(() (4.2)

This expression is valid to lowest order in & even
if V should depend explicitly on time, .

The field operators of which H Ho and V are
constructed are assumed to be separated into pure
annihilation and creation parts as g=g, + g . A
normal ordering is defined so that in matrix ele-
ments between coherent states the annihilation
parts act to the right on their eigenstates as
g,(x, t) l(()(0)&= P(x, t) I $(0)&, and the creation parts

act similarly to the left on their eigenstates.
This definition of the normal ordering clearly is
the same as the conventional normal ordering. A
result is that in the infinitesimal-time-interval U-
matrix element the exponential operator can be
replaced by a c-number functional as

&yp(0) ~ e (6)'(0-(t ), lk (i) )
~ y(0)&

&$1(0) ~ P(0)&e «v (g ~(2o~ (t')+, g(' ) ~2o (i&& (4 3)

%e consider g„=q„=1 here and in the following.
Because our matrix element is first order in the
infinitesimal & we have some liberty as to the con-
vention for specifying its time arguments. For
example, it might be convenient to label them as
V((I)'(t+e)*, Q(t)) in the exponent functional. We
shall also make use of the choice V(P'(t)*, P(t)).

To obtain the finite-time-interval matrix ele-
ments we start by inserting a complete set of in-
termediate coherent states as

&(( (0) IV(f, ~) Iy(0))

IV. PATH-INTEGRAL REPRESENTATION OF U AND S
MATRICES IN COHERENT-STATE BASIS

(4.1)

The interaction Hamiltonian in the Dirac picture
is defined as

V(f) ei Ho(Ve (Hot-

&4,(0) I &(f„f) I e(0)&, (4.4)

and we do this for. each t, =t+l&, /=1, 2, . . . , N,
with t' —t=(N+ 1)c. After integrating over all the
sets of coherent intermediate states we let N -~
and &-0. This gives

~ '

D
&y (0) IV(f', f)14(0)&= lim &P'(0) I y„(0)&

'"n e '""'"'*' "(~(~"
7T

6~0
D2"-

(0) ~ y (0)& iN ) e (6) ((~ (t~), ()( ) (t)( ) &). ..

&( &y (0) ~

y(0)&e-(e)'((z+ (tz), ( (i)c(' (i~) (4.5)

where the integration variables are defined as
$( —=z* 'i'Q(. Altogether a path integral is built up
in which each succeeding set of intermediate states
may be labeled by the l associated with t, . A re-

. presentative integration is

I

(0) .

~ y (0))e «)'((i ((i( )&i(( (ii&)
r

)( e-is)' ((( (ii), i)-) (t(-) )&&y (0) ~ y (0)& (4 5)

This results in the product of &Q„,(0) ( $),(0)&,
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which just describes the propaga, tion of the kine-
matical weight factor, times a dynamical part
from the V's. Clearly this fea,ture will propagate
through the whole lattice giving for the matrix ele-
ment for the finite interval t' —t

8 (0) IU(t, t)I4(0)&=/ (0) i4(0)&
t' 1

x exp i -dt"'0(t"),
t

where '0(t) is an effective interaction potential
functional of the fields (t)' and tjj& that describes the
results of the path integration.

V. INTEGRATION OF EXTERNAL CURRENT PROBLEM

The problem of a, quantized field interacting with
a given external source current is the prototype
for ca.lculation. s with intera, cting quantum field the-
ories. Our treatment in subsequent articles of
more complex intera, cting theories will refer to
this simple prototype.

We consider a system of a quantized field
(tt(x, t) interacting with a given external source
current j(x, t) through the interaction Hamiltonian

The normal-ordered U-matrix element for an in-
finitesima. l time interval in the coherent- state
basis in the Dirac interaction picture is

&e (o) IU(t", t) le(0)&

=exp -iq d'xz*' ' '*x t+q jx t

+ z ' 'j (x, t+ t) o(x t))I (0 (0) I 0 (ti)) .

(5.2)

Note that the kinematic weight factor is evaluated
at t=0. The functional integrations over complete
sets of coherent states at each of the intermediate
lattice times which comprise the path integral are
in this ca.se Gaussian. That this is true indepen-
dently of the structure of the inner product in the
above expression for U(t+c, t) is readily seen by
reexpressing it in terms of expansions on a. com-
plete set of eigenfunctions (t),(x, t) of the free Ham-
iltonian. Defining P~(t) = ((t)„(t), Qt(t)) and P„(t)
= ( ttj~(t), (t)(t)) as before and similarly

V= d'x x, t j x, t +H. c. (5.1)
we have

(0'(0)ltt(t+z, t) lp(0)&=expI —tz g lz
't 0 (t+ t) j (t)'+'z 't'j (t+z) 0 (t))I

x exp -~ z '
I3~ '+ P~

' —2P~*P~ (5.3)

' D Q, (0) ~ ~, d ReP,„dlmP, „ (5 4)

l

for the integration labeled by the time t, = t+l&, with /=0, 1,2, . . . ,N, &(N+1) = (t' —t). In this decomposi-
tion. it is thus clear that all our integrals are Gaussian. After integrating N intermediate stages the finite-
lattice path integral is

I

(0 (o) I
(tt'tti li(o)0=&IIIexp pi i

(lo,'I*+ lo, l' —oui,"0')
N+1

xexp -i Q [z* 'j'p'„*(t,)j„(t, ,)+r, "'j,*(t,)p,(t, , )

(5.5)

(5.6)

1 r

x exp &0 g p jo (t )j (t )e (to), (p j-0„)-
r=l v=1

The basic integral is seen by setting N =1 in this expression. In terms of the original inner products this
may be written in the continuous limit N - ~, g -dt" a,s'

t'
(0'(0) ltt(t , t)IO(0)&= ( 0( )0'1 p()0&expI i

J
0'*ttt"( '"*0 "(t )j (t )+z ' 'j'(t ')O(t ))I

t'
xexp — dt"d x dt"'d y j x, t" G x, t";y, t" j y, t"

t t
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where

G (x, t', y, t) —= g Q),( x, t ') (())~0'(y, t) . (5.7)

As expected, the ginematic factor (Qe(0) I $(0)) ap-
pears in the finite-interval U-matrix element in
the same way as in the matrix element for the in-
finitesimal intervaL The exponential factor con-
taining the double time integral is common to all
LJ-matrix elements of this theory, including all
the particle-Fock-states matrix elements that can

be generated from a matrix element between co-
herent states. In particular this factor by itself is
clearly the Fock-space vacuum-vacuum U-matrix
element. All these observations also apply equally
well, after taking the asymptotic limits, to the
corresponding S-matrix elements.

Taking the asymptotic limit and adapting our
previous prescription Eq. (3.12) for deriving the
usual particle S-matrix elements w'e obtain the
well-known result for the vacuum-vacuum matrix
element,

.„,&nlrb&„=,.&n IS IQ)„= lim (Q'(0) I &(t, t) I y(0)& I. ..t~ oo

t+~ ao

V tt

dte(e P jpi(tee)f (teee)e ice) (i" i--
t~~ tt'~~

Hp= m
q q+ +~~~~a& (6.l)

in which the energies of the nucleons are taken to
be independent of their momenta q, the meson en-
ergies are (d~= (k'+ ii, ')'~', and the nucleon and
meson creation and annihilation operators, re-
spectively, satisfy the equal-time commutation
relations

VI. SCALAR MESON MODEL

A simple quantum field theory that we use to il-
lustrate our formulation and methods is the model
of a neutral Hermitian scalar meson field interac-
ting with very massive nonrelativistic nucleons. "
This model is characterized by the Hamiltonian H

Hp + V with the free part

S

where )). is the coupling constant, g»= f(k')/(2(()„)'~'
with f(k') a form factor, and 6m is a mass-renor-
malization counterterm.

A. Renormalization

We shall first consider S-matrix elements for
transitions between initial and final states that are
coherent states of the meson field and that have a
single nucleon in a state of definite momentum
since it is this sector that contains all the essen-
tial renormalization aspects of the scalar meson
model. Thus the S-matrix element of interest is

,„,&p', (t)' Ip, P&„= lim l~i, l '&(t)'(0) Ig~, e'""'e '""' "
(po

(6 2)
« '""t,"

I 0(0)), (6.4)

Here m and p, are the physical masses of the nu-

cleons and the mesons.
The interaction is given by

V= X g (g„~(t),a~@~+ H. c.) —6m P (t),(t), , (6.3)

where z~ is the nucleon wave-function renormal-
ization constant.

Following the analysis of Sec. IV, we find the U-

matrix element for the infinitesimal interval t,.„
—t, =& for the interaction . potential of Eq. (6.3) to
first order in & is

M, ,„=(4, ,(0) IP„,e "'""4y,. Id/(0))

= (0..,(0) (0,.(0))
I

il'(P, .„P

)(le(kern)

—iel P (0'(0 P )0'(0 —k;P. .)e,p, ,e "'.
qyk

e 0'(0, 0;.,)0'(0- k, p)p;0,";,e'"")I, (6.5)

with (t)~ I (()),(0))= 0 for all l and p, , and where )6,. ~= ((t)~(0), (t),.(0)), (II),. is the coherent-state wave function in
the jth lattice stage, and (t)„ is the kth normal niode wave function as before. The reason that only one nu-

cleon operator enters into the intermediate-state calculation is determined by the fermion-number super-
selection rule and the fact that our nonrelativistic model contains no antinucleons. The momentum 5 func-
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tions, which arise from the anticommutation rules of the nucleon operators, Eq. (6.2), are now replaced
by their familiar Fourier integral representation. Then the integration. over the set of intermediate states
at the first lattice point t, = t+ & is

M...= -' 'd'p. . o . 0 . 0 0

d'x~e'"~''~ ~ ' d'xe'"' 'I ~ 'e'"' exp ~~~ ~„ I3,
e~~'~~ '"'~+ p e

k

~ ~ ~Summation over the momenta p, of the intermediate nucleon states gives 6 (x —x,), which in turn saturates
the d'x, integration. Thus the first lattice integration gives

e

+gde(pde e-& %&e&(dip) ~ pde e& )&+&(d)p)] (6 6)

M, ,=(p (p)lp(p)e"" d' 'xeex''expI —iexg (e, () e' „'e(e ' '+e ' ')

~ e,pe'""(e "."+e ' e')-. eeele, l'e ' '"' ")I. (().7)

After N such lattice integrations, and letting c- 0 and N - ~ keeping (N+ 1)&= t —t fixed we get the continu-
um limit

(i ', P'(0) (U(t , i) IP, 4(D'))= (P'(0) IP(0)) d'xe'"' e e' exp((eee f di )t

t'
X eXP -Eg Qg" Pkgke +' k + gke' '

t I II

$4)k (t

t t k

The one-nucleon S-matrix element is obtained from this by setting Q= Q'= 0. Thus

t' t' t lt

,„,(P' IP),,= lim 5'(p —p')]zpl 'exp imam dt" —A.
' dt" dt"' g lg~l'0 &"& &'" '"'

oo t t t kt'~ ~

(6.8)

Then equating logarithms of coefficients of 5 (p —p') gives

(6.9)

tt~t~ oo tP mt~ &)o

lim (—)&')

lim [in I~~ I
—imam(t' —t)]= lim (—X')

-t' t lit

l dt" dt"' 2e fo)k (t"- t"')
t t k

~

~
-&(d)i & t&)e1)

Sauk (dk
(6.10)

The Riemann-Lebesque lemma can be invoked to drop the oscillating terms. This gives the well-known"
results

6m= )'Q Ig, l'~, ', (6.11)

lnlz, I=a'Q Ig, l'cu, '. (6.12)

B. Meson-nucleon and meson-meson scattering

The S-matrix elements for scattering in the one-nucleon sector, as obtained from Eq. (3.12), are
l..&&~l~2 ~i P l~l'v2 '~) p)j 6., &6 (p'-P)' '6 (q&-q&) (6.13)

where the renormalization conditions, Eqs. (6.1) and (6.12), have been applied, and where one notes that
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the 6(e„) terms which arise are zero for the case of massive mesons. This expresses the well known re-
sults that in this model there is no nontrivial meson-nucleon or meson-meson scattering.

C. N-N scattering and effective N-N potential

To consider nucleon-nucleon scattering with our formulation. we must calculate S-matrix elements be-
tween initial and final states that are coherent states of the meson field and have two nucleons in states of
def inite momentum,

,&p', q', ((()' Ip, q, &t)&„= lim le&) I '&(t)'(o) I &t), )t), ,e& "&&'e '""' "e'"&&'(t)~(t)~
I (&))(o)&. (6.14)

t ~ ~ &)O

The elementary U-matrix element for the infinitesimal time interval, t,. —t, = &, in which we are interested
is

e-&«v(t~)yt yt
I y (o)& ,(6.15)

As before in the single-nucleon matrix element M~, the way the nucleon operators enter N, , is fixed by
the fermion number superselection rule and the fact that there are no antinucleons in our nonrelativistic
model. The anticommutation rules for the nucleon operators, Eq. (6.2), give rise to momentum 5 functions
in¹,which we replace -by their Fourier integral representations to give

x, =-.&y.(o) ly, (o)& d xd y[e' '"& t~" "~ I«' —e' '@& r~"' e' '&'']
Je &

x 1+ 2jeQyg —tq)( g (e *+e '
)g«p&«e &) i jq)(. g (e '"+ e '

)g««p*«e' &«&

k k

(6.16)

The form of these expressions for N, , with respect to its dependence on the variables of functional integra-
tion, @,. or P,.~ and $, or P,„, is the same as in the earlier case for M,. ', . The differences occur only be-
cause of the more complicated double 5 functions; (e'"'~+ e '"'~) replaces e'"'~, and 25m replaces 6m. Thus
although the algebra is slightly more tedious, the same description propagates through at every succeeding
lattice integration. The complete S-matrix element becomes

,„;&&«',«', &
'

l&«, q, &»„= &i«««(& '(0) I & (0)&f d'xd'y(e'«' ' ""«' ""' e'«'««" "««' «')
t'-t~~

t'
x exp -zX df- '*g*efk.%+e ~k'y ef-k™

+ p + (e-&)& )( e&&( )))e-&(«)))&"]
t« t ««

+2x' ~~ lg I'e'" s'» dt«dt««e '"~"'"")-
k

t

(6.1V)

where we have already cancelled 21nle I 2i5m(t —t) out of the double time integral using the renormaliza-
tion identities defined in the single-nucleon matrix element.

The exact nucleon-nucleon scattering matrix element is obtained by setting (())=0= Q'. To find the static
potential between a pair of nucleons we expand to lowest order in the interaction, i.e. , to order X, giving

, &p'q'lp, q&, = l 6'(q'-p) 5'(p'-—4) —5'(q-q')5'(p-9')

.2 2lg, ~, I Igq .. I+0 $p+q P q gd
2COq-pt 2(dq-q

(6.18)
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where we retained only the leading a,symptotic be-
havior

VII. RELATION OF THIS FORMULATION TO SOME OTHER
PATH-INTEGRAL REPRESENTATIONS

OF QUANTUM AMPLITUDES

t'
lim dt"
t~-~ t J

g
II t' td/ltte-tcuy (f"-t"' ) jim

t gK~

(6.19)

We can identify T with the energy 5 function

T= 4t= 2n5 2' —2m

~

2

V(x —y) = 4' J d'k 4"'" "'
CO~

(6.20)

All of these results are well known, having been
previously obtained by more familiar methods. "

and we can identify the static potential between a
pair of nucleons as

Our construction of the path integral for the U

matrix emphasizes its composition of distinct
kinematical and dynamical parts. The dynamical
part is, of course, evident in the interaction ex-
ponentia. l fa,ctor of the differential element of the
path integral for the infinitesimal time interval.
The kinematical part appears in the differential
path element as the measure with which the dy-
namical effects are integrated. This kinematical
measure has the coherent- state overlap fa.ctor
((j),.„(0) ~ (j),.(0)) as a weight functional times D'P,

It is also of interest to point out the rela. tion of
our path-integral formulation to the usual one.
The va, riable of functional integration over the jth
complete set of intermediate states, which we
take as coherent states of the free field, is the
coherent-state wave function (t),. which is associ-
ated with the time t,. = t+ j&. By reabsorbing the
time dependence back into the free-field coherent
states the jth differential element of the path in-
tegral may be written

(e...(0) ~ e, (0)) exp[-t«(~ '"O,"„(t...), e, (t„)~* '"))D'y,
= (4,„(t,+~) ~4,(t;))e 1)[- ~&( '"4„*„(t,+~), A, (t, ) * "')5'0, .

The kinematical weight functional now has the form

f I I '[-l(0,„(t,+ ), 4,„(t,+ ))- l(4, (t,), 0,(t,))+(A...(t, + ), e,(t,))J).

(7.1)

(7.2)

The two-time inner product is the obvious gen-
eralization of the inner product defined earlier.
For canonical systems of fields there inner pro-
ducts are always of the form

(4 (( )4((l))= J+4 + (4 (+ ( ) 4g(X 4))

the action

ig d'x, . x, t

with

Z((j)(x, t) )= w(x, t) (j) (x, t) —X ((j)(x, t), n'(x, t))

= —i' d x n,. t,. ( t,. (7 3) --—[~(x, t) y(x, t) j.1 d
2 dt

(7 6)

where ir(x, t) is the field canonically conjugate to
(t)(x, t) in some Lagrangian w= BZ/Bjb The ki.ne-
matical weight factor is now& to order q, the ex-
ponential of

E & d x 2 7T x t
~

x t~ p +~ x t
~ j,x

=i& dx n,. x, t, , x, t,.

() 4)
1d

The sum of this with the term -i&a
is f d'.xK ((j),.(x,t,.), )),.(x, t,.)), we define to be

This differs from the usual expression only by
the total time derivative which is inconsequential
for the determination of the equations of motion.

Thus the path integral in our formulation is
equivalent to the usual path-integral representa-
tion for qua, ntum field theories that are of canoni-
cal form. However, our formulation is in fact
more genera, l and can be applied to theories which
have no canonical form and no Lagrangian action
with which to formulate the usual path-integral
representation. "' We simply do not have to as-
sume the ca.nonica. l form for the bilinea. r current
J„.

The operators of our formulation are based on



PATH-INTEGRAL REPRESENTATION FOR THE S MATRIX

the bilinear conserved currents which are deter-
mined solely from the field equations, rather
than on a canonical quantization procedure. ' '

These bilinear operators are essentially self-ad-
joint on a dense domain spanned by a set of co-
herent states and have been shown to be general. "
These operators describe the whole q-number the-
ory, ensure its covariance, and give conditions on.
equal-time commutation relations, if any exist in
the theory; all independently of any separate postu-
lation of a locality or a quasilocality condition.

Examples of such noncanonical, non- Lagrangian
quantum field theories are ultralocal models which
can be obtained by omitting spatial gradient terms
from the Hamiltonians of certain. covariant theo-
ries. These models are interesting because, al-
though they are noncovariant, they are exactly
solvable. '" Interacting ultralocal systems are
not continuously connected to the corresponding
free systems in the limit as the interaction cou-
pling constant is turned off. The dynamics of
these systems can be well defined. However, m

=i/ does not share a dense domain in common
with the Hamiltonian, and thus is not well be-
haved. Since no canonical momentum operator
exists for the interacting theory no canonical form
exists and the Legendre transformation to the La-
grang ian does not exist. " Therefore the path-
integral representation in the usual form w'ith the
Lagrangian. action does not exist. On the other
hand our formulation of a path-integral represen-
tation for the U-matrix does exist.

Another, less exotic, example occurs for field
theories which contain- ghost fields. Such fields
are introduced into a theory whenever, in additi. on
to the usual field equations, auxiliary conditions
must also be satisfied by one or more of the
fields. The ghost fields "act as Lagrange multi-
pliers which enforce these constraints. Without
the use of these ghost fields, a Lagrangian cannot
be constructed which generates the field equations-
and the auxiliary conditions, In other words, be-
cause the physical fields are not linearily inde-
pendent the theory is not canonical. These extra
fields "clutter up" the usual path-integral for-
malism because they must be treated as dummy
variables which are integrated out. The extra in-
tegrations can be avoided in the formalism pre-
sented here because it is unnecessary to postulate
the ghost fields in the first instance. The particu-

lar example of a system of a Dirac field minimally
coupled to a massive vector field, as well as the
ultralocal models, is treated in Ref. 8.

In the usual path-integral formulation of a quan-
tum field theory the generating functional of the
vacuum Green's functions is integrated with the
field interacting with an auxiliary external source
current. This source current is purely auxiliary
serving as a variational parameter for generating
the Green's functions; after which it is set to
zero. However, the calculations are done before
this external source is set to zero. This source
usually violates some of the conservation laws, so
that the calculation is deprived of some of the sym-
metries that could otherwise facilitate the calcula-
tion. The symmetries are recovered only after
setting the external sources to zero. Also, this
treatment is biased in favor of the 'consideration of
transitions between initial and final states that are
the Fock vacuum or states near it in Fock space.

However, a totally different perspective can now
be taken for this analysis because we have shown
within the Lehmann-Symanzik- Zimmermann
framework, that for canonical theories the usual
generating functional, with the external source set
to zero, is the S matrix in the coherent-state re-
presentation. Consequently, Eq. (3.4) applies, and
the S-matrix elements can be obtained directly by
using the coherent-state wave functions as varia-
tional parameters.

On the other hand, one need'not take this ap-
proach when considering problems with non-
vacuum ground states such as condensates of soli-
tons, superfluids, etc. , since it is the coherent-
state S-matrix element itself which is then of in-
terest.
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