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Cut vertices, a generalization of matrix elements of composite operators, are introduced. Their
renormalization is discussed. The Bogolubov-Parasiuk-Hepp-Zimmermann method of renormalization of cut
vertices allows one to obtain a generalization of the Wilson expansion where cut vertices multiplied by
singular functions appear rather than local operators times singular functions. A Callan-Symanzik equation
for the moments of the structure function in e ++ e ~hadron (p)+ anything is derived. This equation is
valid to all orders of perturbation theory in both gauge and nongauge theories. Examples of renormalization

through the two-loop level are given.

I. INTRODUCTION

The parton model has had enormous success in
dealing with processes having a large off-shell
current. However, only the total annihilation cross
section for e'+ e - hadrons along with deeply in-
elastic electron and neutrino scattering have been
given a firm basis in field theory. In particular,
asymptotically free gauge theories" make precise
predictions for these two types of processes.
These predictions seem to be in good agreement
with experiment. Processes such as large-mass
p, -pair production, inclusive e'e annihilation, and
inclusive high-p, hadron production have been dis-
cussed a great deal in terms of the parton model.
However, these discussions have not been too con-
vincing in the context of a gauge theory of the
strong interactions.

Interesting perturbation calculations have been
performed. which suggest that in the case of inclu-
sive hadron production in e'g collisions" and for
p, -pair production in hadron-hadron collisions~ '
something like the renormalization group is at
work. The most extensive calculations have been
done by Gribov and Lipatov' for single-particle in-
clusive hadron production in e'g annihilation in an
Abelian gauge theory. Gribov and Lipatov sum all

.ternis of the form (g'Inq'}" where q' is the photon
mass squared. The results look exactly like those
which would arise from a Callan-Symanzik'e' equa-
tion. However, the Gribov-Lipatov calculation
also relates deeply inelastic electron to inclusive
annihilation by the replaceinent z -1/z, and it is
clear that such a relation will not be true in non-
leading logarithms. It is, perhaps, not clear
whether the. nonleading logarithms will obey a
Callan-Symanzik equation.

Recent calculations ' for p. -pair production in
both Abelian. and non-Abelian gauge theories have
also suggested that the lnq' terms arrange them-
selves much as in the case of deeply inelastic
electron scattering. However, here the calcula-

tions have been much less extensive, only one fac-
tor of g'in@' for the non-Abelian theory, and so
the suggestion of a renormalization-group behavior
is much less convincing.

The danger of generalizing from a calculation of
a single logarithm, or even a set of leading log-
arithms, is probably evident. A famous example
is the form-factor calculation first carried out by
Sudakov. " The leading logarithmic series gives
a behavior g-cg ~n q but after 20 years there js
still no compelling evidence that such a form will
maintain itself in nonleading logarithms.

Inclusive annihilation of a massive scalar parti-
cle g(q) into an on-shell scalar particle p(p) along
with an arbitrary number of unidentified particles
has been discussed"" in a P theory. It was found

that a Callan-Symanzik equation does hold for the
moments of the structure function much as in

deeply inelastic electron scattering. Recently,
Ellis, Georgi, Machacek, Politzer, and Ross"
have made the exciting discovery that the method
of Ref. 11 will also work for gauge theories, at
least for leading logarithms, if one works in an
axial gauge, ~ 2=0.

Stimulated by the work of Ref. 13, a generaliza-
tion of the Wilson expansion has been developed.
This generalization makes use of cut vertices and
applies to gauge theories as well as nongauge the-
ories. It should be applfcable in any gauge although
we have examined only the Feynman gauge in de-
tail. In this method a vertex, called a bare cut
vertex, is introduced. [See Eq. (12}and Fig. 4.]
The simplest bare vertex, I","'(p)=y p ', consists
of two fermion lines, one above and one below a
horizontal line (a cut). One adds radiative correc
tions by using the usual Feynman rules except that
all lines above the cut have the usual+it changed
to -~& in their propagators. Also, any line cross-
ing the cut has i/(p' —m-'+it} replaced by
-2m&(p' —m').

In the calculation of radiative corrections, ultra-
violet divergences will appear. These divergences
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can be subtracted by a slight generalization of the
standard Bogolubov-Parasiuk-Hepp-Zimmermann
(BPHZ)" "formalism for defining composite op-
erators. " If the bare cut vertex is anal ogous to
the zeroth-order term in gy„s„'9„$, then the
counterterms needed to render the cut vertex finite
are analogous to Py„e„ j . n
and E„„B„E„„.The cut vertices are not local

Q2 ""n
in general and the analogy to operators is only a
convenient mnemonic.

Cut vertices and their renormalization are dis-
cussed for a P' theory in Sec. II and for an Abelian
gauge theory in Sec. III. In Sec. III additional sub-
tractions are performed in an Abelian gauge theory
for the process relevant to the calculation of sin-
gle-particle inclusive e'e annihilation. It is shown
that the moments of the structure functions fac-
torize, for large q', into a singular function de-
pending on the q' of the photon, but completely in-
dependent of the particles produced, times a cut
vertex which depends on the particle observed.
Such a relation is a generalization of the Wilson"
and light-cone'"" expansions where the cut ver-
tices replace the matrix elements of local opera-
tors. The factorization property means that there
is no need to know bound-state dynamics in order
to get useful predictions for composite particle
production. If one were to try to use this formal-
ism to calculate on-mass-shell quark production,
presumably the cut vertex would vanish as the
quark goes on-shell. The mechanism for this van-
ishing is unknown as yet.

The Callan-Symanzik equation for the singular
functions follows directly from the BPHZ prescrip-
tion for subtraction. In the Callan-Symanzik equa-
tion there is a term which corresponds to the
anomalous dimension of the renormalized cut ver-
tex. Except for a few terms, to loosest order the
anomalous dimensions are related to the analogous
anomalous dimensions occurring in deeply inelas-
tic electron scattering" by the relation o= -&+1.'
From this relation the Gribov-I ipatov inclusive
annihilation results follow immediately. (See Ref.
26.)

In Sec. V the cut vertices necessary for the dis-
cussion of inclusive annihilation in non-Abelian
gauge theories with fermions are introduced. To
lowest order in g' the anomalous dimensions are
again determined from deeply inelastic electron
scattering"~ by the substitution z= -o+ 1.

In Sec. VI applications to e'+ e - hadrons(p)

+ anything are discussed in an asymptotically free
gauge theory. The Callan-Symanzik equation for
the structure functions is given explicitly. The en-
ergy-momentum conservation sum rule is seen to
emerge from a zero eigenvalue in the anomalous-
dimension matrix. The energy dependence of the
average multiplicity, n, of produced hadrons in
e'e annihilation is seen not to be a property of the
renormalization group as the anomalous-dimension
matrix has a singularity at that moment which de-
termines ~. This is in contrast to nongauge theo-
ries where the energy dependence of z is deter-
mined by anomalous dimensions. " It is also sug-
gested that in order to understand the q' depen-
dence of particles produced having ~ = 2p'q/q'
such that In(1/~)» ln lnq', one probably requires
knowledge not obtainable from the renormalization
group.

Nonperturbative tunneling effects" have not been
included in the above analysis. Formally, there is
no distinction between the application of the re-
normalization group discussed in this paper and
the application to deeply inelastic electron scatter-
ing. What is missing here is the relation to short-
distance behavior. Although deeply inelastic elec-
tron scattering is a light-cone rather than a short-
distance phenomenon, analyticity connects a given
moment of the structure function to a short-dis-
tance limit of local operators. One expects semi-
classical effects not to modify short-distance ef-
fects severely. In the present application the mo-
ments of the inclusive annihilation struction func-
tions are not related to any short-distance limit.
Presumably, however, processes occurring close
to the light cone suppress semiclassical effects
just as short-distance processes do.

Finally, the main purpose of this paper is to
give a general discussion of cut vertices. In a
subsequent paper the limits of the applicability of
the renormalization group to hadronic processes
will be discussed and specific processes will be
dealt with in detail,

THEORY

In this section cut vertices will be discussed.
Both spacelike and timelike cases will be con-
sidered in order to illustrate how renormalization
is carried out in the most simple case. Only those
vertices which actually occur in physical large-q'
limits will be done in detail. Begin with the space-
like case.

Consider the amplitude

A. Spacelike cut vertices

r(p', p q, q') = d'x d'y d'z e"""'""(T(4(x)y(y-))T(y(z)y(O))), [a~(P')a~(q')] ',
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where b,z(p'} is the full renormalized propagator for the p field and T denotes an anti-time-ordered pro-
duct. Now if T is defined by

r(p', p q, q') =-~ d'x d'y d'z e""""""-(T(p(x)q(y)y(z)p(0))), [&',(p')r,'(q')]-', (2)

then

»mT(p' p'q q') = T(p' p q q')

so long as p' and q' are below their thresholds. In the present section p and q are assumed to be spacelike
vectors. Vfhen q' ~, T has the expansion

-29'
T'(p', [d, q')-p J

d'yd'ze"'" "(Ty-(y)8. ....(0)y(z))[~',(p')]-', ' I&,', "&[a„(q'),
n~o

where z= —2p q/q' and 8 (x) =pp(x)s ' ' ' s [p(x). The above e[luation is valid so long as ~&0~ &l.
With the normalization

' d' d ze'~'""(Ty(y)8 (0)[p(z))[s~(p')] ' =p " p +terms withg
ao

one has

for large q'. The p' dependence is put back in by noting that

p OO

r„(p')&„(q') = — [d " 'd(o T(p', [d, q'),
7T

where

d yd z e'~" "p'[p(y)8 . .. (0)p(z))[hz(p')] '= I' (p) = I"„(p')p ' ' 'p +terms with g

Neglecting renormalization for the moment, one
can write

.(p)=r."'.. ..(p)

', Jd'k r(p, a) [~,'{0*)I'

xr.",' .(k),

where I'"'... (k)=k„k . In order to elimi-
8fj. "~n

nate g terms in I', it is convenient to pick a set
CL'

g CKg

of indices where they vanish. In particular, define

p = (1&2)(p, -p,). Then

r ... (p)=r„(p')p ~

grals appearing in the perturbation expansion are
only logarithmically divergent and may be sub-
tracted in the standard way in which composite op-
erators are defined. "

Instead of (3) consider the vertex e[luation

r. .„(p)= r."&....(p)

, „(d'ker(p, k) [~',(k')]'

x r[0& (k),

where the minus sign occurs n times in I" (p}.
This equation is illustrated in Fig. 1. The inte- FIG. l. A spy.ce1ike uncut vertex.
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where 0 is a phase-space constraint to be speci-
fied later. The I"s defined by Eq. (3) and Eq. (4)
are in fact the same. Choosing all minus indices,
one has

r„(P')P "=P "+ , d'k er(P, k)[~,'(k')]2k . FIG. 2. A spacelike cut vertex.

This equation is shown in Fig. 2. Defining

pie coordinate system and writing

p = (0, 0, 0, P), -

p ~p 2

and using

2p' Q= —K K2
k = K(sinhg, cosh& sin8 cosg, cosh& sin8 sing,

.cosh& cos8) .
Then

d k= gK'dKd&
dk

p- '
and

k = —(sinhg —cosh/ cos8)K
v2

one has

r„(p')p = p +,— K'dKd~[r', (K)]'16' p

x T(P, ur, K)k "O(k )dk,

where the 8(k ) is appropriate for p &0. The k
integration can be done:

max~k

dk k "= (k )"".
yz+ 1

k '" is most easily determined by choosing a sim-

2P
~ = ——cosh& cos8.K

Now )&0 since k, &0 in order that physical states
have positive energy. Then

—ro -sin h~C~~).
K K

-
~p 2P

The maximum value of k„ for fixed ~ and K occurs
when 8=g, in which case

~max 2p-
(g [1+(1 —4P'/K'u)')'i'] '

Thus

r (p') =1+, K'dKIn'„(K) I' d(d T(P, CJ, K)(g " ' [1+(1—4P'/K'(d')' '] " '.2'
(2m)'(yg+1) ~

After appropriate subtractions are made, this is
the same as Eq. (17) of Ref. 11. The great advan-
tage of the method just described over that of Ref.
11 is that the projections here are done automati-
cally in terms of a bare cut vertex, P ". %'hen

the only relevant operators in the Wilson expan-
sion are those involving two fields and their deriv-
atives, this is not so important. However, the
present method generalizes to gauge theories,
whereas the method of Ref. 11 could only be gen-
eralized to gauge theories if one knew how to pro-
ject out Lorentz quantum numbers on multiparticle
states in an efficient manner. Such a projection
appears to be a formidable task.

B. Timelike cut vertices

Now define

T(p, q)= d'xd yd ee"" '~""
' &T(~(~)O(»)T(&(e)e(0))) I&'(p)&'(q)

I
',

(8)

where p and q are timelike and p, &0. This ampli-
tude is a prototype for e'+ e -y(g) -hadron(p)
+ anything in that Eq. (8) represents the probability
for a field p(q) to decay into a, field p(p)+ anything.
In analogy to (6), define

r,(p')p . = p '+(2 }, d'k T(p, k) Ih~(k) I'k

(9)

where o is an arbitrary complex number. Equation
(9) is illustrated in Fig. 3. Writing

FlG. 3. A timelike cut vertex.
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d'k = nK' dKd+
dk

p-

and k'=K', p'=P', ~=2p k/K' one obtains

r.(p'}p "
=p ~+

3 p„K dÃd(g) T P, ~,K h~ K
1

&&max

x dk„k„"'.
~min

p=(P, 0, 0, 0),
k= K(cosh/, sinhf sin8 cosP, sinhf sin8 sin@,

sinhg cos8) .
Then &g=(2P/K)cosh) and k =(K/W2)(cosh/ —sinhg
cos8), which gives

K2
k ~= &o[1+(1—4P2/K2&o')1i'],

4p

kmin P [1+(1 4P2/K2~2)1/2] 1

k ax and k "are most easily evaluated by choosing Thus

1" (P')=1+
1 K'dKit, (K)i'Jtd(gT(P, z, K)

XI(g"[1+((—4y /X aF') i ')'
4p2 g 1 -- (( (( .y'd ) ~*)'-I
K (10)

Except for subtractions, discussed in Appendix
A, this is the same as E'l. (31) of Ref. 11. The
rather simple looking eluation, E'l. (9), has all
of the complicated projections already included.
1',(p')p ' is what we call a cut vertex; p is the
bare cut vertex. Once one is able to define cut
vertices, as in E'l. (9), and give a renormalization
prescription for them, one is immediately able to
write Callan-Symanzik equations for the moments
of T. We postpone a detailed discussion of this
point until we have dealt with gauge theories.

For simplicity we take the vector meson and the
fermion to.have the same renormalized mass, m.
In analogy to the definitions given in Sec. II, define
a bare cut vertex

.„(p)=(y.,)„p.," p. ,

where a symmetrization of the indices oy Q2, . . .,
a„ is understood. g, 5 are the Dirac indices, and
the bare cut vertex is illustrated in Fig. 4. Again
specialize to all minus indices and continue n to p

by defining

III. MASSIVE VECTOR-MESON THEORIES
r(0)(p) yp (12)

In this section cut vertices for neutral vector-
meson theories will be defined and their renor-
malization discussed. Yang -Mills theories will be
considered in Sec. V.

(1) Statement of the problem and some def'ni-
tions. The theory to be discussed in this section
is defined by the Lagrangian

dE„„2+it/r y„(-S„igA„)g ™gt/~ —2 m'A-„A„~

r.",',(p) =(y )„p -.

for any complex o. Define

r. ..(P}=r".~&(P)+( }, d'kT. , „(P,k)r."~&(k),

(13)

where

y...g(y, d)= Jd'xd'yd'e8"' " (T(lip(x)ily(y))~(d. (~)d(~))).ld'i(y)1. '., Id"(y, )1'le (14)

with an asterisk denoting complex conjugation. In
matr'ix notation (13}appears as

r
r,(p) =y p ~+,

2
„d'k T(p, k)y k (15)

Now (15) is logarithmically divergent as it stands.
What is needed is a subtraction prescription which FIG. 4. A bare cut vertex for two fermions.
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renders I',(p) finite. At that point we shall be in
a position to give the generalization of the Wilson
expansion.

The major complexity in renormalizing (15), in
contrast to (9), is the fact that the renormalization
is not multiplicative. That is, there are other
vertices which must be introduced as counterterms
in order to render (15) finite. This is the same as
the problem one encounters in defining the opera-
tor gy 9 8 p in which case one is forced to

CRj CL2

consider also operators of the form

gy 6

In that case, for the physically interesting case of
deeply inelastic electron scattering, only the
gauge-invariant operator

(a i' ) ~ ~ ~ .(s -i' )y

occurs in the Wilson expansion. We must now in-
troduce cut vertices involving two fermions and a
photon.

Define bare cut vertices

)
FIG. 5. (a) F(j 0(p, k). (b) F12,a~p

we must also add the contribution given by

and

T(P, k, k, )= Jd'xd'yd'zd'IUe""""

&& (T(4(x)4(y)& (M))T(y( )y(P))),

{23)

1,(p)=( ), J d kd k Q TI(p, k, k )I' q,(k, k ),

(22)
where

I",'P, (p, k)= -gg. y (16) T'.(P, &, &, ) = ] d 'x &'y d 'z d 'w e""

I",",', (p, k)=gg y (17) x ( T(g(x)g(y))T ($(z)i((P)Q (gg)))

(24)

k.i,',"..(p, k) = -gi","'(p),

k.r&;&..(p, k) =gi","&(p+ k).
In fact only a =+ will be used, so define

%0'

r,',",(p, k) = -gy

(18)

(19)

The vertices are illustrated in Fig. 5 and satisfy
the Ward identities Amputation of propagators having momentum p is

understood in (24) and fermion indices are sup-
pressed. Equation(22) is shown in Fig. 6. Ver-
tices with hvo fermions and gg photons will be de-
fined a little later on. Finally, renormalization
will mix hvo fermion states with two photon states
so that one needs to introduce the bare cut vertex
for two photons

-a
I„",~.(P, k)=gy P (21)

I'"',(k)=4[g k ' —k (k g +k g g+k'g g ]k

(25)

In addition to the contribution to I",(p) given by (15) shown in Fig. 7.

(26)

(2) Some one Loop examples of-renorma/ization. Before discussing the general. Problem of renormaliza-
tion of cut vertices, it may be helpful to see how renormalization of cut vertices occurs at the one-loop
level. Consider the graph shown in Fig. 8. This contribution to I',(p) is

g' . y. [y (p+k)+m]y [y (p+k)+m]y (p+k) '(-2n)5(k'-m')
(2v)' [(p+k)'-m +ie]'

(a}
FIG. 6. An illustration of Eq. (22). FIG. 7. A bare cut vertex for two photons.
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First consider the divergent part of (26). The divergent part of 1",does not depend on m so m=0 will. be
taken. Also, for the divergent part we may replace the y matrices in the numerator by

y.y ky y ky. =-2k'y,
whe~e y' k = yike+ y2k, . Then

g' „, (P+ k) '5(k')k'

((p, k)2 (2

or (27)

Thus the divergent piece of I' is of the same form as the bare cut vertex.
Before giving a subtraction procedure for this graph, let us examine (26) further in the limit when p p

where p= 0, p, = 0, p„=p . Then

y [y,(p+k) -y'0+m]y [y,(p+k) -y'k +m]
1,(p) = -( „dk,dk d'k . . . y (p+ k) '5(k' —m)

[2(p+k) k, —k -m

[y (k'+y~')+2y (p+k) ' —4m(p+k) ](p+k) '(p+k)
k dk d'k =

(ka+ 2)2

Thus in addition to the divergent contribution given in (27) there is a term equal to

g y p ~+, 2mP
4v'm' ((r —3)(o - 4) (& —2) (& —3) (28)

In subtracting the divergent piece we must be careful not to introduce new types of vertices of the type
given in (28). When Zimmermann" " subtracts he uses a power series to define composite operators
This is not possible here because the p behavior is not polynomial. Our prescription for subtraction is
to define the renormalized I' as

r.(p) = r:(p) r."(p), (29)

where we insert the superscript on the right-band side of (29) .to emphasize that those vertices are unre-
normalized. 1,(p) is that part of 1" having the form y for the Dirac indices. Matrices of the form y'p,
etc. are explicitly dropped in I'. The justification for subtracting only the y„p term is the fact that such
a structure is the only possible divergent piece of I' by power counting. A discussion of power counting for
cut vertices is given in Appendix C.

Consider now the graphs shown in Fig. 9. It is necessary to consider these graphs together as they sep-
arately have divergences at k = 0. Then

g' „, y [y (p+k)+m]y
(p+ k)

, (p+k) i p
k k'-m' k

(30)

FIG; 8. A radiative correction to F~ (p). FIG. 9. Further radiative corrections to I' (p).
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For the divergent part

d kr.(P)-g, -
Jl (P+k) „-;{(P+k)-'e(k)+P -'[e(P +k) -e(k)]]

8w'p

or

r,(p)-, y p
- ' —(&+4){(i+g)-'o(g)+[e(i+&)-e(g)]).g ' InA' „,~"df

8g

Thus

g21~2 ~ 1 1 1
8. ge].

(3&)

For positive integral g'& 4,

The divergent part again has the form y p . A renormalized vertex for the graphs of Fig. 9 can be de-
fined by

r.(p) = r".(p) —r."(p)

as before.
Finally, consider the graph shown in Fig. 10,

g dg try {(y'p+m)yg[y'(p+k)+m]y [y'(p+k)+m]](p+k) 2F5(p -m )
(2z)4 P [(P+ k)' m'['

One can write 1"
z as

r„g(k)=g gq E~+g kBF2+g~ k F3

+g gE~+k k~E5.

Then it is clear that

E, = k "-'f,(k'),

E,= k f,(k'),

E,= k f,(k'),

E4= k ~'~f~(k'),

E,= k "f,(k')

Dimensional counting says that E, is quadratically
divergent, E„E„and E4 are logarithmically di-
vergent, and E, is convergent. This can be veri-
fied from (32). Equation (32) does not have current
conservation. To obtain current conservation one

must add the graph8 shown in Fig. 11. Then cur-
rent conservation requires that the divergent parts
of E» E„E„and E4 take the tensor form

r ~(k)= [g ~k
' k(g k~+g~—k )+k'g g~ ]F(k),

(33)

which is the form of the bare cut vertex. The
quadratic divergence is reduced to a logarithmic
divergence. I'

z is renormalized by defining

r.,(k) = r.",(k) —r„",(k),
where

r"v,(k)= [g.,k '-k(g. k, +g, k.)
+k'g, g~ ]k ' 'F(0).

FIG. 10. A radiative correction to I'~~(k).
(b)

FIG. 11. Further radiative corrections to I"~~ (k).
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That is, one separates out the particular tensor
form given in (25) and evaluates the coefficient of
this form at k. This is then subtracted from I' z.
Dimensional counting says that the particular ten-
sor given in (25) is the only tensor which can have
a divergent coefficient.

(3). Benormalization of cut uextices. Let us be-
gin by listing the bare vertices which will be need
needed. We have previously introduced ki-

r&'&(p)=y p " (12)

&Q

r&;&.(p, k) = -gy (20)

r "& (p k) gy (p- (21)
FIG. 12. A two-fermion and n-photon bare cut ver-

tex.

and

I'+~',(k) = 4[g ~k
' —k ( g k~+ g~ k ) + k'g„~] k ' '. r,(p) = Q, ( -t")r,"(p), ' (36)

The additional vertices which are needed are

r(o) (* k k ) ( I)n+f ltl~ -(p kl k 1)
kk 'k n"

(35)

illustrated in Fig. 12. This vertex has g photons
of I orentz index+ and the cut comes between the
i -1 and i photons. Only + index photons are con-
sidered because it is only photons of this type
which are necessitated as counterterms for diver-
gences in the perturbation expansion of (22).

Before giving a general prescription for renor-
malizing cut vertices, a few definitions are nec-
essary. " First, we wish to give a definition of a
renormalization part. Roughly speaking a renor-
malization part is a proper subgraph y which has
a divergence. If the subgraph y does not include
the bare cut vertex, then a renormalization part
is any subgraph which has superficial degree of
divergence greater than or equal to zero, with one
exception. The exception is the four-photon ver-
tex which has a superficial degree of divergence
equal to zero but does not diverge when a gauge-
invariant combination of graphs is taken. Thus a
subgraph y, having only four external photon lines,
is not a renormalization part. If y contains a bare
cut vertex, then it is a renormalization part if (i)
it only has two external fermion lines, (ii) it has
two external fermion lines and an arbitrary num-
ber of external+ index photon lines, or (iii) it only
has two external photon lines.

Now a forest U is a set of nonoverlapping re-
normalization parts y of a graph G. U may include
the null set and may include G itself. The general
prescription for renormalization of a cut vertex is

where 1& is the unrenormalized cut vertex. We
view (36) in the following way. There is presumed
to be a current-conserving regulation of j.,", say
by Pauli-pillars regularization. When a subtrac-
tion is done on a renormalization part at a certain
order of g it is supposed that all graphs of that or-
der of g are included. Thus we may assume the
appropriate Ward identities for a given renormal-
ization part. Then if y does not include a bare cut
vertex, P is the usual subtraction one does in re-
normalizing a massive neutral vector-meson the-
ory. If y contains an elementary cut vertex, we
do the following. If y has only two external fermion
lines, t"I"",(p) = I'",(p). If y has two external fermion
lines and pg+ index photon lines, then

t"r"„(,(p, k~, k, ' ' ' k„)= r"„;„(p,k, ' ' ' k„),
where the caret means that one takes only the y
Dirac-index term. If y only has two external pho-
ton lines, then t"I'"~(k) = I'"z(k). The only com-
plexity in (36) which is not already covered by
Zimmermann's discussion of renormalization of
composite operators is that here we have no rig-
orous power -counting theorem. Power counting
is discussed in Appendix C.

IV. ADDITIONAL SUBTRACTIONS AND THE
CALLAN-SYMANZIK EQUATION

In dealing with ordinary time-ordered products
the Wilson expansion is derived by doing additional
subtractions on Green's functions. These subtrac-
tions separate a Green's function into a singular
Wilson coefficient times the renormalized Green's
function involving a composite operator. We shall
do much the same in this section, only differing
in that cut vertices rather than local operators will
occur.
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A. Additional subtractions

Consider the amplitude

M lp„„q)=, J d ed y d z 8'~" """*(T(ply)j(x))T(g(z)j lo))„) (3'l)

where amputation of the external fermion lines is understood. This process is shown in Fig. 13. M„„ is
defined by the usual subtraction procedure

M,„(P,q)= P I (-f")M„",(p, q).
ye@

Now take p, =(p'+m')'~'. Then

IT'i+ —.P,P. —
2 (P,q.+P.q, )+ ""

~

(38)

(39)

In particular,

1 y'p+m q
' — q P-'——tr

4+ 2m q m q
(40)

when q and p„are finite with q, large. From (40)
it is apparent that 8'~ and W, can be determined
from I alone. For simplicity we restrict our-
selves to this component of M„.

For a given Feynman graph contributing to (3V),
break up the graph into two parts" as shown in
Fig. 14 where a particular cut is indicated. Call
the right-hand part of the graph r and the left-
hand part X. The propagators connecting the two
parts of the graph are included in X. We require
that v be such that the lines connecting A, and v be
(i) just two fermion lines, (ii) fermion lines along
with an arbitrary number of + photon lines, or (iii)
two photon lines.

Define U(r) to be the set of all normal forests,
U„of the subgraph r. (In a normal forest vKU, .)
Also, define 3R, to be the set of all forests, U„ in
X. Then, if ty denotes the usual subtraction opera-
tor in a massive vector-meson theory,

U&69R~ p2&'L(v) yc p1

(-t,")t,' I (-e)M
yeU2

+P [( f&}M-
v yeU

(41)

is an algebraic identity known as Zimmermann's
identity. In discussing f, it is useful to consider
separately the three classes of lines which can
connect v' and X.

First consider decompositions of the form shown
in Fig. 15 where two fermion lines connect X and

Call M„'„(k,q) the renormalized right-hand part
of Fig. 15. One wants f,"M„'„(k,q) to be equal to
the additional divergences, involving the subgraph
s, which arise when q'- for fixed k and fixed
k q/q'. (We shall only consider the dominant pow-
er i.n q. )

We must first isolate the tensor structures which
can contribute. Write

M,„(k,q) = P f„'„(k,q)M, (k', k' q, q'), (43)

where the M,. are dimensionless and the g„'„are
matrices in the Dirac indices. The rules for which
f' can contribute when q'- ~ are as follows: (i)
Only conserved tensors need be considered since
slightly off-shell fermions will not inhibit current

FIG. 13. The hadronic part of the amplitude, M»,
occurring in e e inclusive annihilation.

P

P

FIG. 14. A general separation of hf„~.
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P

FIG. 15. A separation of M» exposing bvo fermion
lines.

FIG. 16. A separation of M» exposing two photon
lines.

conservation when the momentum q flows through
the whole graph. (ii) The tensors should be sym-
metric in v and p, . (iii) Drop all terms with ex-

-plicit factors of m or k'. (iv) Drop all factors of
y k compared to y'q. The allowed tensors are of
the form

'Q'
PP @ly 2 q2

Graphs of the type shown in Fig. 14, where two
fermions and an arbitrary number of + photons
connect the two parts of the graph, are handled in
the following way. Suppose M' ...„„„(k,' ' 'k„, kq)
is the renormalized amplitude amplitude for the
right-hand side of Fig. 14. n, ' a„are the photon
indices and the divergent part, for large q', has
a factor q g „' ' 'g „. Then

1 2 n

f„' = 2 [2g„„y'qq' k+ (y „k„+y k, )q'

—(y„q„+y„q„)k' q

k ' 'k M' .. „'„{k, k„,k, q)

= k~
' ' ' k„M,..., „„(k~' ' ' k„,k, q)

-(k„q„+k„q„)y q], „2 . (44)

and

q-'r'q q-'q, ~
(q')' (q')' (45)

Note that these two tensors correspond to the bvo
terms in (39). Setting p, = v= —,

is determined by the usual Ward identities in

terms of M'„„. The subtraction dictated by t', for
M', ..., „„is thus determined by that for M„'„.

Consider now the decomposition shown in pig. I6.
These two photons connect th'e left-hand and right-
hand sides of the graph. Let M' &„„(k,q) be the
four current amplitudes. Again w'e write

q2
t'--= —.2.2 y-k-. (46) M:, „„(k,q)=P f'., „„(k,q)M;(k', k q, q'), (42)

Call

M'„„{k,q)= g Q„(k, q)M;(k', k q, q'),
ga ge2

then

t~M' (k, q) = M' (k, q) .

{47)

(48)

where the t' are the possible tensor structures and

M,. are dimensionless. For large q' only two of
the eight tensors listed in Ref. 25 give divergent
coefficients in leading order of q'. If our n, P, v,
p, , k, q correspond to u, P, X, o, q„q, in Brown and
Muzinich, then these tensors are their equations
(A7) and (A10). They are

„,(k, q}= 2( g„„q' -q„q„)(g„~(k'q)' -(q k~+ q~k )k' q+ q q~k'j2 1
(49)

and

2 2 2 1
eo v~( ~q)=(g~vqoqe"g~agusq g~nqvqe gu-sq~qn)(gas p e+genAP -ga~"a s-APn n} ~ n2 ~

kq p

(50)

~hen (p, v) =(-, -) and q, -q' large,

2
g ( p)3 [ g~gk k ( go kg+ gg&N)

+g~ ggk] (51)

q2
t ~

—-( ~), [g qk -k (g kq+gq k~)

+g~ ggk] ~
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Each of these tensors takes the form of the bare
cut vertex given in (25). We define

2

f,'M'. ,(k, q)= g f., (k, q)M;(o, k q, q'). (53) C(1)@(1)(q2) 1
p

(7-1
(7 (7

—2 (2 )4
d k T,2(y ),„k

for large q'. C,"' is a normalization factor to be
fixed later. Then

B. Diamonalization of the subtracted amplitudes

In this section we shall diagonalize Eq. (41). For
the term shown in Fig. 15 one can write

M„..(9, q)=(5 ), f d'kqd, „,(9, k)M;, (k, q), .
(54)

where T is given in (14). We are suppressing the
-t," terms of (41) for the moment and dropping the
sum over w. Now define, for p =m,

—tr M (p, q) =M(p, q) (55)

and

We have thus given a detailed description of the
meaning of f,' in (41). At this point we could also
define t,' in essentially the same manner as the
product of t", and the additional subtractions just
outlined for t', . We shall discuss this a little more
fully after a diagonalization has been performed,
at which point it will be apparent that the t,' sub-
tractions are just those we have previously dis-
cussed in the renormalization of cut vertices.

d(5) (5) M 2(0, 979 q ) .

l
C ' E "(q') = X '"' d1() (51'M (0 (5) q')

0

where

(62)

p
e-1

tr[(y p+ m}r.(p)]0
02= &2

is the contribution of the bare cut fermion vertex
and its renormalization.

From (61} it is apparent that the renormalization
of I', and the (-t,") factors in (41) are identical
procedures. If we choose C,"' to be equal to A,,""'
it is apparent that E,"' is independent of the par-
ticle labeled by p, all such dependence being in I',.
Equation (62) is the analog of the Wilson expansion
with the cut vertices being analogous to the ma-
trix elements of local operators. Also, if we de-
fine

(61)

Referring to Fig. 15 we see that, after putting the
r sum of (41) back in (61), and including a discon-
nected part

p+m
4~ ~ 2m a&, c& c&

ab ab

Then

(56)
m W (5)' 'd(0= C")Fu'(q')

0

then

(64)

and

(58)

W~=~ 4 d k T,„(P,k)(y ),2 —k'qM~q(0, k'q, q').1 1 1
21l'

(59)

Define

M, ()9=9( ),5Jd'kT„(95)M;, (k, q). ,(57),

The two tensors in M;2 (k, q) correspond to W~
and W, given in (39). One obtains

2

8'2= », „dk,„p,k y„,zk M; O, k'q, q

1
C"'Eu'(q')=X"'&

J d(0&02 M (0 cg q2) (65)
0

Terms with two fermions and an arbitrary num-
ber of photons are simply related to the two-fer-
mion case by Ward identities. They give the con-
tribution to 1"„and hence to X,""'and C,"', in Eq.
(62) from the bare vertices (35). Finally, consider
the two photon intermediate states shown in Fig.
16. One can write

I

M (p, q)=(2, d kM 2(p, k)t', M'2 (k, q).

(66)

1 1
)9W (19 q2)~(7 1p~ C(1)@(1)( 2)

4 0
(60) Taking the two tensors (51) and (52) one obtains

m2
W, =, , d'kM 2(p, k)[ g 2k

' —k (g k2+g2& )+g g2 k'JM;(O, k q, q')
qP-
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and
I

W~=, 22 d kM ()(p, k)[ g„()k —k (g pq+gq& )+g gq k'] ~(k'q)2M~~(0, k'q, q ).
'Lq )

(68)

If these contributions to the moments are defined
as

for large q',

Jp
vW, (()' 'd(g = C(2)E~')(q ) (69)

D~M, (, (p, q)=( )~ J d k[D, T,~,~(p, k)]M,„(k,q),

~l
m W,~'-'d~ = C&'&E."&(q'),

Jp

then

(VO)

where again the -t", factors have been suppressed.
D, cannot act on the right-hand side of Fig. 14 be-
cause v would no longer give a divergent contribu-
tion in the limit of large q'. Thus one obtains

2

and

1
C"'8"'(q') =1""'p Q7'dQ) M'(0 4) q') ('l l)

p

xM2(0, k'q, q ) (V6)

pl
C' E (q )=X "g ' (()'d(gM'(0 ry q ) ('l2)

T
Pp

Here

and

D, W~= —,
2 ~ d'kD, T,~(P, k)(y ),~ —„k'q1 1 "

4 1
q 2m

() 1
(r(y )1+I)fd')) l„,(P, k))',"~'())

x M~(0 )k'
q, q).

After adding the contributions of Figs. 14 and 16
we obtain

is the contribution from the two-photon bare cut
vertices.

C. The Callan-Symanzik equation

D g(1) (1,1)g(1)+ (1,2)@(2)
1 e e e e

where

p
' '

(y p+ m)()()

(V8)

9 9
D =m', +P ——2y .

em &g
(74)

i = 1 stands for external fermions and i = 2 for ex-
ternal gluons. Apply D, to Eg. (41). One obtains,

Once one has the Wilson expansion or its analog
given here in (60) and (62), it is a simple matter
to derive a Callan-Symanzik equation for moments
of the structure functions. In doing so it is con-
venient to choose C,(~) =land C,(2'= 0. We cando thisby
a finite renormalization of the cut vertices so that
X,""'=1 and X,"'"=0. Define the usual Callan-
Symanzik differential operator

x d kD, T„«p, k y «k '+''' . V9

(80)

where g,"~"and g,""are illustrated in Fig. 18.
The set of e(equations ('l8) and (80) are exactly as

The terms not written explicitly are the contribu-
tions of the bare cut vertices involving two fer-
mions and yg photons. This equation- is illustrated
in Fig. 17. To complete the equations one must
add the contributions obtained from considering
four current processes. From these one obtains

D E(&) (2&1)g(1)+ (2, 2)@(2)
2 e e e e e

A
(2, 2)
0

(2, 1)
0

FIG. 17. Graphs contributing to a ' . The caret on
the left-hand side of the graph is a mass insertion.

(b)
FIG. 18. Graphs contributing to a ' and a

The carets on the left-hand parts of the graphs are mass
insertions.
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FIG. 19. A bare fermion cut vertex. The a and b

represent interna1-symmetry (color) labe1s.

found in Ref. 21. For completeness we list the
values of the a "&~' to order g'

(1bl ) 1
Sv' (c —l)(v —2)

(a) (b)
FIG. 20. (a) I'"~&(p, k). g) I i ~(p, k).

}t r""(p f)= -gr"'(p)Ti, . (89)

O 2) g 0' 30'+ 42 2

Sm' a(cr —l)(c —2) '

(2 l) g 0 -SO+4
4v' (o -1)(&y —2)(e —3) '

(82)

(83)

g' " 1 1 1+, — —,(81)4w' t 1+1 a+l -1 o -1
Vertices with more than one gauge field become

rather complicated. We shall. list, for reference
purposes, those vertices having two fermions and
two gauge fields. They are illustrated in Fig. 21.
The vertices are

b( ~ ~ )
g } (P+ki+kb)

k+k 2

(2, 2) 0 (84)
T'T' T'r'

(X +
k2~ kl ~

(90)

V. NON-ABELIAN GAUGE THEORIES

In this section we shall give the cut vertices nec-
essary to deal with Yang-Mills gauge theories. We
shall deal with a general gauge group, G, having
structure functions C,.ib with the fermions (quarks)
in a representation B. The Lagrangian under con-
sideration is

r;i™(p,~„u,)= -g ~-(p ')- (&'»).„l 2

Z'sZ ir"'"(p r a)= - p-~ +
kl +k2 kl k,

These vertices obey the Ward identities

(91)

(92)

with

,'y'i, pi „—+&y,y„(e,6„-bgT,'bA„')gb -mi(P I, r, r»(p, f„f,)=(gTi.,)r b'(p+f, )(-gr,',,)
(93)

and

The bare cut vertex involving two fermions is I,&, r:ii'(p, l„u,)=(gr;„,)(g», )r b(p+I, +.u, )

r"(p)=} p '6 (86) +I, i.gc„,r '(p, n, +f,).
where the a, b indices refer to the representation
A. These indices. will often be suppressed. This
vertex is shown in Fig. 19. The vertices involving
two fermions and a single gauge field are shown in
Fig. 20. They are

(94)

Finally we need cut vertices corresponding to the
two photon vertices of (25). However, two gauge
particle vertices are not gauge invariant for the
same reason that two fermion vertices are not

r "(p a)=+ - r.'b(p+n) (86)

and

ra, bi(p p) — g} 7'i (p) m (87)

As in the Abelian case, these vertices obey Ward
identities which in fact determine their form. Thus

and

, b(p }'b) +gTi 1 b(p+ }'b) (88) (0) (b) (c}
FIQ. 21. (a) I", , (p, k&, k2). (b) I "' (p, k&, k2). (c)

I '~' (p, kg, k2).
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e&

FIG. 22. I'o'~g (k).

iak

(o} (b)
FIGe 23o (8) Fo gy (kf&k2&k3)o (b) F$ y (kf&kppk3)

gauge invariant. One must include vertices involv-
ing up to four gauge particles along with an arbi-
trary number of + Lorentz index gauge fields. %e
shall list only the two and three gauge field ver-
tices. The higher vertices are straightforward to
construct, but they are somewhat cumbersome.
The two l.ine vertex is shown in Fig. 22 and is given

by

r*.~,(k) =4 6„[ g., k' k(g. -k, +g, k.)

+g g k'](k ) ''.
The three line vertices are shown in Fig. 23. They
are given by

I"„'tl'„(k„k„k,) = ' '
gq (go„k~ k, -k, g„ks~ —k, gm k,„+g„g„k~'k,)(k, ) ' '

+ 2igC, , , [k, ( gz g„-g gz)+g„(keg —k, gz ) j(k, ) ' '+ terms where (i, o, k, )—(j,P, k ) .

(96)

I'"'~'„(k„k„k,) is identical to I"'~~'„(k;,k„k,) except for a factor of (-1) along with the change of (k, )
' ' to

The vertices (96} obey the Ward identities

and

k,ql'"~~(k„k„k,) =iC, ,„gl'"„(-k,) .
The Callan-Symanzik equations for the amplitudes occurring in inclusive e e annihilation are identical to

(78) and (80). For convenience we write this equation as

(99)

where the y',.&= 2y, 5,&+a,"'~' and the a's are calculated according to Eq. (79). To lowest order ing', in
fact 2y,.&

is the same as given by Gross and %ilczek and Georgi and Politzer vrith the replacement n =-a+ 1
(Ref. 26):

o —2 4
16rr' ' (o —1)(o —2) ~ (l+ l)(l+ o —l.) o —l.

g' 2(o' -3o+ 4)
16m' o(o -1}(o-2)

(100)

(101)

g' 4(o' —3o+ 4)
16m' (o —1)(o 2)(o —3)— (102)

167r' ' 3 o(o —1) (0 —2)(o —3) ~ (l+ l)(l+ 0 —1) o —1

For c —2 an integer ~ 2, one has the identity

g —2, 1 '2
~(l+1)(l+o-I) o —1 + 7'

In the above C,(G) 5,&
=E,~C,»C&,~ and tr( T'T~) = T(R) 5,&

.

(103)

(104)
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VI. APPLICATION TQ e+ + e ~ HADRON (p) + ANYTHING

It is not our purpose in this paper to dwell on applications; however, it may be helpful to discuss the
sorts of predictions one obtains from the renormalization group applied to e'+ e annihilation. The cross
section for e'+ e -v'(p)+ anything is given by

2

3P 2P (q2)3 P v v t Pv v+ (105)

where the process is shown in Fig. 24. k is the momentum of the electron, k' the momentum of the posi-
tron, q=@+0', and p is the momentum of the v'. In Eq. (105) the mass of the electron is neglected. M„„
is given by

M„„(),q)= f d xd yd'z(Q ((x)j,( ))) )( ((z)j,( 0)))e"* ' ' "(~6'(p)(',

where (p is a. field for the v'. Now write

(106)

II'~+~ p.p. ~ (p—.q. + p,q, )+ ""
2 (107)

Then

da' 2' G — (d 4m'
q'm

(108)

where gyes is the mass of the m' and the electron mass has been neglected. If the p mass is dropped com-
pared to q'~', then

do 2m&
2

— 1+cos 8
() d 2p (q2)2

(109)

We have normalizations such that exactly the same formula, Eq. (108), holds for the production of fermions
after spin sums have been performed. Now take a moment of (109),

(110)

where, as before, bp is given by

vW v' 'd(d= ~ C"'E"'
2 g fy

0 f=1
1 2

d~= ~ C"~E~~~

0 i=&

The E and E obey'

(112)

b, = 8, [—", C2( G) ——; T(R)], (117)

and 2y', . is obtained, to lowest order, from the
equations of Ref. 22 by using o = -&+1."

2+0 5;g-&1g —E."'(q)=o
Bq Bq

(113)

along with a similar equation where E—E. The
moments of the structure functions then take the
asymptotic form'" "

1
vW~(()' d(()= d2,(lnq ) ~(),

yl
m W~(d' 'd(d= d~,(inq') "2,

~p

where"

1
2 6ll +22 f(+11 +22) + +12+2~1 lg bp

(115)

k e+

FIG. 24. An illustration of e +e —hadron (p)+ any-
thing.
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In particular, consider the integral

1 dE += — co~ 3 6 P)
CF 6 p

(118)

Again referring to (110) one finds

4gn2
= 4 ~ C«&(Z&'& --'E&'&)

(X
f-"1

(123)

which gives the amount of energr carried off by
the production of m"s in the e'e collision. o is
the total cross section for e'+ e -.hadrons. Since
p ~ m, contributes little to this integral we may
write, always in the center-of-mass system of the
e'e,

E += —(@q ) (d dcos8&d d(d.

1 GO' 4 p
O' 6 P 40~

(121)

Referring to (110) one finds

2 2

E,.= —g C &'[F,"'(q') —,'E,' '(q')]. (120)

The reader can easily check that y',
~

has a zero
eigenvalue so that it is possible for z"s to carry
off a finite fraction of the energy.

Another quantity of interest is the average multi-
plicity (of »"s in our case) of particles produced.
The formula is

Unfortunately some of the y',.
&

have poles at a= 3 so
that the above formula is meaningless in an as-
ymptotical. ly free theory. This reflects the fact
that gauge theories have copious production of
gauge pa, rticles which then can change into other
particles. In gauge theories, in contrast to non-
gauge theories, the average multiplicity of pro-
duced particles is not determined by the renormal-
ization group alone.

We can see the above a little more clearly in a
slightly different way. The equation

p~ (g2 ty fy

j=l

can be inverted to give

2 .
L+ joe

& W(u& q')= . ~ do&@ 'C"'E"' (124)
2mi ~ cr fy

Assuming that p»m one can write

'Fq cfo'

2 -
0GT'0'- p

(122)

where I., must be chosen to the right of all singu-
larities in the o plane. For the full cross section
we may write

da a " ' . 1+cos 0
&&d~ .

( ~)~ Q J
do + ' 2E„'i —

2 Eg'„)C, ',~.
p 2Nq

(125)

(126)

For fixed &o and large q', E&l. (125) should be correct. As &u becomes smaller it becomes efficient to dis-
tort the g contour to the left. How far to the left one should distort the 0 contour, however, depends cru-
cially on the interplay between the 0 and q' dependence in E,"' and even on the o dependence of C,"'. To
see this, use (114) and (115) to write

2 L+joo 1 2

gg pe &~/& 2y y e Ag~j ln lan

p Xf(q )
Le+1 2@+1 2

(12V)

Now as soon as 1nl/«&» lnlnq' it should be efficient to distort the o contour to the left. However, there are
singularities in both A, and d,. In perturbation theory the rightmost singularity in A, is at o= 3. Near g= 3
one easily calculates that A, - —,C( )G 2/&5&,( o—3). Keeping only this term

C,(G), 1+cos'8
6 P 7N~q~ L g~

If only the terms shown in the exponent were im-
portant and if dL, had no singularities to the right
of 0= 3, then the effective value of 0 would be

(128)

However, in perturbation theory there are also

[g /(o —3)]"type terms in the exponent so that the
estimate is not to be believed. In order to deter-
mine the inl/&o» ln lnq' behavior we need to take
into account all the singularities near 0= 3 and as-
ymptotic freedom is not much use here. Thus this
most interesting region of 1nl/o&» ln lnq~, which
includes the region necessary to determine the av-
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erage multiplicity of particles produced, remains
to be understood by a method outside that of the
renormalization group.
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APPENDIX A

r,(p)= g [[(-t")r."(p),
U y&U

(Al)

In this appendix we shall indicate how a BPHZ
method of subtraction of Eg. (10) leads to the am-
plitude of Eq. (31) of Ref. 11. In p' theory a sub-
graph including the bare cut vertex is a renormal-
ization part if and only if it has two external lines.
Graphs not including the bare cut vertex have di-
mensions as determined in the usual way. The
BPHZ formula for subtracting I', a particular
graph, is

FIG. 25. A separation of a cut vertex into two-particle
irreducible parts.

where U is the set of all forests of that graph and

y~ U is the set of all nonoverlapping renormaliza-
tion parts in U. Consider a typical graph as shown
in Fig. 25 where two-particle irreducible parts
are separated into squares. The renormalization
parts including the bare cut vertex are always of
the nonoverlapping type. Ne may view the subtrac-
tions in Fig. 25 as being done in two steps. First
make all the subtractions not involving the cut ver-
tex. Then do the subtractions involving the cut
vertex. The final set of subtractions is the non-
overlapping variety and for them the BPHZ pre-
scription is the same as the usual prescription for
subtracting divergences which do not overlap. This
immediately yields the formula Eq. (31) of Ref.
11.~ The only point to be careful of here is that
subtractions are done at p= p where p, = 0= p and

p =p.

APPENDIX B .

In this appendix we shall examine the divergences and renormalization of all the nontrivial two-loop
graphs having two external fermions and involving 'the bare cut fermion vertex. Consider the graphs shown
in Fig. 26. The divergence in k for a fixed k, is a usual vertex renormalization and does not concern us
here. Let us examine the divergence in k, for fixed k to see the nature of the counterterm (subtraction
term) necessary to remove this divergence. The relevant part of the graph is shown in Fig. 27 and has the
expression

( '„) g' ~ yg[y'(p+k, )+m]y [y'(p+k, )+mjy [y'(p+k, +k}+m]yg( 2 )g(„, ,)( )&&i&I p' . (27))~' & f(p+ k )& m2
~ 2[(p+ k+ k )2 m2 ig]

The divergent part of Eq. (Bl) is given by

I„, , (,k)= ~, d k, 8 'k, y y k, y y k,y (p+ k, ) '
~(k,)(2~)' ' i(k, + p)'i'[(p+ k, + k)2-i~]

FEG. 26. A radiative correction to I'~ (p). FIG. 27. A divergent subgraph of Fig. 26.
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FIG. 28. A radiative correction to I ~(p). FIG. 29. A divergent aubgraph of Fig. 28.

A divergence only occurs in case u =+ in which case

ygy'k y y' k,y,y' k,yg= ygy' a,y y'a~y, y yea~, = -4u„k~ y

3 l A' -a
r ( k)-

8ir'(v —l)(o —2) (p+k)
' (B2)

Equation (Bl) is not of the form of a bare cut vertex. The divergence of a form of a bare cut vertex only
comes about when one takes all graphs of a given order. To see this, consider the graph shown in Fig. 28.
The part involving the k, divergence is shown in Fig. 29. The divergent part of Fig. 29 is given by

g' ~ y~y k,y y k,y~[-2v5(k, ')] (p+ k, )
"~' p' (2v)' ' [(p+ k,)'+ i~] [(p+ k+ k,)' ie] — k

Thus

and

"~' p' 4v' k ~ ' [(p+ k, )'+is] [(p+ k+ k, )' —ie]

3 lnA' -y+1r„.(p, k)-~,"~' ' Bv' (o —l)((r —2) k (p+ k)

Equation (B3) is not the form of a bare cut vertex. However, if we add (B2) and (B3) we get

I.nA'() g nA yp
8v' (c —l)(~ —2)

(B4)

Equation (B4) is the form of the cut vertex.
Consider now the graph shown in Fig. 30. In particular, consider the k, divergence due to the subgraph

shown in Fig. 31. The divergent part of Fig. 31 is

( )
g dg ye@'k,y y'k, y (p+k~+k) '6(k~')

(2v)'k .
' [(p+k, )'+i@][(p+k+k, )'-je]

FIG. 30. A radiative correction to I', (p). FIG. 31. A divergent subgraph of Fig. 30.



A. H. MUELLER 18

FIG. 32. A radiative correction of I', (p). FIG. 33, A divergent subgraph of Fig. 32.

one finds

(
g' inA' y (p+ k)
8w' (v -1)(o—2) k p

The k~ divergent part of Fig. 32, shown in Fig. 33, has the expression

r„,(p, kj = . g' 4 y y'k, y,y'k, yy'k, y (p+k+k, ) '6(k, ')
(2~)' ' [(p+ k, )'+ is] [(p+ k+ k, )'+ ic] [(p+ k+ 0,)' -i&] '

The divergent part here is

( )
g' inA' y (p+ k)
8w' (o —1)(o —2) p

Adding (B5) and (B6) one obtains

lnA' -a
r p, k)-'

8m' (o —l)(o —2) k

(B8)

(B6)

which is again of the form (21).
Finally, let us turn to the most interesting, and complicated, of the two-loop graphs. The k divergent

part of Fig. 28 is illustrated in Fig. 34, after letting k, k. The divergent part of Fig. 34 is

( )
ig' &'k, y y'k, y.y k,y (p -k-)

(2m)4 k, (k, '-ic)[(p+k, )'-ie][(p+k, -k)'-je] '

The lnA' term is

r (p k)=&'i.A i. 'p-')- "-')-'
&~e~ ~ Qg~ P

We should also include the k, divergent part of Fig. 35, shown in Fig. 36. This contribution is

(B7)

3
I gg (p k)

d'k, y y k,y,y k,y 6(k, ')
k, [(p k,+)'-i~] [(p -k+k, )'-i~] '

FIG. 34. A divergent subgraph of Fig. 28. FIG. 35. A radiative correction of I'~ (p).
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FIG. 36. A divergent subgraph of Fig. 35. FIG. 37. A radiative correction of I'~(p).

Thus

( ) g . 1nA y„(p —k)
8g2 0 g p

(a8)

Along with (a7) and (a8) we should include the k, divergent parts of Figs. 37 and 38. These contributions,
illustrated in Figs. 39 and 40, are given by

dk ' +k
k, -zg

This can be written as
' le'r„.(p, k)=-g, y '-(p-k+k, } [(p+k, k) O(k, )-+(p-k) -'(e(k, +p) -e(k, ))]8g p„k ~ k

+a -
[() +)., () - o()., )+() -)) -(8((, +p ) -8(k, . ))] I.

dk

1

Finally,

~',~. r() —)) ' ~ ) ) ) ', r() —&) ' ) v() -)) )„"()—)).
IBm' k ~ l+1 l+o —1 o —1

) p o-1 k p

(a9}

Adding (a't), (B8), and (B9) one obtains

g', y(p-k) ' " 1 1 1r».(p, k)=, ins'-
l-"1

(a1o)

FIG. 38. A radiative correction of I', (p). FIG. 39. A divergent subgraph of Fig. 37.



A. H. MUELLKR 18

which is of the form (21). It may be noted that

1 1 1 '~1
I+1 I+g —1 o —1 + l

g=l l=2

when a is an integer. The other two-loop graphs
are either identical to those given above or very
similar in detail.

APPENDIX C

In this appendix a qualitative discussion of power
counting for cut vertices and the relation to BPHZ
renormalization will be given in an Abelian gauge
theory. We are not claiming to give any rigorous
demonstrations here, but rather to illustrate a few

points, not discussed in the body of the paper, in

the application of power counting for cut vertices.
In a usual (not cut) unrenormalized vertex, a di-

vergence of (lnA')" arises when n nonoverlapping
loop momenta become large. For this divergence
those loops which are disjoint have independent
loop momenta. Those loops which are nonover-
lapping but not disjoint have ordered loop momen-
ta, the interior momenta being the larger. The

subtraction of the (lnA')' term is done in BPHZ by
'

the forest U having renormalization parts yap y2,
. . ., y„corresponding to the n divergent loops. As
a simple example consider the graph 1", shown in
Fig. 41 where all the vertices are the usual y„ver-
tices of @ED. This graph has two renormalization
parts consisting of 1 itself and the subgraph y
which has the lines p, and p, —p,. The forests are
{0},{rj, (I'j, and (I;rj. The forest {rjcorre-
sponds to the divergence lnA' when p, -~ for fixed

p, . The forest (I"j corresponds to the lnA' diver-
gence when p„p, -~ together. The forest (I', rj
corresponds to the (lnA')' divergence when p, » p,

The magnificent property of BPHZ is that all
divergences, even the notorious overlapping diver-
gences, are classified and subtracted in this sim-
ple way 14-16

The additional complication in cut vertices is
that we cannot go to Euclidean space to use %ein-
berg's theorem and rieither can we let i&-
i.e(p'+I') so as to use Zimmermann's Minkowski
version of the power -counting theorem. However,
this appears to be a nicety rather than an essen-
tial point of physics. Consider, for example, the
cut graph similar to Fig. 41

r (r'p, + ~)ra(r p, +~)r (r'p, + ~)r~(r p, + ~)r.
f p

2 pyg2+ g q J

2
f p

2 ppZ2+ g q (
2

&& p, '(-2w) 6((p —p, )' -m')(-2v) 5'((p —p,)' m')-

For fixed p, there is a p, divergence correspond-
ing to p„=p, — with p, fixed. Thus a p„counts
two units of dimensions while p, counts one unit.
The d'p, counts four units while p,

' and (p, -p, )'
count two units apiece. The one apparent danger
to usual power counting is the presence of p„
terms in the numerators of the fermion propaga-
tors. However, the y at the cut vertex annihilates
these terms. The p, = p, -~ and p, » p, - ~ diver-
gences are similarly analyzed by counting + com-
ponents of the momentum as two units and trans-

verse components as one unit.
The new element, the possibility of + components

of loop momenta in numerators, does create a new
kind of divergence when a photon line, whose mo-
mentum is fixed, enters a loop whose momentum
is large. If the photon line ends on a y, then the

photon creates a denominator of dimension -2
while the numerator of the new fermion propagator
can have a p, term of dimension+ 2. Thus it is
possible to insert an arbitrary number of + pho-
tons into a divergent loop without losing the diver-

FIG. 40. A divergent subgraph of Fig. 38. FIG. 41. An example of a graph having four forests.
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gence. As we have seen in Sec. III these diver-
gences are related by gauge invariance to the di-
vergences without the photon lines. Photon lines
which begin and end on the same, or compa. rable,
large momentum line can give an additional p, only
at the expense of creating an additional p so that
usual counting pr evails.

In summary, when a large loop momentum
crosses a cut, + components of that momentum
count two units, —components count no units, and
transverse components count one unit. If a loop
momentum does not cross a cut, counting is as
usual.
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