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Covariant, constrained two-body dynamics, with both particles put on their mass shells, is proposed as a
generalization of the Bakamjian-Thomas-Coester relativistic quantum-mechanical scheme. The Weinberg
infinite-momentum limit of the latter scheme is investigated, and a covariant formulation of the two-body

problem in the light-front field theory approach is made. We find several equivalent versions of the three-

dimensional, covariant, two-body integral equations. Among these equations we get one in which the
covariant two-body propagator has the form. identical with the nonrelativistic case, i.e., we have a quadratic
structure in the relative momentum and the ordinary reduced mass. We discuss connections between different

schemes, emphasizing the variety and the uniqueness of the off-shell extensions.

I. INTRODUCTION

There exist in the literature very many practical
proposals for dealing with two-body and many-
body problems in the relativistic man-
ner. ' ""-"""'"" However, some approaches
are noncovariant, ' ""'and other schemes pos-
sess arbitrariness in writing three-dimensional,
two-body integral equations. There are special
recipes such as the "minimal relativity' scheme,
with which one would like to correlate the findings
from nonrelativistic nuclear physics with those
which are necessary to explain relativistic pro-
cesses.

The medium-energy facilities for studying the
pion-nucleus interaction provide a large amount of
data, in which relativistic effects must be taken
into account. Also, the isobar nucleon modifica-
tion' of conventional nuclear physics calls for
taking into account the mesonic degrees of free-
dom in a relativistic framework with some effec-
tive I agrangians. The nucleon-nucleon interac-
tion contains some effects, which are due to rela-
tivistic features, and it is desirable to disentangle
them from pure dynamical effects. '

The original motivation for the present work was
the aim to find a relativistic scheme in which the
Glauber formula could be derived as the eikonal
approximation in the relativistic three-body prob-
lem. ' For a two-body subsystem we found' that the
Abarbanel-Itzykson" result for the sum of ladder
and crossed ladder diagrams can be reproduced
for the fully on-shell t matrix in a covariant, eik-
onal, potential scheme, in which we use the condi-
tionq .P = 0, where q is the Wightman-Ga. rding rela-
tive four-momentum and I' is the total four-mo-

-mentum. In an earlier work" we found that the
real potential correction to high-energy proton-
proton scattering, in the range of laboratory mo-
mentum 20-1500 GeV/c, explained very well the
phenomenon of breaking the geometrical scaling.

The present paper is organized as follows. The
noncovariant, relativistic, quantum two-body dy-
namics, proposed by Bakamjian and Thomas' and
largely developed by Coester, "' is recapitulated
in Sec. II, where we also study Weinberg's infinite-
momentum limit. " In Sec. III we propose a co-
variant generalization of the scheme given in Sec.
II, using constrained dynamics, similar to the
scheme suggested recently by Todorov, "but with
both particles constrained by their mass shells.
A field-theoretic description, based on the light-
front field theory appr'oach, is presented in Sec.
IV, where we find a covariant Weinberg equation
with a propagator such as in the nonrelativistic
case. In Sec. V we make a comparison of differ-
ent approaches including four classes of the most
popular three- dimensional, two-body schemes.
Conclusions and some remarks concerning the
relativistic Schrodinger equation are given in Sec.
VI. Two appendices contain normalization of am-
plitudes and several details corresponding to the
case of unequal masses.

II. NONCOVARIANT RELATIVISTIC QUANTUM

MECHANICS AND THE INFINITE —MOMENTUM LIMIT

In this section we recapitulate several known

facts from the scheme developed by Bakamjian
and Thomas, ' Coester, ' and other, "and we em-
phasize the variety of the equivalent two-body
integral equations.

In relativistic quantum dynamics, particles are
on their mass shells, but the whole two-body sys-
tem may be off the energy shell. For such a sys-
tem, Bakamjian and Thomas introduced an inter-
action v in the invariant mass of the two-body
system, as a rotationally invariant function of the
c.m. relative three-momentum k and a relative
coordinate p. Thus for noninteracting and inter-
acting cases, the respective mass operators are
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h (k 2+m 2)1/2+ (k2+~ 2)l/2

h=h, +v(k', p', k p).
(2.1) dg s dA s

—=. vk ' — =v'k 's[1 —(m
' —m ')'s ']'

1 2
c.m.

x (&k Ir(k&(„,...„.(; (2.6)

H, = (h,'+ P)'/',

H = (h'+ F)'/2
(2 2)

where 5 is the total three-momentum.
The Mt(lier operators are defined as

Consecutively, the generators of the time trans-
lation are where t is the invariant momentum transfer

squared. Some more details concerning normal-
ization are given in Appendix A.

For simplicity, we now put m, = m2 = m, and in
Appendix B we collect the relevant formulas for
m, Wm2. A different two-body equation from Eq.
(2.V), but equivalent to it, can be found' if we use
again the Kato theorem, and instead of Eq. (2.4)
we write

0, = lim exp(iHt) exp(-iH, t) (2.3) 0, = lim exp(i~~ 'h't) exp(-i —,'m 'k, 't). (2.9)

and, by applying the Kato theorem, "Coester' re-
writes them as

Then, we define an interaction V and a corres-
ponding scattering operator T as

0, = lim exp(iht) exp(-ih, t). (2.4) V= ~ '(h —h, ') =
~~ '(hov+vh, +v'), (2.10)

Assuming a regular v, it can be shown' that 0
satisfies

T =VA =-,'m '(h, V'+V'h, ). (2.11)

~40

1 = 0 —i [exp(ih, t)]vA exp(-ih, t).
0

(2.5)

From Eqs. (2.5), (2.9), (2.10), and (2.11) we get

&k (T(iq=&k (V(k&

f =vQ (2.6)

we get from Eqs. (2.5) and (2.6) the two-body,
half-off- shell, integral equation

(k Ir(k&=&k'Iv(k&

—lim d'k" k' v k" k" g k

x [&o(k")—v(k) —i~ ] ', (2.V)

The Hilbert space of the free-particle states is
spanned by the eigenstates of H, denoted as IVk&.
The dependence on 5 follows from translational
invariance, and it is sufficient to consider states
denoted as Ik&. Acting on such states we have
h~ =0 ho, and defining a scattering operator

—lim d'k" k' V k" k" 7 k

x (k "2m ' —k m ' —ie) ' (2 12)

Notice, that the two-body propagator in Eq. (2. 12)
has in the denominator the quadratic dependence
of the momenta, as in the nonrelativistic case.

The same two-body propagator as in Eq. (2.12)
can also be found from the following procedure. We
multiply Eq. (2.6) from the left- and right-hand
sides by the operator —,'m '/'(h, + &u)' ', where ~
is a parameter. Then, using Eq. (2.5), we take
the matrix elements between the states (k'

(
and

(k&, set the value of &o to be equal to u&(k), and
performing the t integration in Eq. (2.5} we get
the two-body equation in the form of Eq. (2.12),
but instead of V and T we obtain 7 and 7.', respec-
tively. The fully off-shell matrix element of 7,
which appears in the kernel of such an equation, is

where &o(k) —= (k'+m, ')' '+ (k'+m, ')'/'. The energy
shell is determined by k' in Eq. (2.V), and in the
following we shall denote it as

&k'
I Vlk "&=-'~ '[~(k')+ ~(k}]'"&' lv lk"&

x [v(k")+ &u(k)]'/'. (2.13}

This should be contrasted with

where s is the invariant mass squared equal to the
c.m. energy squared. The normalization of & is
such that + &k' lv' Ik "&] (2.14)

(k' (V (k")='~ '[&d(k')(k' Iv lk"&+ (d(k")(k' Iv Ik "&
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The matrix elements of F and & are related in the
same way as V and v. Again, such a relation is
different from the one which holds between T and

an'd follows from Eq. (2.11).
The fully off-shell matrix elements of V and v

are independent of &o(k), th'e energy shell. (When
going fully on shell the matrix elements of V and/
or v may depend on energy if they are nonlocal
interactions. This should not be confused with the
energy independence of the fully off-shell matrix
elements of V and v .) Therefore, we call V and
v potentials, while V, explicitly depending on

&u(k), we call a quasipotential. The two-body equa-
tions, of the form of Eq. (2.12) with either V or
V, describe the same dynamics but in a different
way. The matrix elements of V and V are very
different both off shell and on shell. Only the
fully on-shell elements of T and T coincide, as
it should be for measurable quantities normalized
in the same way. However, the off-shell exten-
sions of T and T are completely different, though
the propagators are identical in both equations.
There is no question of the uniqueness of the off-
shell extension of either V and T or V and T once
the matrix elements (k'~v ~k") are given as an in-
put. This is transparent in Eqs. (2.13) and (2.14).

The variety of equivalent two-body integral equa-
tions can be enlarged either by using the Kato
theorem, with functions different from before, or
by acting with operators different from 2m '/2(k,
+~)'/2. In Sec. V we present some more examples
of them. Now we obtain from Eq. (2.12) an equa-
tion with the form of the Weinberg equation. "
However, there is an essential difference between
this equation and the original Weinberg equation.
The most important difference is in the energy
dependence of the fully off-shell elements. of the
irreducible kernel.

I et us take the limit ~5 j —,keeping P,' —0'
fixed, and let us use Weinberg's parametrization"
of the particle's momenta. For )7 c (0, 1), we have

p) ——'gP+q1, p, =(1-3})P-q1,

where 5 q, = D. For a finite ~P ] =Pwe conside—r
the Lorentz transformation to the c.m. system,
and we get

k„=r/P cosh') —[(g5+q„)'+m']'/' sinhq),

k~ =q~,

where

cosh') = {( )'72P++qm')'/'

+[(1)7)2P2+q2 +m2]1 /2)+1

sinhy =PA '

= P(f(q2P'+q, 2+m2)1/2

+[(1 )))2P2+q 2+m2]1/2}2 P2) 1/2

Taking the limit P ~, with g and q~ fixed, we
fllld

limk„=()7- 2)[(q1'+m')3} '(1- q) ']' ',

lim(u(k) = [(q12+m'))7 '(1 —3)) ']' ', (2.15)

l jmd3k 1
3) 3/2(1 )I) 3/2(q 2 + m2)l/2dqd 2

Finally, defining an amplitude M by the equation

(q "q,"(M ~3}'q,') =(2 )'2 '/'(k")

x (3}"q,"~T j)I'q,')~' '(k') (2.16)

q"'~ q~ +m'
x (f)(M)

(2.17)

This is the Weinberg" form of the two-body equa-
tion. However, here the fully off-shell elements
of I are independent of &o(k), the energy shell, as
can be seen from Eqs. (2.16) and (2.14). This is in
contrast to the irreducible kernel in the original
Weinberg equation which we disucss in Sec. IV.

III. COOVARIANT, TWO-BODY DYNAMICS

It is possible to find a covariant generalization
of the scheme given in the preceding section. We
start by discussing a free two-body system, and
denote the particle's four-momenta by p„p„ the
total four-momentum by P =p, +p„and for the
relative four-momentum we take the following
combination of p, and p, :

q = //F1 —&1P2~ (3.1)

where

i/, , =
2 [I+ (m, ' - m, ')P '],

p2 = —,
' [1—(m, ' —m, ')P '],

m, and m, are the rest masses, and P denotes
the four-dimensional scalar product with the sig-
nature (+- ——). The four-vector q is known as
the Wightman-Garding" relative momentum, and

and similarly defining the matrix elements of I in
terms of V, we get the following two-body equa-
tion, equivalent to Eq. (2.12):

(M) =()) ——(2')
fdic

"d'd" Il" '() —q") '
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for the on-mass-shell momenta it is guaranteed
to be a spacelike four-vector, since then the scal-
ar product q P vanishes. 1he Hilbert space of
the free two-body states is spanned by. the fully-
on- mass- shell states

fine a 12-dimensional subspace by using two con-
straints given by Eqs. (3.2) and (3.3) and adding to
them two extra constraints for defining a parame-
trization in the constrained space. Our four con-
straints are

~P, (t,' = m, ')P,y, ' =m, ')).

Two-mass shell constraints are equivalent to the
following two constraints on the relative and total
four- momenta:

y—=qP=O

X, —=x P=O,

P'- -[(-q'+ m, ')'/'+ ( q'+-m, ')'/']' = p,

g, =—Xo- t=0,

(3 .6)

(3.2)

P2 [( 2+ 2)1/2+ ( 2+m 2)l/2]2 p (3.3)

The two-body states

lq(Eq (3 2))P(Eq (3 3))&

Substituting Eq. (3.1) into Eq. (3.4), we get

X=y,,x, + p,2x, — [x P(m, '-m, ')P 4]P. (3.5)

It is straightforward to verify that if x„p„and
x„p, satisfy the standard, canonical Poisson
brackets, then x, q and X, P also obey them as
should be because of Eq. (3.4).

In the 16-dimensional phase space we restrict
ourselves to a timelike four-vector P, and we de-

have 6 degrees of freedom, as in the nonrelativ-
istic case. This is in accordance with the fact that
the contraction of the I orentz group to the Gal-
ilei group does not decrease the number of com-
muting operators.

For further development of the constrained dy-
namics it is useful to carry out some consider-
ations for a classical two-body system. Such a
system is described in a 16-dimensional phase
space of two four-momenta p, and p, and two can-
onically conjugate position-space four-vectors
x, and x, ~ In the x space we introduce two four-
vectors for the two-body system. One is the rela-
tive position x =x, -x„and the second is an ana-
log of the center-of-mass position. The second
four-vector we denote as capital X, and we define
it through the relation

1

x, 'dP, +x, ' dP, =X dP+x'dq. (3.4)

where t is the time in the frame of reference, in
which the components of the four-vector P are
P„P„,P„, and P, . It is useful, but not neces-
sary, to use the notation of the Dirac-Poisson
brackets in the constrained space. We do it in two
steps, first using y j = X = 0 then y, = X, = 0. The
Dirac-Poisson brackets are denoted by a single
asterisk and a.double asterisk respectively, and
for two quantities f and g they are defined in terms
of the ordinary Poisson brackets as

9g]*=pg]+ Kf~,] (x,g] -Erx,Hq, gH(fy, x,]) ',

kg)**= 9g]*

+ [pal.]*h.g}*-Px.]*6~,g]*](6o,x,)*) '.
For any pair of py py 'p2 y, the double-asterisk
brackets are equal to zero. However, the double-
asterisk brackets between the components of the
four-vectors x, q, X, and P are no longer of the
canonical form. Nevertheless, it is possible to
define a new set of variables which have the can-
onical form of the double-asterisk brackets needed
for the quantum program.

To define the new variables we introduce a vier-
bein which we denote as PK'lm. It contains
a unit timelike four-vector P(P') '/', and three
orthonormal spacelike four-vectors ~, l, and m.
Thus we have P K=P.L=P m=K. l =K m =l m
=0, and K = l2 = m~ =- 1. Such a vierbein
was used by the present author in connection with
the eikonal approximation" and the relativistic
Glauber formula. ~ Its explicit construction in
terms of Po, P„P~, and P, was given by Faus-
tov. ~~ Denoting (P )' ~ as MD, and Pa+MD as No,
we have the following components of the vierbein
four= vectors

Py»)-&» = (PPg, P„M,P„M,-', P,M, -'), .

l=(P„M0, 1+P„MO NO, P„P~MO No, p„pgM0 N0 ),

m= (P~MO, P„P„MO N. 0, 1+P~MO NO, P~P Mo No ).

(3 7)
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Any four-vector can be projected on the P~lm
vierbein . For example, instead of q and x
we can store the information about these four-vec-
tors in the following scalar products: Ip =Pip+P2p»~ (3.11)

two-body system. For the noninteracting case we
have

qp—= qPMp', q=—-q z q&
—=—ql, q = —qm, where P, and P2 are expressed in terms of q and P

as

xp—= x PMp"', x„—= x II.', x'& ——x l, x~=x m. &t.2=+q+j &,2P

The scalar products q„& and x„~ are the new vari-.
ables which have the following double-asterisk
brackets:

with

p, 2=-,'[1+(m, ' —m, ')M, 2]. (3.12)

(x q~}**= fb ~, where n or P =x, I, m

(3 3)

(x~+P"*=0, (q~P")*~ ='0, where p, =0, 1, 2, 3.

Knowing projections on the vierbein Prim, . and
the vierbein four-vectors, we can reconstruct a
given four-vector. For example, we have

q =PM p 'qz+xqg+lqr +~qm.

If we are given qp„&~, xp„&, X", and P", then we
can write ten Poincare generators,

(p
2 +m 2)1/2 + (p

2 + m 2)1/2

K =x (p '+m ')'"+x (p'+m ')'"

Pp —p&+p»
(3.9)

Jo =x) x p( + X2 x p

where the index 0 on the left-hand gide denotes
the noninteracting case. In the constrained space
we have qp=xp=O, and

Mo=(q'+q, 2+q '+m, ')'

+(q 2+q 2+q '+m 2)'/2

~ (q 2+q 2 ~q 2 ~m 2)1/2]2]1/2 (3 10)

To introduce an interaction we follow the basic
idea of Bakamjian and Thomas (many details of
our work and that of Bakamjian and Thomas are
different) and change the mass operator of the

The vanishing double-asterisk brackets (q P"j**
and (q, qg++ enable us to formulate the quantum

program with the use of the states ~q„,+(P =M, )).
They are eigenstates of the, free Hamiltonian

In the presence of interaction we keep the condition
q&

—0 as a condition on the state vectors, where
in the Prim vierbein field we put P =Mp, so we
have

p 2 pgp —p ~p2p = 0~ (3. 13)

but we modify the operator Eq. (3.11) into the op-
erator

(3.14}

where p is a function of q„& and x„&, about which
we shall tell more later on. The change from Eq.
(3. 11) to Eq. (3.14) is the same as from ho to h

=hl1+ v in the preceding section. [The change
from (3.1'1) to (3.14) is also similar to the one
which appears when passing from the evaluation of
the propagator to the evaluation of the irreducible
kernel in the Weinberg equation. In particular,
in the lowest-order approximation to the irreduci-
ble kernel, when we evaluate the contribution to
the energy of the system from the exchange of one
leg, we must add to the energies of two propagat-
ing particles also a contribution from the ex-
changed leg. ] In the presence of interaction our
two particles remain on their mass shells, but
the whole system goes off the energy shell to the
nonrelativistic case. Indeed, using the vierbein
Pzlyn with P =Mp, we have as always Prearm

=-p2„, =q„, , and from Eqs. (3.13}and (3. 14) we
getPf 2p pf 2Mp leading to two mass-shell con-
straints p&, 2p —q„—q& —q =m, 2 .2 2 2 2 2

The function p has to satisfy some regularity
conditions, such as continuity, boundedness, mono-
tonicity in domains, and a proper behavior at in-
finities. We shall assume all of them, and for
more details we refer to the papers by Kato'5 and
Schi'erholz. ' Here, we only consider the variables
on which p depends, and the form of this depend-
ence. We can verify that if y is a function of the
following -combination of q„& and x„&,

41 = q1(q„+qg +g, x„+xg +x

(q~„+q,x, +q„x„},),
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where the subscript + means a symmetrized prod-
uct, then the double-asterisk brackets between
any pair of constraints remain the same if we re-
place the constraint y2 —0 by

Taking the Lorentz transformation along P„set-
ting P„=P,=0, and denoting coshn = (1 + P2s 1)'/2,

we get for the interacting and free systems the
following transformations of H and Ho.'

q1&=P2 [( q2+ 211 2)1/2+ ( q2+~ 2}1/2 ~ p]2 0

(3. iS)

Solving this constraint for the time component of
P we get the following total Hamiltonian H, in the
presence of interaction:

QP2 + [(q
2 +q 2 + q 2 + 112 2)1 /2

+ (q 2+q 2 +q 2 ~ ~ 2)1/2+~]2]1/2

H H cosh' —P, sinha, Ho Ho cosh& —P, sinhn.

These transformations inserted in the definition of
the Mt(lier operators give the following final result,
after using the commutation of H and P and the
Kato theorem with f(H) =M(coshn) '.

Q, =,lig exp(iHt cosh&) exp(-iHpt coshn)

= lim exp(iM &) exp(-iM, V') .

The Mgller operators

(3.16) In correspondence with v and V, defined in Sec.
II, we introduce, besides @=M—&&0, also

Q„=Jim exp(iHt }exp(-iH pt)
4 =f2(M) -f2(Mp). (3.18}

can be rewritten in two different forms using the
Kato theorem with the functions

f, (H) = (H' —P')'/'=M,

and

f (M) ——
p.'[M +M (m —m ) ]

where p, =m1m2(m, +m2) ' is the ordinary reduced
mass. We get

Q, = lim exp(iMt) exp(-iMpt)

= lim exp[if2(M)t] exp[-if2(Mp)t].

For the interacting case we build the Poincare
generators as

(3.17)

H, P, K, J= Q (H p, Pp, Kp, Jp)Q,

where H p, Pp, Kp, and Jp are given by Eq. (3.9}.
(When the two-body system has a bound state, then
we have to add to the above generators an extra
term corresponding to the projection on the space
of the bound states. For more details concerning
this modification we refer to Fang and Sucher. '4}

The generators of the space translations P are the
same for the noninteracting and the interacting
case because P commutes with 0 .

The commutation of P with H can be also used
for rewriting Q„ in the form containing the proper
time of the two-body system 7' =t(1+P2s '} '/',
where s is the invariant energy squared, an eigen-
value of M() . We can follow Jordan, Macfarlane,
and Sudarshan, '4 and use the Heisenberg picture
to represent transformation to the c.m. system.

The two-body scattering amplitude corresponding
to P is defined as T =QQ, and its matrix elements
have the property

(q2, , P'(P'2 =M' ) (
T ~q„,„P(P2=M 2))

= & 12'(P'- P}(q' ~ T lq. .&

which follows from translational invariance. (The
dependence of a I; matrix on P could be also found
from the following procedure: %e define the t
matrix by the equation t =(H —Hp)Q, and derive
an integral equation for it as in Sec. II. In such
an equation, P appears explicitly because of Eqs.
(3.10) and (3.16). However, when doing this&it
is important to notice that both H and Ho are P
dependent, and therefore also the difference H
—Hp ls P dependent. An attempt along these lines
was made by I. Heller, G. E. Bohannon and F.
Tabakin [Phys. Rev. C 13, 742 (1976)]; however,
the P dependence was only taken into account in the
propagator and was not considered in H —Ho which is
complicated. ) ThreeS functions in Eq. (3.19) show
the trivial dependence of T on the total three-mo-
mentum. The nontrivial dependence of T on the
fourth component of P" can be simply taken into
account if we use the notion of the projections on
the Prim vierbein for the four-vector P".
Then, instead of writing P", we put

PI, —Mo, P„=O, P) —0, P =O.

In terms of the components in the frame of the
PIt".lm vierbein, the four-vectors PM0 ', z, l,
and m are, of course, (1, 0, 0, 0), (0, 0, 0, 1),
(0, 1,00), (0, 0, 1, 0). The primed total four-mo-
mentum P' has in the unprimed vierbein frame
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the components P~„& . However, because of the
3 functions in Eq. (3.19), we get

P]c)~ —Pfcg~ 0. (3. 20)

The component P~ is equal to Mp since P' =Mp .
Using Eqs. (3. 7) and (3.20) we find that in the

Prim vierbein frame, the four-vectors P'Mp Ic,
'

l', and m' are exactly the same as PMp
and m. Therefore, when working with the com-
ponents P~=Mp, P„, =0 and PP=Mp, P„'& ——0, we
can simplify Eq. (3.19}, using only one vierbein
Prim, and we get

(3. 21)

We also find that q~ =0 since q' P'=0 and P„'& —0. Thus, the T matrix is evaluated for the following
values of the four-vectors q, P, q', and P':

«p 0 q &
I'p™oP's =01T lq~ =0 q' s.»~ =Mo & (3.22}

The matrix elements (q„',„l
T l„,„)satisfy the following two-body integral equation, which can be derived

here in the same way as in Sec. II,

(T )=(P) —2p, lim Jtd3q„", (P) (T )(q„"'+q,"2+q "2 —q„2 —q, 2 —q
' —ie) ', (3.23)

It is also evident that for the t matrices '7 and
T we can find the corresponding covariant analogs.
However, we cannot work with the projections on
the Palm vierbein fields and take the limit

l
P

l-, with Pp —P fixed, since then two of the vier-
bein four-vectors would be undetermined, having
two infinite components.

IV. COVARIANT WEINBERG EQUATION WITH A

QUADRATIC PROPAGATOR

In field theory the basic two-body equation is the
Bethe-Salpeter equation. " It is an exact equation,
as shown by Gell-Mann and Low" if the irreduci-
ble kernel contains an inf inite series and the particle
propagators are the full two-point Green's func-
tions. (The Bethe-Salpeter equation for the two-
body Feynman kernel can be viewed as a definition
of the irreducible kernel. Such a kernel should
contain all couplings to the many-body states,
while all disconnected diagrams should be taken
care of in the propagators corresponding to the
physical masses of particles. ) However, in prac-
tice one is forced to take a finite sum of diagrams
f'or the irreducible kernel, and then the Bethe-
Salpeter equation is only an approximate equation.
In general, the irreducible kernel of the Bethe-
Salpeter equation is nonlocal and energy depen-
dent, but in some cases, like the ladder approxi-
mation in the scalar theory, it is local and energy
independent.

In parallel to the standard Feynman perturbation
theory one may also write the "old fashioned" per-
turbation rules for the 8-matrix elements. Then,

all particles in the intermediate states are on their
mass shells, and instead of the Feynman propaga-
tors for each particle we have energy denominators
for each state. Kadyshevsky" developed such a
scheme and found a two-body integral equation
which plays the same role as the Bethe-Salpeter
equation in the standard theory. Again, if the
kernel contains all irreducible diagrams and the
propagator is the full one, then such a two-body
equation is exact by definition of the irreduci-
ble kernel. However, in contrast to the Bethe-
Salpeter case, this irreducible kernel is non-
local and energy dependent even in the lowest-
order approximation. Weinberg" considered the
infinite-momentum limit of the old-fashioned per-
turbation rules and wrote a Bethe-Salpeter-type
equation, with the ladder approximation for the ir-
reducible kernel.

The Weinberg infinite-momentum rules can also
be found in the light-front field theory (LFFT) ap-
proach. Such schemes were developed by many
authors, 22 but most useful for us is the series of
papers by Yan et al." There, all popular renor-
malizable field theories were studied and a formal
proof of the equivalence of the LFFT with the
standard field theory is given. The 8-matrix op-
erator is defined by the Dyson formula,

8 =T'exp -i d'xHI x

with T+ denoting the x xo+x, ordered product,
which can be expanded in the perturbation series
analogous to the old-fashioned time-ordered per-
turbation expansion. Then, instead of the energy
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denominators we have the p =PO-P, denominators,
and the conservation of the P, ~P, +P, and p, com-
ponents. The on-shell particle momenta are de-
termined from the simple relation p,p -p~ =m',
which is linear in p .

For our purposes the main object of interest is
the two-body matrix element of the 8-matrix op-
erator. Taking the 8-matrix operator between the
on-mass-shell states, we have a well-defined
total four-momentum P in the initial state. It is
a timelike four-vector and it can be used for de-
fining the P~lm vierbein, introduced in the pre-
ceding section. This vierbein can be taken for

defining the following combination of variables
which play the role of the + and & components:
py/ +p y p y g py and similarly for the second par-
ticle. . The momenta of the individual particles are
on their mass shells, thus the relative momentum

q and the total momentum P obey the relationsq ~ P =0
and P'= M„'= 4(m' +q„' +q,

' +q„'), for m, =m,
=m. The case m, 4m, is given in Appendix B.
The + and & components of the total momentum
are conserved; therefore, we have the following
structure of the matrix element of the scattering
matrix M:

(P'+p', p', , p~ P„'=M"(p'+P„') ', q', +q„', q',„; q' P'=0 IMIP~=Mo, P„, =O, q~=0, q„, )

= ~(P,'+P„' P,)S"'(P',„)(q,'+q„', q,'„IM lq„,„), (4.1)

where in the final state we used the same vierbein Palm as in the initial state. We note, that if Mo+Mo,
then the final state is not in the c.m. system. Introducing the standard notion of the light-cone variable
q=(p»+p, „)(P~+P„)', we have q= —,+qP~ ', q'=-, +(q~+q„')(P~+P„') ', and we get the Weinberg equation

(q'q', „IMIqq,„)=(q'q', I» Igq, )

--'(2~) ' J'd~ "d'ql'. ~" '(I &") '«-'ql. l» In "q,"„)«"ql'.IMI ~qi.&

x [(q',"+q„"'+m')g" (1 —q") ' —(qg'+q„'+m')q '(1-p) '-fc] ', (4.2)

where (q'q', I»~lq"q f„) is the irreducible kernel,
depending on the energy shell, determined in Eq.
(4.2) by (q, '+q '+m')g '(1 —q) '=s. The lowest-
order approximation to I~ is given below, in Eq.
(4.7). If »~ would contain all irreducible diagrams,
and in Eq. (4.2) there would be the full propagator,
then Etl. (4.2) would be the definition of »~, because
the two-body matrix element of M is already de-
fined. In this sense, Eq. (4.2) may be considered
as an exact equation such as the Bethe-Salpeter
equation with the full irreducible kernel, and the
full propagator.

It is possible to make a change of variables and
get the propagator in Eq. (4.2) in a quadratic form.
According to Eg. (4.1), the total four-momenta in
the initial and final states are, respectively,

P = (P~ =Mo = v s, P„,„=0)

using it, together with the above relations, we find
an identity

q„' -q~ =(q~+q„')'(P'p+P'„) 'P"

= (ri' ——,')'M,". (4.3)

Let us now introduce two new vierbeins P'z'lm,
and P a'lm, with the l and m legs unchanged,
because of P',„=Pf =0 and Eq. (3.7). Working
with new and old vierbein components, we find
from q' P'=O=q» P» the following relations:

»

(4 4)
II »»2-qs

Finally, using Eqs. (4.3) and (4.4), we get, as in
Eq. (2.1.5),

q„"-= (n" -k)(P"')"',
P"'= (q", +q"'+m')g" '(1 —g") ',
dq„"~d'q" =-'q" ' '(1 —q") '~'

where Mo"=P' =(P~+P„')(P~-P„'). Thus, from
the condition q' P'=0 we get q~P~-q„'P„'=0, and

x (q f'+ q"'+ m')dg "d'q f,
and substituting them in Eg. (4.2), we obtain

(4.S)
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(q„', , [M[q„, &=(q„',, /I fq„,„&

--:r»)- f««."....». '«„...I« I«::...&(«: . IM.. I.« . &(«.".+«.["+« '
«",' -««&--, (4.6)

where k, =- 4s -m . For illustration, we write the ladder approximation to I~. It is the steinberg expres-
sion in terms of our variables

(q'„„(I„„„lq„'„,„)= -g'(m'+ (q', -q", )'+ (q' -q")'+ (x' -x')(x'M,"-x"M,"')+ ~x'-x" ~I-'(M,"+M,")-sjj ',
(4.7)

where

The' following features of I~]«~,„should be noticed: (1) For MO=MO =M, we get the standard Yukawa inter-
action, if in the conventional theory we take P'=P"=M 2, and q 'P =q'. 'P=0. (2) For Mo&IMO or Mo 4MO
we get an explicit dependence on Mo which plays the role of the energy shell. Thus l,~~„ is energy-depen-
dent. (3) For either M,'4M, or M,"4M, the matrix element (q„', , ~I~]«„~q„, & does not depend on the dif-
ferences between the variables in the bra and ket, but separately on each of them. In this sense it is a
nonlocal interaction.

Equation (4.6) may be rewritten for the amplitude T instead of M. The fully off-shell connection between
these amplitudes is

(q.' .I
&

I q.&.&=2(») '~ 'M'o "'«:&. IM lq. [.&MD"' ~ (4.8)

Inserting it in Eq. (4.6) we get for the matrix elements (q„', ,„~T ~q„, ) the following equation:

(T)= («")—f«'«, («:) (T) [,"m, '(«„".!+«,"'+«"') —m '«.' -&«] ', (4,9)

where V~ is connected to ~~ in the same way as 1'

and M in Eq. (4.8). The kernel V~ is energy de-
pendent and nonlocal, so we may call it a quasi-
potential. The propagator in Eq. (4.9) has the re-
quired structure with the quadratic denominator,
as in E(l. (3.23), but the energy dependence of Y"
precludes the identification of it with (I».

V. COMPARISON OF THREE-DIMENSIONAL FORMALISMS

In Secs. III and IV we presented the exact three-
dimensional formalisms in the framework of
relativistic quantum mechanics and field theory,
respectively. In the literature there are many
more three-dimensional, two-body formalisms,
and we would like to find some connections be-
tween the presented schemes and the schemes
taken from the literature.

The necessary requirement for two exact
schemes to be physically correct is to give the
same fully on-shell t-matrix elements. Thus, the
on-shell matrix elements of either the T ampli-
tudes, evaluated from E(ls. (3.23) and (4.9), or

the M amplitudes, evaluated from E(ls. (2.17)
and (4.2), must coincide for any physical values
of s and the invariant momentum transfer squared

We notice that if P"=P'=s, then the P'tdm and
Palm vierbeins coincide. For the irreducible
kernels, the condition is only a sum rule in
the form of the right-hand sides of the above
equations taken fully on-shell. Therefore, there
is no unique relation between the irreducible
kernels from Sec. IQ and the corresponding
kernels from Sec. IV, although in each section
separately, the off-shell extensions of the ir-
reducible kernels are uniquely defined if the
operators P or q& are known, and the Lagrangian
and a set of diagrams for the irreducible kernel
are given, respectively. It would be, completely
incorrect to identify the irreducible kernels from
Sec. III with these from Sec. IV both off-shell and
on-shell, because the kernels in Sec. IV are
energy dependent, and the off-shell extension is
different in See. IV than in Sec. III. The example
of the kernels V and V, given in Sec. 9, shows
that it is insufficient to have the same propagators
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to identify the kernels either on-shell or off-
shell. In connection with this we would like to
make some comments concerning the so-called
"minimal relativity" scheme introduced in Ref.
6. The minimal relativity factors M '/2, M
appear in Eqs. (2.16) and {4.8}, but we can not

identify the kernels. To emphasize this point let
us make an incorrect, in general, assumption that
the fully on-shell elements of I and I~ coincide.
Then, from the necessary requirements of the on-
shell equality of the t-matrix elements of M, we
would get the following equality:

P ''d pic)~ I M 2 2w Mp Mp s $c
Np eNp-g

d'q„", I M —.
'

2m 'M", M,
" ~

~(5.l}

where P denotes the principal value. However, in
general this equality will be violated, because the
off-shell extension of I and M on the left-hand side
is different than the extension of I and M on the
right-hand side, and the principal-value integral
crucially depends on the off-shell extension. It
is also inappropriate to consider' that the poten-
tial P in Eq. (3.23) is related to the nonrelativistic
potential (like the Reid potential) through the
minimal relativity factors. This would correspond
to identifying the Reid potential with I, while the
correct nonrelativistic limit of g corresponds
simply to taking P for small momenta, with no
extra factors.

To get a field-theoretic model of the interaction
defined in Sec. III we should first choose a La-
grangian and a set of irreducible diagrams for
I~ Then, .we solve either Eq. (4.6) or (4.9) and
take the fully on-shell elements of this solution.
Next, we choose an ansatz for &f& or y and solve
an appropriate equation from Sec. III, fitting
some parameters in the ansatz to the on-shell
value obtained from the field-theoretic equation.
The ansatz cannot be uniquely determined on the
level of the two-body theory. We have to test, it
further in the many-body calculations.

Now, we shall consider four classes of three-
dimensional schemes which originate from dif-
ferent arguments than the one presented in this
paper. The first class is the most popular one
and was established by Logunov and Tavkhelidze'4
as a reformulation of the Bethe-Salpeter equation,
and independently by Blankenbecler and Sugar"
as the two-body unitary reduction of the Bethe-
Salpeter equation. The reduction procedure is
nonunique, and for different possibilities see Ref.
5. The second class was developed independently
by Kadyshevsky, "on the basis of the old-fashioned
perturbation theory, and by Schierholz, "within
the framework of relativistic quantum dynamics.
The third class was proposed by Fronsdal and
Lundberg" in a scheme related to quantum me-
chanics, and by Gross" on the basis of the Bethe-

Salpeter equation. The fourth class was developed
by Todorov, "using equal off-mass-shell con-
tinuation. Recently, it was substantiated" in a
formalism based on constrained dynamics. We
used, after Todorov, a similar approach in Sec.
IQ, but we put both particles on their mass shells.

Let us denote the four classes by the letters
LT-BS, K-S, FL-G, and T. The two-body prop-
agators in these formalisms, for ~,=m, =m, are

—[—,(2v}SMO'(M,"—s —i2)] ', LT-BS

[(2m)SM',"(Mo'- Ws —i e)] ', K-S

[(211)'Vs M,
"(M", -Ws i~)]-', FL 6

[-,'s '"(M", —s —ic)]-'. T

(5.2a)

(5.2b)

(5.2c)

(5.2d)

(I* ) =4m(2s)2(M,'+Ms)-'/2M', (y)M,
"

x(MO'+vs ) '/'

(IF o)=4m(21/)21/s (M', +V s) ' '
xM'"(y)M"' '(M" +Ms)-'"

(y T) = 2ms'/' (y),
(I LT Bs) 1(2v)3(M +~s)l/2

x M 1/2 (~)M ~ 1/2 (M +~~ )1/2

(5.3b)

(5.3c)

(5.3d)

(5.4a)

The amplitudes are normalized as the M ampli-
tude in the first three classes, and as the & am-
plitude in the fourth class. For each formalism
we can find two analog equations within the scheme
of Sec. III, with the same propagators as above,
but with different off- shell continuations. We de-
note the kernels in these equations as I and I for
the first three classes, and as (It)

T arid y T for the
fourth class. They are linear in P and y, re-
spectively. We write these kernels in the way
they appear in the appropriate integral equations,

(I" ')=-2m(2')'M" '(q'„1 ~y~q„,„)M'," ',
(5.3a)
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x(MO'+Ms) '/', (5.5b)

(& L o)=29 s(MD+Ms) '/ (I~)(MO'+v s)-~/3

(5.5c)

( T) (2~) ss 1/2M& 1/2 (Iw)Mt ~ 1/2 (5.5d)

VI. CONCLUSIONS AND REMARKS

The main conclusion of our paper is that sev-
eral, equivalent, exact, covariant, three-dimen-
sional, two-body integral equations, with uniquely
defined off-shell extensions, exist if the inter-
action operator is known or the Lagrangian and
a set of diagrams are given. The two-body prop-
agators ma,y take different forms, but if they are
the same it is yet insufficient to identify the ap-
propriate irreducible kernels. To make the con-
nection between different irreducible kernels we
must take an ansatz for the interaction and per-
form separate numerical fits. The answer is not
unique and must be verified in the many-. body
calculations.

Our work should be continued in several direc-
tions. The most natural one is the three-body
covariant framework. On the two-body level, the
vector-meson exchange in the nucleon-nucleon
interaction should be investigated in the frame-
work of the LFFT, using the Weinberg equation,
and incorporating the results of Yan et al." The

(I" ) = (2v)'M,'(y)M", (5.4b)

(I " o)=(2w)'Ws M'/'(y)M"'/' (5.4c)

&q '&= 's '-/2-(M'+v s)~/'(q)(M +Ms)'/'

(5.4d)

Equations (5.3a) and (5.4b) have the right-hand
side independent of s, so they can be called po-
tentials. The remaining ones are quasipotentials.
The numerical results found in the K-S scheme,
corresponding to Eq. (5.4b), can be considered
as a model of y, since the kernel is s independent
and the off-shell continuation is the same as in
Sec. III. In all remaining cases if one wants to
get a model of p, or y, one has to repeat the
fits, taking the above kernels and the off-shell
continuation as in Sec. III.

It is also possible to get the LFFT analogs cor-
responding to four propagators in Eq. (5.2). The
kernels in these equations we denote as J for the
first three classes, and as j~ for the fourth class.
We get

(5.5a)

(J" )=2(M', +Ms) ' 'M" '(I~) M"' '/

pion-nucleus interaction should be investigated
and the role of the B system estimated. 7 A
separate group of problems is connected with
QED, in particular the one-photon exchange"
should be tested in the three-dimensional Weinberg
equation. Also the bound-state problem" should be
investigated in the LFFT, and the applications to
the relativistic quark models should be encourag-
ing because of great similarities with the nonrela-
tivistic scheme. Now we shall make some remarks
about topics related to this work.

=-,' p, '0,'y(x„,„). (6.2)

For a nonlocal p, Eq. (6.2) is an integro-differen-
tial equation. If P is an energy-dependent quasi-
potentiaI, then the nonorthogonality of eigenfunc-
tions must be taken into account because of the
appearance of the functions of s both on the left-
and right-hand sides of Eq. (6.2).

In the limit m, -, P'-w, '-~, corresponding
to an infinitely heavy particle 2 being on its mass
shell, we get limq=P„ lim p =m„ limk, '=E, b'
-m, ', where E,~ is the fully on-shell energy of
particle 1 in the laboratory system, the rest
system of particle 2. The q ~ P =0 condition be-
comes P, '=m, ', so we recover the Fronsdal-
Gross approach.

For P2- the vierbein field Prim does not
make sense, but in the static limit, the laboratory
frame is the distinguished one, and the expression
q„3+@,'+ q„m must be replaced by $,', which deter-
miries the first-particle energy equal to the rela-
tive energy. Therefore, Eq. (6.2) becomes

(-',m, '$,'+ y) g = -',m, ' (Z,~' -m, ') g or

(E„b' -$,' —2m, y —m, m) y = 0, (6.3)

the stationary Klein-Gordon equation, correspond-

A. Relativistic Schrbdinger equation, and the limit

gag -+oo p2 m 2 -+oo
2

For the unequal-mass case the propagator in the
equation for T is

[f,(MO(q")}—fa (Mo(k,))—ic] '

=[-'~'(O"-'+e +e". )--'~'~'-f~)', (6 l)
where

f (M) =--' p-'[M2+M-2(m '-m '}mj

0 '-=-,'s ——,'(m, '+m ')+ —,'s '(m, '-m ')'.
Therefore, for a local g the following differential
equation will hold:

( 82 82 82 'I
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ing to the energy &„b of the first particle.
Equation (6.2) may be useful in studying very

strongly bound systems, with the binding energy
comparable to the rest mass. We have in mind the
cases of supercritical fields. In particular, one
can study the conditions for the appearance of the
pionization phenomena, if for (t) we take the
phenomenological pion-nucleus potential.

B. Symmetry 1 2

The relative motion, described by the above
Schrodinger equation, is written in terms of
variables which are symmetric under the inter-
change 1=2. The same symmetry also has the
relative velocity

However,

k, =p Iv21!(m1+m, )s '/'(1 —2/21') '/oe p v„!.
In connection with this point, see Ref. 31.

C. Variables in which the Weinberg propagator is quadratic

The particular combination of the standard light-
cone variables, in which the Weinberg propagator
has the quadratic structure in the denominator, is

(2) ) (q 2+m2)1/22) 1/2(1 oi)
1/2 (6 4)

For 21 we can take 21= ,'+-(q, +q,)(P,+P,) ', or the
Weinberg q, given in Sec. II, avoiding completely
the notion of the vierbein I'atm.

For the unequal-mass case we have instead of
E(l. (6.4) the following expression:

q„=[2) —2 ——,'(m, o -moo) Mo 2]Mo,

where

M, =[(q,'+m, ') 2) '+(q, '+m, ') (1 —2)) ']'/',
and to get the quadratic structure of the propagator
we have to multiply (P '-P'- ic) ' by the factor
[1—(m '-m ')'M" 'M '] '
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APPENDIX A: NORMALIZATION OF AMPLITUDES

The fully on-shell matrix elements of the S-ma, -
trix operator can be wri. tten in the following ways:

&P'(P'2=Mo2)q'(q'P' =0) Is IP(P =Mo )q(qP =0)&

= 6'»(p' —p)[6"'(q„', —q„, ) —2vri5(M,' —M, )(q„',„I r!q„,„&]

=6"'(P'-p)[6"'(q!.-q. .)-2 5(lp 'q"='~ 'q')«'

=0"'(i"—i'} ln~ "(q.r —q. ) —(2~) ii(M( —Mo) [; I(2~) R~i) i (q. IM lq.
i=1

where

21), ,2
= (q~+ m, ,')'/', , , =- (q" +m, ,')' ', (P) = (P„,„)= (0, o, 0), P.=P,™o

+q1 +q =4 M() —o(m1 +m2 ) + 4 Mo (m1 —m2 ) .
q P=O m

—4 0

It is useful to notice the following relations:

(q2 + m 2)1/2 + (q2+ m 2)1/2

q +m1, 2 =4Mo [1+(m1 -m2 )Mo ]

% /dMo = aMo[1 —(m1' —m2 ) Mo 'Ii
2 =(q' —q)2

~ ~q~o P=q~ P=O

=- (q.'- q.)'- (ql- q1)'- (q.'- q.)'

The invariant differential cross section is

v 'u, od c /dt =(2v)'p, 2
I &

T'&
I .

=,-', (2v)-2s 'I &M& I'

=v4s[1 —(m, ' —m, ')'s ']'I&&&I'.
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APPENDIX B: In& Am2

The operator relation between T and V', corres-
ponding to Eq. (2. 11), is

T = p}/ [7hp+hpf'

—(m, ' —m, ')h, '(rhp+h, f')hp '],

where P, =m, mp(m, +m2)"', hp=(kP+m, P)'/P

+(k2+mp2) 2, the Manlier operators are

Q, = lim exp(if(h)t) exp(-if(hp)t),

with

f(h) -=-'}/. '[h' —h '(m '- m ')']

and we used,

V=f(h) —f(hp), T = VQ„,

f(h)Q =Qj(hp),

(h 2 —hp 2)Q = —hp 2(fhp+hpf')hp P.

We note that the function f is monotonic and in-
creasing above m, —m& ~'/2.

In the limit j P ~

— and q, ~ fixed, we get

limk„=p[(2p}- 1)(q~ + m) }+p) (mp —mg }]

&& [q,'+m, '+q (m, ' —m, ')] '"pi ' (1-7i)
' ",

lim&(k) =lim[(k'+m, ')'/'+(k'+m2 )'/']

=[(q '+m ')p} '+(q '+m ')(1 —p)) ']'"=M

IimdPk=4p} '(1 —p}) Mp

&& [1—(m) —m2 ) M p ]dp}d q~.

In the covariant LFFT formulation, we have

q=(P,„+P(p)Mp '

=2+q„Mp +p(m( —m2 )Mp

dp}=4&(1- g)Mp '[1 —(mt —m2 }Mp ] dq„,

M" —s = [f2(Mp') —f2(/s)]8p,

x[1 —(m '- m ')'M"-'s-']-'

fp(Mp ) —f2(&s) = p p (q»»» + qI + q~» —kg ) ~

The fully off-shell matrix elements of V and r
are connected as follows:

(q„'»„(V (q„"», )=—,'(2v} p 'Mp [1- (mq —m2 ) s 'Mp ]'

&&[I —(m '- m ')'M'-']-'"(q', ,„~I ~q„"...)&" '"[1-(m '- m, ')'s-'M"-']'"

x[1 (m 2 m 2)2MII 4] 1/2

~C. Fronsdal and R. W. Huff, Phys. Rev. D 3, 933
(1971); V. R. Garsevanishvili, V. A. Matveev, L. A.
Slepchenko, -and A. N. Tavkhelidze, ibid. 4, 849 (1971);
L. S. Celenza, M. K. Liou, L. C. Liou, and C. M.
Shakin, Phys. Rev. C 11, 1593 (1975): R. M. Woloshyn
and A. D. Jackson, Nucl. Phys. A185, 131 (1972); K.
Kotthoff, K. Holinde, R. Machleidt, and D. Schutte,
ibid. A242, -429 (1975).
B. Bakamjian and L. H. Thomas, Phys. Rev. 92, 1300
{1953).

F. Coester, Helv. Phys. Acta 38, 7 (1965).
4F. Coester', S. C. Pieper, and F. J. D. Serduke, Phys. .

Rev. C ~11 1 (1975); F. Coester and P. Havas, Phys.
Rev. D 14, 2556 {1976).

5R. Yaes, Phys. Rev. D 3, 3086 (1971); R. M. Woloshyn
andA. D.Jackson, Nucl. Phys. B64, 269 (1973); A. Klein
and T-S. H. Lee, Phys. Rev. D ~10 4308 (1974); K.
Erkelenz, Phys. Bep. 13C, 191 (1974).

G. E. Brown, A. D. Jackson, and T. T. S. Kuo, Nuci.
Phys. A133, 481 (1969); M. H. Partovi and E. L.

Lomon; Phys. Rev. D 2 1999 (1970).
H. J. Weber, in 5'ezo Body Dynamics, Proceedings of
the Seventh International Conference on Few Body
Problems in Nuclear and Particle Physics, Delhi,
1976, edited by A. N. Mitra, I. Slaus, V. S. Bhasiv,
and V. K. Ggpt6 (North-Holland, Amsterdam, 1976),
p. 292; H. J. Weber, in Proceedings of the Inter-
national Topical Conference on Meson-Nuclear
Physics, edited by P. Barnes and L. Kisslinger (A.IP
New York, 1976), p. 130; H. J. Weber, Nucl. Phys.
A264, 365 (1976); H. J.Weber and H. Arenhovel,
Phys. Rep. 36C, 277 (1978),

"F.Gross, in I"ere Body Dynamics (see Ref. 7), p. 523.
J. M. Namysgowski, Lett. Nuovo Cimento 5, 991 (1972);
Warsaw University Reports No's. IFT/11/74, IFT/9/75
(unpublished) .

OH. D. I. Abarbanel and C. Itzykson, Phys. Rev. Lett.
23 53 (1969).

~~E. A. Bartnjk, A. M. Din, J.M. Nampsgowski, and Z.
Bek, Lett. Nuovo Cimento ~15 387 (1976); Nuovo Cim-



18 COVARIANT TWO-BODY DYNAMICS AND THE %EINBERG. . . 3689

ento 34A, 349 (1976).
~ S. Weinberg, Phys. Bev. 150, 1313 (1966); S. J. Brod-
sky, R. Roskies, and R. Suaya, Phys. Rev. D 8, 4574
(1973);S. D. Drell, D. J. Levy, and T. M. Yan, ibid. 1,
1035 (1970).

~3I. T. Todorov, Report No. JINB, E2-10125, Dubna,
1976 (unpublished) .
L. L. Foldy, Phys. Rev. 122, 275 (1961); T. F. Jordan,
A. J. Macfarlane, and E. C. G. Sudarshan, ibid. 133,
8487 {1964); R. Pong and J. Sucher, J. Math. Phys. ~5

456 (1964).
~ST. Kato, Pac. J. Math. 15, 171 (1965).
8A. S. Wightman, in Dispersion Relations and ELemen-

tary Particles, edited by C. DeWitt and R. Omnia's

(Herman, Paris, 1960).
~R. N. Faustov, Ann. Phys. {N.Y,) 78, 176 {1973).
Note added in Proof. For any process we have a
timelike four-momentum P, and two spacelike four-
momenta in the initial and final states q and q', from
which we can explicitly construct the vierbein four-
vectorsp =Ps w"=q (-q ) nz" =N& " P„qpq
and P'= L~"~'P„m~g„where N and L are the appropri-
ate normalization factors, such that l = m =-l.
G. Schierholz, Nucl. Phys. ~BV 483 (1968); ~BV 432
(1968); 840, 335 (1S72).

SE. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232
(1951).
M. Gell-Mann and F. Low, Phys. Rev. ~84 350 (1951).
V. G. Kadyshevsky, Zh Eksp. Teor. Fiz. 46 654 (1964)
[Sov. Phys. —JETP 19, 443 {1964)l; V. G. Kadyshevsky.
Nucl. Phys. B6, 125 {1968); N. M. Atakishiyev,
R. M. Mir-Kasimov, and Sh. M. Nagiyev, Report No.

JINR, E2-1011, Dubna, 1976 (unpublished); Fiz. (Yugo-
slavia) 10, 1 (1978);C. Itzykson, V. G. Kadyshevshy and
I. T. Todorov, Phys. Rev. D 1, 2823 (1970).

2 P. A. M. Dirac, Rev. Mod. Phys. 21 392 (1949); L.
Susskind, Phys. Rev. 165, 1535 (1968); K. Bardakci and
M. B. Halpern, ibid. 176, 1686 (1968); S.-J. Chang and
S. Ma, ibid. 180, 1506.(1969); J. Kogut and D. Soper,
Phys. Bev. D 1, 2901 (1970); J. D. Bjorken, J. Kogut,
and D. Soper, ibid. 3, 1382 g.971); R. A. NevElle and
F. Bohrlich, Nuovo Cimento ~1A 625 {1971);Phys.
Rev. D 3, 1692 (19VX); F. Rohrlich, Acta Phys. Aus-
triaca 8, 277 {19V1).

23S.-J. Chang, R. G. Root, and T.-N. Yan, Phys. Rev.
D 7, 1133 (1973); S.J.Chang and T. M. Yan, ibid. 7,
1145 (1973); T.-M. Yan, ibid. 7, 1760 (1973); 7, 1780
t1S73).

4A. A. Logunov and A. N. Tavkhelidze, Nuovo Cimento
~29 380 (1963).
R. Blankenbecler and H. L. Sugar, Phys. Rev. 142,
1051 (1966).

GC. Fronsdal and L. E. Lundberg, Phys. Rev. D 1, 3247
{1970); C. Fronsdal, ibid, 4, 1689 {1971).

~F. Gross, Phys. Hev. 186, 1448 (1969).
I. T. Todorov, Phys. Rev. D 3, 2351 (1971).

9E. E. Salpeter, Phys. Rev. 87, 328 (1952); W. B.Rol-
nick and B. M. Thaler, Phys. Rev. Lett. 14, 572
(1965).

~OG. Feldman, T. Fulton, and J. Townsend, Phys. Rev.
D 7, 1814 (1973);M. G. Schmidt, ibid. 9, 408 (1974).

3~A. Aurilia and F.Rohrlich, Am. J.Phys. 43, 261
(1975).


