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The Dirac Hamiltonian in the presence of instanton and meron fields is studied. Some three-dimensional,
zero-energy, normalizable solutions are found. They are related to the four-dimensional zero modes which
are known and to the level-crossing picture. A geometrical interpretation of the simplicity of the results
is given.

H(r, )4,(T„x)= 0 (1.3)

with

I. INTRODUCTION

Zero modes of the massless Euclidean Dirac
operator in the presence of instanton fields have
been given explicitly. ' The existence of the zero
modes is a consequence' of the triangle anomaly'
or equivalently of the Atiyah-Singer index theo-
rem. '

A more intuitive discussion of the physics in-
volved has been given by Callan, Dashen, and
Gross': work in the A4 = 0 gauge and focus upon
the Euclidean time parameter x4. As x, changes
from -~ to + ~, the one-instanton field evolves
from one pure gauge configuration to another top-
ologically distinct pure gauge. The massless
three-dimensional Dirac Hamiltonian in the pre-
sence of such a field is

H(x,) = in, (&+A-), .
This operator depends parametrically on x,
through A,.(x„x). Knowledge of the spectrum of
H(xg as a function of x„

H(x,)4~(x„x)=E(x,)@~(x„x),

gives information about the behavior of the quan-
tized Dirac field in the adiabatic approximation.
Callan, Dashen, and Gross have proposed that
there is a positive-chirality mode with an energy
that begins below zero and ends above zero as
x, runs from -~ to + ~ and that there is a nega-
tive-chirality mode with the opposite behavior.
An understanding of the relationship among the
zero modes, tunneling suppression, and the tri-

, angle anomaly results. '
If solutions to (1.2) with such properties exist,

then continuity and chiral symmetry imply that
there mill be some time v., at which the levels
cross zero:

After some preliminary gauge transformations
have been worked out in Sec. II, (1.3) is studied
in Sec. III. For an instanton located at the ori-
gin, we find noxmalizawe solutions to (1.3) for
7, =0. The solutions are very simple.

Now consider a two-meron field with the two
merons at

X4 =AY p

x=0.
This field can be thought of as a deformation of
an instanton field. ' In this case, we find normaliz-
able solutions to (1.3) for

'Virile the existence of these solutions is related
to the concept of spectral flow and to the index
theorem with boundary, ' the extreme simplicity
of the solutions must have some more specific
source. In Sec. IV, it is shown that the gauge
fields under consideration are, in a certain way,
conformally Qat. Further, there is a conformally
flat manifold on which the curvature of the gauge
field cancels' the curvature of the tangent bundle
in a special channel. Projected onto this manifold,
the solutions to (1.3) that we found are simply
constants. This result contributes to a geometri-
cal understanding of meron field configurations.

II. A SIMPLE CHOICE OF GAUGE

In this section, we will work through gauge trans-
formations which bring the two-meron, the one-
meron, and the x4=0 instanton fields into very
simple forms.

Consider the starting points: The one-instanton
solution is

2Zq, x'
2 ) 2

The one-antimeron solution is

y,C, =+0, . (1.4) ~pvx
2

18 '3690 1978 The American Physical Society



18 FERMION ZERO MODES AND LEVEL CROSSING 3691

The two-antimeron solution that we consider has
the merons on the x4 axis:

A, =0,
A,. = ,g~—„„a,ln[(x'+ x,')"' x-,]o„.

(2.11)

Z„„(x—y)" Z„,(x+y)"
{x-y)' (x+y)'

y; =0, y, =y)0.

The one-instanton field is not as simple. If x4
is not zero, then no gauge transformation of the
form (2.8a) with

Also, O = e(x„x') (2.12)

Zu. = -Z. u

Zg) pK ~o

(2.4)

brings the field to a form with B and C equal to
zero. However, at x, =0 such a form is very easi-
ly obtained and it is

1 ~

Z, 4=-—se- .
Since no three-vector other than x appears, we

mulct have in each case

A] =-~zc ~~~ per„,

p =In(x'+X') .
(2.13)

A,(x„x)= ,'iD(-x„-x') x (r. (2.5)

A;(x„x) = ,'iA-(x-„x )e„.„x'o'--,'i(x(B(x,, xm)o,.

C(x„x')x,x o .
)xt

(2.6)

This is the general spherically symmetric ansatz.
(It happens that C is zero in each case for the
fields given above. )

To get to the A, = 0 gauge, transform to

A(( =g (8+A)((g

by

Our final observation of this section is that at
@4=0 the instanton field and the two-antimeron
field have the same form.

HI. ZERO-ENERGY SOLUTIONS

This section presents some zero-energy nor-
malizable solutions to the massless Dirac equa-
tion in the presence of the fields given in the pre-
ceding section. The "time" x, appears as a pa-
rameter. The motivation for this approach was
given in the Introduction.

The Hamiltonian operator is

H=-i,n( a+A),
pe x

g(x„x) = Pexp — d7A, (7, x)
0

(2.V) The familiar choice of matrices is

With (2.5), there is a major simplification, and (3.2)

&(* * ( llaif., '«=n(~, +l .
0

(2.8a)

(2.8b)

Thus, solutions

HC =0 (3.3)

For the two-antimeron field, all calculations can
be carried out and we obtain the result that the
field (2.3) is gauge equivalent to

A~=0,

will always come in pairs which can be chosen
to be plus and minus chiral eigenstates. The in-
terpretation of this was discussed in the Introduc-
tion. It is sufficient, then, to study

(3.4)

A] = -~i&;)~b,.pa~,

p =In(x +y' —x, + [x'+(» -y)']'~'

x [x' + (x +y)']'~') .

(2.9)

(2.10)

with

h =-io', (9+A), .
Ramark. A normalizable solution to

(3.5)

(3.6)

Although a result of the form of {2.6) with A, B,
and C all nonvanishing is all that one might expect,
(2.9) is actually much simpler. A full discussion
of this appears in Sec. IV.

If the single-antimeron field is transformed as
in (2.8) and if this is followed by another rotation
with 8=-s/4, then we obtain

(-(a+A)' ——,'[n, , n, ]F,,]4 =B'e .
Since I' falls rapidly at infinity, any x ' term in
A must be pure gauge. Thus, the asymptotic form
of (3.V) is essentially

(3.7)

Inust have E=O when I„falls faster than x ' at in-
finity. Applying H to (3.6) gives
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(3.8)

Equation (3.4) becomes

(3.8)

(s.lo)o' B.X —O';XX

With the ansatz that X is proportional to the unit
matrix

X=Xo& r

(3.10) becomes

(3.11)

(u, s, —v,A, )y, =0 .
Specializing to a field of the form

1 ~

Ai gzci)p ) Pvg

(3.12) becomes

o,.(s,. +a, p)y, =0.
The solution to (3.14) is

XO=Ne ~

(3.12)

(s.ls)

(3.14)

(3.16)

with N some normalization constant.
Thus, at x4=0 in the one-instanton field, there

is a zero-energy bound-state solution of (3.4)
given by¹,

x'+ X
(3.16)

In the two-antimeron field, the result is

Nv,
x'+y' —x,'+ [x'+ (x, -y)']'j'[x'+ (x,+y)']'j'

(3.17)

-8- 4 —E% .
With positive E', (3.8) does not have solutions
which are normalizable at infinity.

Return to (3.4). In (3.4) g carries spin and iso-
spin indices each running from 1 to 2. Employ-
ing a device used by Jackiw and Rebbi, ' g is viewed
as a 2x2 matrix and is written

(3.21)

IV. GEOMETRY

We have found that the instanton field at x4= 0,
the meron field, and the two-meron field have very
simple forms (3.13). Further, it is very easy to
find a solution to the Dirac equation in such a field.
A geometrical interpretation of these results will
now be given.

We have been working on the flat base manifold
Now consider the massless Dirac operator

on an orientable three-dimensional Riemannian
manifold. The structure group of the tangent
frame bundle is SO(3). The isospin group is SU(2).
Thus, we are also considering an SU(2) principal
bundle. As usual, the gauge field A is the con-
nection of this bundle. Since SU(2) and SO(3) have
the same algebras, there is a close formal rela-
tionship between the connection A of the isospin
bundle and the connection I' of the tangent bundle.

It will be shown that there is a conformally flat
manifold on which the curvature of the tangent
bundle compensates for the curvature of the iso-
spin bundle. The Dirac equation then has a zero-
energy solution which is simply a constant spinor.
Conformal invariance' of the Dirac equation allows
us to pull this back to a solution on R . This will
be the same solution that we have already found.

First recall the form of the Dirac operator on
a Riemannian manifold. It involves the vierbein
field which is defined by the relationship

E, (x) = V,'(x)sj . (4.1)

This is not normalizable.
In conclusion, (3.16) gives a normalizable solu-

tion to (3.4) for the x, =0 instanton field. Equa-
tion (3.17) is a normalizable solution for the two-
antimeron field when

(3.22)

For

-g & x4&g (3.18)

The E,. are an orthonormal basis at x and the 8,.
are the coordinate-induced basis. The inverse
transformation is

this is nonsingular and normalizable. At 1 j@i i j (4.2)

Ncr,
x'+ Ix ((x'+ 4y')'j'

(3.19)

This has a weak singularity at the origin which is
normalizable. For

(3.20)

y has a singularity at the origin which is not in-
tegrable.

The single-antimeron result is

and

y-& i gj r y sgi r si (4.3)

If I',. „ is the usual metric-induced connection in a
coordinate basis, then we can form

[+ij t +kl ] 6iP jl 6il+jk 6jk+il 6jl+ik (4.6)

(4.4)

The a, j are the same as the Z, j of (2.4) and satis-
fy
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as SO(3) generators.
The curved-space version of (3.4) becomes

-z~* V,.'(s,.+I,. +A,.)y = 0 . (4.6)

g=e g'. (4.18)

Now specialize further and suppose that M is
R' so that M' is conformally flat. Then

r is a matrix in the spin space, and A is a matrix
in isospin space.

Now consider two three-dimensional manif olds
,M and M' with metrics g and g'. Let f be an em-
bedding

and

V 5~i

This gives

(4.19)

f: M M'. (4.7) Fi 0'it~a~ + 2zc i~I ~~X0' o (4.20)

f induces a metric on M, the pull back

ofg'. Suppose that

f*r'=e r

(4.8)

(4.9)

The simple expression for A, in (3.13) is now

understood. The form is that of a conformally
flat connection.

With the ansatz of (3.9) and (3.11), (4.15) be-
comes

with -ie ~a'(s;+I,'. -A, )y,'=0 . (4.21)

X: M-R. (4.10)

f is a conformal mapping.
Given a set of coordinates on M, it is convenient

to use the coordinates on M' induced by f. We

will do so,
Also, if we are given an A. ' on M', f pulls it back

to M. However, with our choice of coordinates
the components of A' on M' and f*A' on M are the
same. Furthermore,

(4.11)

-iu'a, .go= 0 .
The solution to (4.23) is

X,
' = constant .

(4.23)

(4.24)

Thus, we.have found a manifoM M' with metric

It is now obvious that we should choose M' by
taking

(4.22)

to obtain for (4.21)

From (4.11) and (4.12), we obtain

(4.12)

g,', = e-'~5,-, (4.25)

On this manifold, the Dirac equation (4.15) with
A' of the form (3.13) has a very simple solution,

p' =¹'» (4.26)

=r;+OF; .
A short calculation gives

v,.~or,. = -e"'v„'g,~v, ,

(4.13)

(=Ne ~o, . (4.27)

with N some constant. Finally, from (4.26) and
(4.18) we obtain a solution to our original problem
on R' which is

(4.14}

There are two equations under consideration.
On M'

Comparison with (3.9), (3.11), and (3.15}shows
that (4.2V) is exactly the solution that was obtained
in Sec. III.

I et us take a closer look at M' for the two-anti-
meron ease with

-io*' V,". (s,. + I",.+ A,'. )y' = 0,
and on M

(4.15) lx. l &y ~

The metric is

(4.28)

-Ar'e V,
' (8)+I ~+A~ —8 X)/=0 . (4.1'I)

Thus, a solution $' to (4.15) on M' gives a solu-
tion g to (4.16) on M:

-ia' p (8,.+ 1 z
+A,.)g = 0 . (4.16)

If we take for A the pull back of A' and use (4.14),
(4.16) becomes

x'+y'- x,'+ [x + (x, -y)']'~'[x'+ (x,+y)']'~']l

(4.29)

Topologically this is S'. The metric changes with

x, and gives some noneonstant curvature. How-
ever, at x4=0 (4.29) becomes
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1
gjg 2(~2 2) 5ij (4.30) (5.2)

and M' is a three-sphere with the usual metric.

V. DISCUSSION AND CONCLUSION

Vfe have studied the massless Dirac Hamiltonian
in fields A, obtained from instantons and merons
in the A.,= 0 gauge. For the instanton at x, = 0 and
for a two-antimeron pair with

Although this is suggestive, there are other de-
formations of A, which leave (5.2) unchanged and

give nonzero-energy shifts.
Finally, we remark that our analysis leaves

open the question of whether or not there are zero-
energy bound solutions in other channels.
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