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Structure of the energy tensor in the c&sesical electrodynamics of point particles
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Classical electromagnetic theory provides an energy tensor defined off the particle's world line. The
definition is extended to a distribution valid "everywhere. "The extended definition is essentially unique. The
Karentz-Dirac equation follows immediately without the appearance of infinities at any stage. In the
distribution theory formulation momentum integrals over spacelike planes exist and are finite. The planes are
not restricted to be orthogonal to the particles' world lines, and consequently a finite, conserved momentum
integral exists for a system of charged particles. "Self-momentum" (the. "momentum" due to the strongest
singularities in the energy tensor) is conserved difFerentially for each particle separately, and the associated
integral over a spacelike plane is zero. It may therefore be omitted. This justifies and generaliies the ad
hoc procedure of dropping self-energy terms in electrostatics.

I. INTRODUCTION

The basic difficulty in the electrodynamics of
point particles is that the (stress-) energy (-mo-
mentum) tensor e has nonintegrable singularities.
Most deductions that one would want to make from
the theory require integration over either four-
dimensional regions through which the world lines
pass or three-dimensional surfaces cut by the
world lines. If one excludes a region around each
world line (characterized by a length e) then the
integrals have terms in c ' which diverge in the
limit & 0.

Thus me have infinite energy for a static system
of charged particles, and no more than a prescrip-
tion for removing self-energy terms. Thus Dirac's
derivation' of the Lorentz-Dirac equation

mtt = eE„, 'g+ ',e'(tt —tt—sv)

required the use of an infinite mass renormaliza-
tion. Thus Teitelboim's concept' of a charged par-
ticle's bound electromagnetic four-momentum

contains a term corresponding to infinite self-mo-
mentum. The presence here of g ' might be re-
garded only as a matter of formalism if a finite
remainder were well defined. But this has been
accomplished only when the integral of the momen-
tum density is taken over the particular spacelike
plane whose normal is the particle's four-velocity
v. This means that in general one has had no ex-
pression for the momentum of a system of charges.
A plane normal to one world line would not be nor-
mal to the others. Tabensky' has however
shown how the infinite mass renormalization pro-
cedure can be carried out for a special class of
spacelike surfaces that cut each world line ortho-

gonally.
As in 1938, one's interest in the self-energy

problems of classical electrodynamics is not only
for the sake of understanding that theory better,
but also to gain insights which will be useful in
quantum electrodynamics. This latter theory will
not, however, be considered in the present paper.

Immediately after Dirac's derivation of (1), at-
tempts were made by Pryce and Bhabha and Har-
ish-Chandra"' to overcome the problem of infinite
mass renormalization. They proposed modifica-
tions of the energy tensor to remove its strongest
singularities without changing its divergence off
the world 1.ine. It was suggested that in place of
8""one should use

e&" =8"" e Zmpd

It was found that K could be chosen to be antisym-
metric in its first two superscripts

K"""= -K" " (off the world line)

and such that its divergence was symmetric in the
last two superscripts (off the world line), and pre-
cisely canceled the nonintegrable singularities of
8. The antisymmetry that E possesses ensures
that s„s,K'""=0 (off the world line). Thus experi-
mental effects off the world line are not changed.
But the physical picture that the theory provides
us with, the picture of a momentum flow described
by the tensor 8, is changed radically. The Lar-
mor radiation may not be given by e,e (this de-
pends on K). A very small spherical charge e
would have a completely different energy tensor
from a point charge e. Consequently the theory
did not gain universal acceptance. In order to
keep a continuity of physical description, me must
not change 9 off the world line.

Recently van Weertv and Villarroel' have revived
interest in the third-rank tensor E, and used it to
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derive Teitelboim's bound four-momentum. For
van Weert the divergence of K is a convenient
form in which to express the strongest singulari-
ties in 8, which tensor itself is not changed. Con-
sequently, in his calculation of the integral. of 8
over the spacelike plane with normal v (as for
Teitelboim), the divergent self-energy term still
appears. In the present paper a development of
van Weert's use of K will be made which elimin-
ates self-energy problems.

The tensor K is not as singular as 8. Part of it
(K,) is integrable, and the remainder (K,) can be
written as the derivative of an integrable function.
This circumstance invites a distribution theory
interpretation of the derivatives. If this is done the
distributions 8 K, and 8 K, produce a surprise:
They are not symmetric on the world line (al-
though they are symmetric off it). In order to re-
gain the symmetry of 8, simple symmetrizing dis-
tributions, concentrated on the world line, must be
added to 8 K, and 8 'K, .

This procedure leads to a decomposition of the
part of the energy tensor determined solely by a
particle's retarded field,

8, =8,+ 8,+

The decomposition has remarkable properties.
(I) Off the world line 8 „,reduces to the usual

expression.
(2) Each term in the decomposition has, separate-

ly, a vanishing divergence off the world line, so
that the momentum flow splits into three complete-
ly independent components. Only on the world line
is there the possibility of momentum exchange.

(3) 8, describes the flow of radiation. It has a
finite flux in asymptotic regions and accounts for
the I armor radiation. Its integral over an arbi-
trary spacelike plane equals the total radiated
momentum up to the point where the world line
cuts the plane.

(4) 8, is the Schott tensor or acceleration-ener-
gy tensor. Its divergence is nonzero on the world
line. Its integral over an arbiter"y spacelike
plane equals the finite part of Teitelboim's bound

momentum. This is one of the crucial results of
the present paper.

(5) 8~ is strictly conserved, everywhere, even
on the world line. The flow of "momentum" de-
scribed by 8, is totally independent; it never takes
part in exchanges with the rest of the system. 9,
contains the strongest singularities of 8„,and for
the case of a freely moving particle with a straight
world line the two tensors are identical. -There-
fore 8, may be called the self-energy tensor. The
integral of 8, over a spacelike plane is zero.

'The fact that 8 g, =0 means that the "self-mo-

mentum" is decoupled from the rest of the system.
We might picture this momentum as flowing along
with the particle, under, so to speak, its own
steam, never being added to, never being subtrac-
ted from, never requiring a force to carry it
through whatever accelerations the particle suf-
fers. It behaves like nothing physical, but rather
like a purely mathematical structure having a free
ride. This suggests that 8, Should be dropped al-
together from the energy tensor '8„, and

8' =9 —g =g, +8

should be used instead. Because the divergence of
&,'„ is the same as that of 8„„and their integrals
over spacelike planes are the same, there would
be no change in particle electrodynamics. The
only objection is that the values 8„~ (x) and 8'„,(x)
differ off the world line. These values are part of
most interpretations of classical continuous elec-
tromagnetism, and also of gravitational theory,
but it is unclear to what extent they are actually
fundamental.

Whether 8, is dropped or not, the total energy
of a charged particle at rest is simply its rest
mass. There is never any question of distinguish-
ing between an infinite "bare" mass and a finite
experimental mass. This is another consequence
of the vanishing of the integral of 8„ the defini-
tion of which requires distribution theory.

(6}The divergence of 8„, (and also of 8. ',},
8 '+-e= & ' ~r'e~

dr —,
' a'g —a 5 x-z

equals the negative of the reactive force density
on the particle, and the I orentz-Dirac equation is
a consequence. No infinities appear, and since
momentum conservation is invoked in differential
form, no restrictions on the world line in the dis-
tant past are needed.

(7) The definition of 8, as the distribution the-
ory extension of the usual form of 8„,off the
world line is essentially unique. Any change in
the definition, of the form

e'
~l

dr (symmetric tensor) 5(x -z),

would lead to normal dependent momentum inte-
grals for the new 8„,. This would be physically
unacceptable since it would entail abandoning the
usual concept of total momentum and abandoning
differential momentum conservation in the form
a r=o.

(8) The decomposition of 8„t into its three terms
requires distribution theory. Although 8, and 8,
are ordinary functions off the world line, they
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cannot be defined solely in terms of their values
there (as '&, can be). Distribution theory is needed
to achieve the physical decomposition. Distribu-
tion theory appears to play an even more essential
and important role in displaying the structure of
the energy tensor 8 than it does in providing the
solution of Maxwell's equations with a 5-function
source.

The present distribution definition of 8„,is an
alternative to one given earlier. ' 'The previous
definition was awkward to work with, but the pres-
ent one is extraordinarily simple. 7%en 9, is ex-
pressed in terms of K„not only is 8„8~K,""=0
true as a distribution equation, but K, makes no
contribution to integrals over spacelike planes.
So the use of the third-rank tensor leads to tech-
nical efficiency. One is effectively working with
simple distributions concentrated on the world
line.

The plan of this paper is as follows. After no-
tation is established in Sec. II, electrodynamic
relations valid off the world line are dealt with in
Sec. III. The distribution extension of 8„, is made
in Sec. IV, and the divergences calculated there
are used to derive the I.orentz-Dirac equation in
Sec. V. Momentum integrals are discussed in
Sec. VI. The theory is reduced to electrostatics
in Sec. VII. Conclusions are drawn in Sec. VIII
where also the uniqueness of the definition of e„,
is considered. A reformulation of the theory is
discussed in Sec. IX.

whose vertex is a general point x, is intersected
by the particle's world line at a unique point z(r).
The vector R —=x -z(v') is lightlike and future point-
ing: R'=0, R'~ 0. The distance between x and
z(r) in the retarded rest frame has the invariant
definition p—= -v(r) .R, and the unit spacelike vec-
tor pointing from E to x in the rest frame has also
a coordinate-independent definition

u-=-v+R/p (u'=l, u 'v=O, u R=p).
In terms of a definite world line, the one the

particle actually follows, the constructions given
above define R and v' throughout space-time. They
have become functions of x and their derivatives
may be calculated by differentiating the defining
relations

8(R') = 2(BR) 'R =0,
BR = Bx —(Br)z =g —(Br)v.

These give, using p=-v R andg R=R,
Bv'= -R/p, BR =g+Rv/p.

It is convenient to use the dyadic notation but care
must be taken to maintain the proper order of fac-
tors. The covariant components of 8 are 8„=8/Bx"
as has been used tacitly in 8x =g, whose compon-
ent forms are variously B„x"=g"„,8»x"=g"", etc
It turns out that all derivatives in electrodynamics
can be calculated in terms of the two contained in
(4). One immediate consequence is particularly
useful:

II. NOTATION

8» ( F» F + g»F»F )4~ e8 (2)

so + 8 is the energy density. Consequently the
energy-momentum content in a spacelike plane
o with future-pointing unit normal vector n (n'
= -1, n )0) is written (if it exists)

P= — n' ~dV, (3)

where dV is the invariant differential volume ele-
ment in the plane.

The backward (opening into the past) light cone,

%e take c = I and use a metric tensor g with di-
agonal components (-1,+1,+1,+1). A general
point in space-time is denoted by x with x'=t, the
particle's world line by z(r), a function of the
proper time w, v=~, a=-v, v =-1,v a=O. Ten-
sors of the form [a,v]= av —va and (a, v) —=av+ va
have contravariant components a"v"+ v"a". The
electromagnetic conventions are that E"= E~, F'~
= E'~~8~, and that the energy tensor has compon-
ents

8p=g+ a 'uR

=R/p —v+ (a .R)R/p.

It follows that R '8p= p.
The notation outlined here [except for the signs

in (2) and (3)], together with th'e basic formulas
of Sec. III, is.described in Ro'hrlich's book. ~o

III. ELECTROMAGNETIC FIELD TENSOR

AND THE ENERGY TENSOR

Maxwell's equations with a point particle source
of charge e following the world line z(r) are

8 E=-4m', 8 E*=O,

where

(6)

j(x)= e dr v(7)6(x -z(r)).

The sources of external fields are supposed to be
beyond the region of immediate interest and are
not included in (6). But their effects are included
in the decomposition of the fieM tensor

E=E,„,+E„,,
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= eext+'8 j,x+re~' (9)

Outside the external sources, we get from (2) and

(6),

8 '8'4Xt=0 8 '8 &„=-F,„t 'j. (10)

The retarded solution of (6) can be expressed
in terms of. the Lienard-Wiechert potential A(x)
= ev (r )/p (8 A = 0):

where F„, is the retarded solution of (6) and F„,
satisfies the homogeneous equations. Correspond-
ing to (8), the electromagnetic energy tensor 8 de-
composes into three parts:

8"" —8 E "" sE-""+8 E "" (ptt0) (19)

(16), hence the insistence on p tt 0.
The term e,z, is distinguished in a second re-

spect: It has a clear physical significance. It
comes entirely from E,~ and it accounts for the
whole of the particle's asymptotic radiation. How-
ever, neither 8, nor 8» appears to have separate
physical significance. Teitelboim's concept' of
bound momentum comes from the sum „». The
expression that Harish-Chandra' and van %cert'
propose provides a different decomposition (the
formula can be checked by evaluating the derivatives):

E,et -Evei+Er~ ~ (12)

e g e- ~ 8 8-
F„,(x)= [B,A]=—,v, —+ — a+ v, —. (11)

p
'

p p p p

because R =p(u+v) and bothl and v are unit vec-
tors, the relative size of the two terms in (11) is
largely determined by the powers of p outside the
brackets. We call E„,the part that dominates for
small p, and F,~ (which vanishes for a= 0) the
part that dominates for large p:

where

~„„.e' 3 [v,R]""R"
1 4+ 4 p5

+
4 . (p+0)

R"g "—R g""
4p4

e' [a,R['"B" (a B)[B,vj""8"I
2 g~ p4 p5

(21)

As one can easily check using (4),

eB 1 -eg
p - p

(13)

The potentials A„,= eR/p', A,~= —eu/p are not
divergence-free, though their sum A is.

The part of the energy tensor (9) due to F„,
alone may be decomposed according to the degree
of singularity of its terms at p=0: and

~' 2a 'BRA
8 =-a K=8+——

z 4~ ps (pt'0) (22)

Notice that each term is antisymmetric in a and

p, . The tensor K has been separated into two
pieces K, and K, with singularities p

' and p ',
respectively. We find that

t I 'II III (14) 8, -=8 E,=8» -—,(p~o).
e 2a 'BBB

2 2» .4p pe (23)

where

ea, (v R) RR 1
8 =—ag+ ' —,—, (P40),

4m p p', p'

e~t(a, R) 2a'RRR a'R(v, R)
4II I P P' P' P'-

(15)

Notice that both 8, and 8, are symmetric for p4 0.
We now have a decomposition of e„„valid off

the world line (we write 8, =—8«, henceforth)

8„,t=8, +8, +8, (P40),

e', (a R)' RR=—a2-
4m p p

(16)

III ~ ~ ) —
J

d X III~ . (16)

The same is not true of 8, and 8„; they must be
considered to be incompletely defined by (15) and

Notice that each term is symmetric. A distinction
has been made between 8„,on the one hand, and

» on the other. 8'rrz like Fret although
singular, is not too singular to be integrated over.
It can be used to form a regular functional by in-
tegrating it with a smooth test function Q with com-
pact support

in which each term is divergence-free: 8 ~ 8,
= 8 ~ e, = 0 for pe 0 because of the antisymmetry of
K] RIll K2, 8 ~ 8, = 0 for p 0 0 by R short calculation
using (4) and (5). That is, off the world line 8„t
is separated into three independent components,
three independent flows of electromagnetic energy-
momentum which have no exchanges with each
other. The tensor 8, describes asymptotic radia-
tion; e, is a generalization of the energy tensor
for the case of zero acceleration (when a= 0,
= 8I = 8, ) which might be called the self-energy
part; we will find that the Schott term, describ-
ing acceleration energy~ comes from

The singularity in K, is p, which is integrable.
The singularity in K, is not integrable but one
can differentiate (ptt 0) to show that
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which may be evaluated in the rest frame and then
expressed in a general frame, we get

in which form K, is represented as the derivative
of an integrable function. (8 8„Q)= Jt dr 'e-'a'v(7')gati(z(r)} (31)

IV. DISTRIBUTION DEFINITION OF THE ENERGY

TENSOR

(8„8",", p}=-(8,"",8„$}= — d z 8","8„$(z).

(25)

The integral appearing here is convergent and so
it may be written as the limit of the integral. with
a small region around the world line excluded
[8(g)=1,g&O;8(g)=O, g&0]:

(8„8,"",y) =-iim
!
d'z8(p- «)8,""s„y.

g ~p

Integrating by parts and using 8 8, =0 (p4 0) gives

(8„8;",y) =+ llm
~~

d'z 5(p —«)(s„p)8,""$. (28)
6~0

The integrated terms do not appear because iti

has compact support.
To go further we inust change variables in the

integral (28). From Refs. 9 and 12 we have

! d'zf z = ' dr
i

p'dpdQf(z+8), (29)

where the integral on the right is ordered and the
integration over angles Q must be done in the rest
system at the retarded time v. Using (5) and the
explicit expression (17) for 8, we now find

.2

(8„8,"",iti) = + lim '! dk p'dp dQ 5( p —«)
II ~0 4m

&&[a —(a u) ]2 (u + v)"

p

In this section the definitions of 8, and H„par-
tially given by (22) and (23), will be completed,
and their divergences calculated. All that wi.ll
be required from the theory of distributions is
contained in the first 40 pages of Ref. 11. To il-
lustrate the method the divergence of 8„although
the result is known, will be treated first.

Equation (18) is the definition of 8, =8,zz re-
garded as a distribution. It is a regular linear
functional on the space of infinitely differentiable
test functions Q which vanish outside a bounded
region. By definition the derivative is given by

We may express (31) in a slightly more formal
form corresponding to the expression (I}for the
particle eurreg. t

8 8,(z) = ~ dr ',e'a-'V5(Z z(-r))

In order to get precise distribution theory de-
finitions of 8, and 8, we try to implement the idea
that they can be written as distribution derivatives
of integrable functions. That is, we test whether
the formula (23), 8, =8 K, (pW 0) with integrable
K„can be extended to a distribution theory for-
mula. Similarly we test 8, =8 K, (pe 0) withK,
given as the derivative of an integrable function by
(25), to see whether it can be extended. We find
in both cases that these definitions are unsuitable
because they are not symmetric on the world line.
But they may be simply symmetrized without
changing their values off the world line.

Consider first ~ E, in which the derivative is
interpreted in a distribution theory sense. %e
have, because K, is integrable,

(8 Kmlilt y) (Koiiv 8 y)

d'zK ""8 P2

= —lim d'Z 8(p —«)K, ""8

From now on the limits a 0 will not be written
explicitly but will simply be understood. Integrat-
ing by parts,

(8~,"",y) = d'z8(p —«)(8.K', "")y

+
i

d'x 5(p —«)(s,p)K, ""iti. (33)

The first term is symmetric in p. and v in view
of Eq. (23) since onl. y the region p&0 is involved,
but the second term is not:

4m
d 'z 5( p —«) (-a+ a uu)" (u + v)"P (z)

i dr ', e'a" v"y(z) .-(34) '

Kith the help of the integrals
" dQ " dQ

uuu = 0,

" dQ
uu = 3 (g +'vv),

(3o)

The lack of symmetry occurs only on the world
line —the distribution (34) depends only on the
values of the test function Q at points x=z. For a
test function Q which vanished in a neighborhood
of the world line, only the first term in (33) would
be present.
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To form an everywhere symmetrical 8, we may
add to 8 K, a symmetrizing term corresponding
to (34). The final definition of 8, is then

8 " d
(e„8",", (f&) = ——

l~
dT e"Q(z) = 0.

Therefore,

(42)

(8,"",y) -=(e.K, "",y) — d~-', e'a" v" y(z) (35) 8 8=O.1 (43)

(e„8"",y)=(e„e K "",y)+
~

d~282a"v e"y(z)

= (K "" e e p)+ ~ d'r e'a"—
2 & Jl

dv —',&'a"y (z) . (38)

Therefore

This agrees with (23) for p4 0, that is, for test
functions such that P(z) =0. Although (35) is sym-
metric in p, and v, its form makes it much simpler
to calculate 8„8,"" than 8„8,""because in the former
case we can use the antisymmetry of K, "" in a
and p, :

To sum up, we now have precise distribution
definitions for the decomposition

8,)= 8, +8, +8~, (44)

V. LORENTZ-DIRAC EQUATION

in which 8, is defined by (41) and its divergence is
zero, 8, is defined by (35) and its divergence is
f d—r ', e'a—5(x—z), 8, is defined by (18) and its

divergence is +1dr ', e'a—'ve(x —z). Furthermore,
the definitions of 8„8„and 8, are essentially
unique, as will be discussed in Sec. VIII.

One can show, although it requires some cal-
culation, that according to the present definitions
8, + 8, equals 8~,~~ of Ref. 9 [Eq. (65)].

e ~ 8, (z) = d~-', e'a 5(z —z).
4

(37)
The energy tensor for a particle of experimental

mass m and world line z(v') is

The calculation with K, is similar. Using (25)
we interpret the right-hand side of

d7mvv & x-z ~
l

(45)

e2 R flRv R Rve~ollp e2 e eP
16& p p

as distribution theory derivatives of integrable
functions. That is,

(38)
and its divergence is

P

e K~,t= dvmvv ~ e5(z —z)

d
,

dv mv —5(z - z)dv'

2 ~ RNRv
I

d4&" ", e.e~y.X (39)

The first term in (39) is symmetric but the second
is not. Introducing 8 (p —&) into the second in-
tegral, integrating by parts, and using e (R 8"/p')
= 0 (p4 0) we find

l~
dy ma5(x —z) .

%e adopt as fundamental the conservation of en-
ergy-momentum expressed in differential form by

e ~ (K „+8)=e (K „+8,„,+8,„+8„,)=0. (47)

Using the previously calculated divergences we

get
2 I +v 2

16&
d'x 5(p —z), e"P(x) =

l

d v"e"Q( ).

(40)

d&[ma —eE,„,.v ——',e'(a —a'v)]5(z —z) = 0.

Therefore the I orentz-Dirac equation follows:

(48)

g2
(8~", y) -=(e.K', "",y)+ d~ v" ye( )z

4
(41)

The divergence of 8, is given by

2

(e„8",", (f&) = -(8 K, "",e„p) — — dvv" e„e"Q .

The first term vanishes by using (39) with the
substitution Q - e„p. The second term vanishes
because Q has compact support

The final form of 8, is obtained by adding to 8 Ky
the symmetrizing term corresponding to (40):

ma = eE,«v + —',e'(a —a'v) .
In this formulation Eq. (1) is a local relationbe-

tween v, a, a 'and the external field which does not
depend on asymptotic properties of the system
(such as the restriction to the case a= 0 for r suf-
ficiently negative).

The explicit deduction of (1) from (48) will il-
lustrate a form of calculation to be used in Sec.
VI. Equation (48) is a formal expression of

', dT[ma —eE,« ~ v ——',e'(a —a'v)]y(z) = 0. (49)
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Consider a spacel. ike plane with future-pointing
unit normal n (no&0, n2=-1) which intersects the
world line atz(t') for some particular r' F. or
Q(z) choose

y(z)=5(-n [z-z(~ )]) (50)

(this is equivalent to taking a limit of differentiable
Q's with compact support) so that P is a 5 function
in the time variable of the coordinate system with
origin z(T ) and time axis n C.hanging the inte-
gration variable in (49) to

dtf= -n (z-(~) -z(~')), =-n ~(r)&0, (51)

we get (1) (at proper time v') since the n depen-
dence 1/n ~ v(r') can be canceled out.

VI. MOMENTUM INTEGRALS

In this section momentum integrals, of the form

(8~",y) =- d'z 8,""(z)y(z) . (18)

Since we now have definitions of (8, Q) we may
invert this procedure to provide definitions of the
integrals over each of the 8's weighted with the
test function Q:

V'&8~" y-=(8~", y). (52)

For 8, or 8, this is a new definition of the left-
hand side in terms of the right-hand side given
by (41) or (35).

In order to extract the momentum integral (3)
from (52) we must take the limit (if it exists) of
(52) with a sequence of infinitely differentiable
test functions Q, of compact support, which ap-
proach

g(x)- -n„5( n[z- z(r')]), -
and then sum over p. . When 6 is integrable in the
classical sense, as 8, is, this process reduces
(52) to the classical integral (3) over the plane o',

P= —
I n'8dV,

yG

over a spacelike plane o with future-pointing unit
normal vector n, will be defined and calculated
for the separate pieces 8» 8„and 8, of 8„t. The
results may then be applied to a system of charged
particles interacting electromagnetically.

The theory developed in Sec. III was not taken
far enough to include momentum integrals of the
form (3). In fact the only integral over one of the
8's that has appeared so far was used in the defi-
nition (18) of the functional 8, in terms of the in-
tegrable function 8, (x):

with normal n, which cuts the world line at z(&').
When 8 is not classically integrable, ae 8, and 8,
are not, the process gives a new definition for
(3).

The new definition of the integral (3) agrees with
the old definition when the latter works. The new
definition is also consistent with the natural gen-
eralization of Gauss's theorem to the present
situation. If X is the characteristic function for a
four-dimensional region in space-time V4 (one
inside V„zero outside), then, provided we can
take the limits of functionals as the test functions
approach discontinuous forms on the boundary of
V~,

as~8 = 4 x(8~8 )X
&V4

=(»"' x)

= —(8"" s„X)

d'x 8""~ XP

The surface integral which appears here on the
right is the general form of which our construction
of the momentum integral (3) is a special case.

We now consider the existence and cal.cul. ation
of the momentum integral P, over the piece 8, .
Because the radiative effects of the particle's
acceleration in the past propagate along light
cones, the form of 8„

e2', (a f~) aZ
8 = —a-

4r p' p' '

shows that it will be nonzero on the plane o and
of order a'r-' [r is the spatial distance in the
plane from the origin z(r')] unless there is a
proper time in the past previous to which the ac-
celeration is zero. To keep the calculation sim-
ple we suppose that a =0 previous to some instant
in the past [this condition could be weakened, and

appropriate changes in the argument made to
arrive at the result (55) for world lines whose
acceleration vanished sufficiently fast iri the asymp-
totic past]. Equation (17) then shows that 8, will
vanish outside a corresponding bounded region in
the plane 0 and the integral

i m 8dV
~a

will exist.
In order to calculate P, the simplest procedure

is to use

(8 8 Pll y) (8 Pl/ s y)
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with a sequence of Q's which in finite regions ap-
proach

r as well and are smoothly extinguished. This
will not affect (52) which is calculated from (35):

&(x)- &(+n [x- z(r')]), (54) P, (r'} = (8 "', n-„5(- n [x—z(T')]))

T

dTse'a'v.

On the other hand,

—(8„'&Q}-- td'xn ' 8,5( n' [x —z(T')])—

dVn ~ 8, —=P, .

Therefore

P, (r'} =
l~

drfe'a'v. (55)

This integral, which was calculated by Teitel-
boim, ' represents the sum of four-momentum
radiated by the particle up to the proper time 7'.
It is independent of the normal n to the plane o'.

It depends on the whole history of the particle up
to the point at which the particle cuts the plane.
It satisfies

dP =3e tZ V. (56)

We turn to the calculation of P2. Provided that
c = 0 previous to some instant in the distant past,
&„ like 8„will vanish in distant spatial regions
on the plane 0. We may therefore take a limit of
(52) with a 5-convergent sequence of smooth func-
tions 5, of the variable t„—=-n [x—z(r'}]:

-n„&,(-n [ —z( ')])--n„5(— '[x- z(r')])

(53')

Functions of t„alone cannot be of compact support
since they depend only on the orthogonal distance
from the plane a, but we may take it that outside
the region where 8, t0 the functions 6, depend on

and which vanish in the distant past and in distant
spatial directions where 8, itself is zero. This
sequence of Q's approaches the characteristic
function for a region of space-time bounded by
the plane 0' where 8, is not zero, and by a three-
dimensional surface which encloses the region in
the past of o in which 8, t0. The limit function
(54) is zero after the plane o and one earlier than
a. Its gradient equals minus the limit (53)

S„8(+n [x .("}])= n„« . [x .(")]).
Us'. ng the divergence of 8, given by (31), and

(54),
oo

(8 ~ 8„y) - dr ae'a'v8(+n [z(r) —z(r')])

= td'xaam, ""n„a„«-n [x-z(r )])

+ dr] e'a" v"n „5(-n [z(T) —z(T') J) .

The first integral in (57) vanishes because
4', "'n„n = 0, and the second, after the change
of variable t =-n [z-(r) —z(7')], gives —,e'a'—(r').
We therefore have

P, (r'} = — n 8,d V= —3e a(r')
&a

(58)

dI'2 = —380.
d7

(59}

I', =0.

The calculation leading to P, =0 is only formal
because the factor RR/p' in the integrand does not
vanish in distant regions of the plane o even when

Like I'„ the momentum I'2 is independent of the
normal to the plane. It is determined by the point
of intersection with the world line. Unlike P„ I'2
is a state function: It is a multiple of the local
value of the acceleration at the point z(r'}

The result (58) is partly a refinement, partly a
generalization of Teitelboim's bound momentum
integral. ' Teitelboim considered the specific
plane with normal n = v(r') passing through z(T'),
not a general one; and he considered the combined
effect of 8, +8, which produced an infinite self-
mass because his integral was the "limit" of an
ordinary integral with a hole cut out of the plane
around the particle. It is the new definition of
the integral, the limit of (52} with (53), that ac-
counts for the improvement.

In a formal. way we might calculate P, in the
same manner that P, was calculated in (57). Using
the definition (41) with (39) we would get

P,"(7'}=(8&;, 5n(- [nx--z(T')]))
~2 p gV

d x, (n Ra'5-R Bn 8&)
16m „p4
g2

dr v ne" 5( n ~ [z(7)-—z(7')]).
4

Because 8'6=n'6"= —6", and A 88 «B5=-A n6»,
the first integral vanishes. The proper-time in-
tegral is zero as is evident after the substitution
t= —n [z(r) —z(r')]. The formal result is there-
fore
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a =0 in the distant past. The strongest singulari-
ties of 8„t persist for a free particle. Therefore
the argument allowing the use of (53') in the cal-
culation of P2 cannot be repeated for P, . The re-
sult may be justified, however, if we use, in

place of (53'), a sequence of functions cut off at
large spatial distances:

-n„~(z-r)6, (-n [x-z(T')])

n„&(E-—r) 6(-n [x —z(7')]). (53")

As before r is the spatial polar distance from the
origin of the coordinates with time axis n, and E
is a large constant which will eventually tend to
inf inity.

The sequence (53") can be used with (52) to give
a definition of an integral over the bounded region
r ~E in the plane a. Letting E-~then serves as
a definition of an "improper integral" if we copy
the language of Riemann integraltheory. Schwartz"
gave a definition of an integral of a distribution
with compact support. In (53') a generalization of
his definition which reduces the dimension of the
domain of integration was impl. ied. The sequence
(53") represents a further generalization which is
necessary for distributions without compact sup-
port The. functions &(E —r) are a shorthand for a
limiting process using infinitely differentiable
test functions which equal unity for x ~E and van-
ish just outside this region (see Ref. 11, p. 142).

If we use (53') instead of (53') to calculate P„
we get

2 (

P (&') = — d x —[n RS'(65) —R an &(86)]
16m „~ p'

e2 p

d7. v n&5(-n [z(7) —z(7')]).
4

The proper-time integral vanishes again since
(53') and (53") are the same near the world line
To analyze the remaining integral we calculate
the derivatives in terms of r and t„=—n [x
—z(r')], We have

x —z(T') =nt„+ e„r .

The expression for P, reduces to

P, (T') = — d V6(r —E)
e' " ~ RR 'n

16~ „' er p4

RR e„

The derivatives here may be calculated using

a a
~ Q n ~ 8

together with (4) and (5)

Rv
~R =g+, ~p=u+a 'uR.

p

But because we are only interested in the limit
E- ~ we can ignore terms of the form

1 1
1, d V , 6(—r- E)- —- 0.

p3

P, = — n '6),d V=0
a

(60')

whether a vanishes in the distant past or not.
The fact that the integrals for Py P2 and P3

are defined and finite for any spacelike plane o
allows us to construct the total momentum integral
for a closed system of several charged particles
interacting electromagnetically. The total energy
tensor for such a system is

The remaining contributions, which do not tend
to zero as E ', cancel:

8 RR
16m „ p'l dV5(r —E) —4, a ue„R

RR e„+4 "a un R =0.
p5

If we had supposed that a =0 in the distant past
these terms would have vanished separately for
sufficiently large E, but as we have just seen
this assumption is not necessary and

82
r'(aM = (v' —,a(a (a(t„(

gg 2

T Z
~

dr„rn„v„v„6(x- z„)+8,
A

and

where, schematically,
= ——,,—r'6(r -E)6(t„) &(E r)6 (t„)--1 a

t(&) r t(&)

R Bn s(66) =R a[8(E —r)6'(t„)]
R e„6(r E)6'(t„)-

-R 'n~(E —r)6"(t, )

in which e„ is the radial unit four-vector perpen-
dicular to n and satisfying

~ret (A) + ~int(AB) '
A A&a

(62)

The tensor T, which may now be written

T Q( part(xi+ rats)) + Z Irrtt~) r
A&B

(63)

is conserved differentially if each particle obeys
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a Lorentz-Dirac equation in the retarded fields
of the others.

Provided. that all the particles have straight
world lines in the sufficiently distant past, we can
calculate the total. momentum associated with T:

r
P= — n TdV

Jg

+[~A&A( A) 3&A 'aA(~A) ]
1

I~' Tg
+Q ' dr„r~e„'ag'v„— P dVn 8 g~) .

A A& 8
(64)

In the expression (64), &'„ is A's proper time at
the point of intersection z„(7„') of A's world line
and the plane O'. The total momentum P is finite
and conserved, that is, it is unaltered if the pl. ane
is tilted or transl. ated.

Since the divergence of 8, is zero and the mo-
mentum integral P,' associated with it also van-
ishes, we get the same physical results by work-
ing with the truncated form of 8„,

8„t= 82+ 83,

6, = &(p —e)6, — d~se'(a, v)5(x -z) . (68)

Equation (68) makes the symmetry of 62 manifest.
By evaluating (68) on the "test function" (53) we

get the following relation:

dVn '02

d V8(p —e)n 6,

+ ]I d~3e'n (a, v)5(-n [z(7) -z(7')])

2,n av+n va
~ d V8(p —&)g ' 62 —~em

Qty n ''0

to refer to the distribution defined by the first in-
tegral in Eq. (33). It is a generalization of the
Cauchy principal value. It is noteworthy that the
limit e-0 (which is understood) exists. This may
be checked explicitly, but it is already clear since
the left-hand side of (33) is well defined, and the
second integral on the right-hand side of (33) is
shown to exist in (34). Using (33), (34), and (35),

and the analogous expression for the total"energy
tensor without self-energy terms

2 2=-38 a ~

Therefore

(69)

(+~+ 8 t~+~ + (66)
dV8(p —e)n 62= 3e v.2n a

n 'v
The total momentum is the same whether one uses
T or T'.

P= —,
,

n TdV= —
l n T'dV;

JO

and the condition ~ T' = 0 requires that each
particle satisfy a Lorentz-Dirac equation.

We return to the consideration of the energy
tensor created by one particle. We can relate the
momentum integrals calculated in (60') and (58)
to the integral. s of 8, and 8, over the plane with
a hole cut out around the particle.

Let us use the notation

8(p c}8"," =8(p —e)s«K, ""

=ah& —a)(8„—4, ) (67)

This is the integral of 82 over the plane 0 with the
region p& & omitted, in the limit e - 0. The inte-
gral exists for all normal directions n; it vanishes
when the plane is orthogonal to the world line
(n a=0 if n=v}.

From Eqs. (41) and (39}one finds, after some
calculation, a form for 6, which is similar to (68):

2

6, =8(p —e)6, ——]I d7(3g+ —,'vv)5(x -z)

+ d~ 3e'(a, v)5(x--z) . (71)

In (V1) the first two terms must be taken together
before e - 0. Evaluating (71) on the "test function"
(53)—the formal calculation gives the correct re-
sult if a vanishes in the distant past —one gets

I,=o = )tdVn 6,

e' [ n 4= — ', dV8(p —&)n 6 +— dw —+ n'vv 5(-n '[z(7') -z(r')]) ——d7' 3e'n (a, v)5(-n [z(7) -z(v—')]}
2~ ~ 3

g' n+4n ve 2,n ag+n ga
~

+ 38
2& 3n '0 n
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If one suspends the understanding that the limit
E-0 is to be taken, so that the first two terms on
the right can be considered separately,

td V3(p —e)n 8, =—
2E 36 'v

(72)

for finite E but with the neglect of terms which
vanish in the & - 0 limit.

Adding (72) and (70),

dVQ(x)V i —,i-=— dVVQ

X
dV 8(r —e)VQ '

=+ dV y5(r -~)—,=0.

The second term in (77) is zero. At the same time
we have shown that the (three) divergence of ei'
vanishes:

dVB - E ' Ba+82
2%X

(V8)

2e n+4n vv

2C 38' v

If n =v one gets Teitelboim's momentum integral

v ~ 8-=0 (79)

The time-space components of 8, form a three-
vector,

2- J/dV8(p ~)v (e +e )= —;e'a+—'v.
a 2 V' ———V5(x) .

16m rs 4 (8o)

VII. ELECTROSTATICS OF POINT PARTICLES

Before simplifying to the case of electrostatics,
notice that the distribution structure of 8, may be
written, using (88) and (41), in the form v-g, =o. (81)

The two possible expressions fear 8, which arise
from go~ and 8~0 are the same because V (x/r3)
=4v5(x). This relation also shows that

B'av 82
By performing the derivatives indicated in (76),

(V8), and (80) for r 0 0 we see that (1=unit dyadic)

(75) e =——,=—E (r~0),8 1 1~2
8g y 8m'

(82)

Po 8 218, = v —,. (76)

In a dyadic notation, the space-space components
are

8ss ~2

Equation (V7) is not obviously symmetric, but be-
cause V. (xk/r')=0 (rs0), we have

This form, in which Ba is written using distribution
theory derivatives of integrable functions, makes
manifest ~„8a""=0. But 8a is symmetric, although
this is not obvious in (V5), so of course 8„8;"=0
as well.

If the particle is at rest, we use the rest frame
coordinates in which it is at the origin, and revert
to three-vector notation: s'=7, z=0, v'=1,
v=0, p=r=RO, R=x. The components (75) of 8,
are independent of time xo= t. The component 8,
ls

8 1 8 xx81~'=——4-——, (r40)a 8m' 4m y

=—E ——EE (rW 0) (82)

8 =0 (r40), (84)

where E= ex/r' (r40) for a point charge. There-
fore the energy density, Maxwell's stress tensor,
and the Poynting vector are the same, where these
can be defined (r 0 0) as the components that Eq.
(V5) provides. But Eq. (75) goes further, because
it has the distribution theory consequences V ~ 8a'
= V '~, = 0 which say that there is no force on the
charge, and there is no change in energy. These
are exactly the statements that we want a theory
of a singl'e charged particle at rest to provide.

In the present, single-particle, static case, the
energy tensor 8„,equals 8 a so the truncated en-
ergy tensor-8,'„ is, from (65), zero. 8,'„gives
the same vanishing force density as (79) and (81).
The total electromagnetic energy-momentum is
zero whether calculated from 8~, or 8,', . The en-
ergy integral is evaluated by integrating by parts,
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"dV e'-= "dVe«
ret

8 1= lim dV V' —,8(E —r)=0,
16m g2 (85)

with a similar equation for the momentum.
If we have two point charges at rest, A and B,

the energy tensor has the form

~2(A)+ ~(AB)+ ~1tB) & (86)

E(„)(x)ee6(x—zs)+ E&s)(x)e„5(x—z„). (88)

Each charge acts on the other but there is no self-
force on either.

The same force relations hold with the modified
tensor

where 8,&» and Oy(B) have components of the form
(76), (78), and (80), and 8&~& is the cross term
Since 8 ~

Oy(A) 8 8ygp) 0, the force density is

(AB) =F&A& 2(B)+E(B) 2(g) I (87)

whose spatial components in our static case form
the vector

P, = n O, dy=0.
4g

(60')

This provides a solution to the classical self-
energy problem.

These results give a strong invitation to drop
8, from 8„t. This, however, would involve
abandoning the form (2) for 8 in terms of the
field tensor E, and property (a}would no longer
be preserved.

(c) The acceleration energy tensor 8, satisfies

single charge this solves the self-stress problem.
Maxwell's stress tensor (83) is well defined
except at the position of the particle, so although
the associated force density f = —V 6,"=0 for
x40, it is undefined precisely where it is
needed. However, with the distribution definition
(78) for the stress tensor, V 8," is rigorously
zero; the force is therefore zero and the theory
is satisfactory.

According to the new definition of momentum
integrals provided by (52) and (53"),

~(AB ) (89}

r
s 8, = — d7.,'e'a6(x -—e) (37)

from which the total energy and momentum inte-
grals may be calculated. The only nonzero inte-
gral in the static case is the energy

and

n ~
H, dV= —3e a.2 a

a
(58)

~A&BdV 2E&~&(x) E&s «(x)
8m ZA ZB

(9o)

VIII. CONCLUSIONS

I'his is the result of the procedure in elementary..lectrostatics in which the self-energy terms are
'dropped. "

This is a refinement of Teitelboim's bound mo-
mentum. Teitelboim expressed both the self-
energy momentum and the acceleration-energy
momentum in a single formula. He was able to
do this only for the plane with n= v. Equation (58)
generalizes the acceleration part to arbitrary
planes.

(d} The radiation tensor 8, satisfies
The energy tensor of continuous electrodynamics

can be used in the particle case to define a func-
tion off the world line

8 ~ 0 = d7 ,e'a'v5(-x —e) (32)

8„,= ( E„, E„—,+ -4g'F„,"F„,) (pw0). (14)ret 4 ret ret 4 ret ret

In Sec. IV a distribution

7I

P3 = dT3e2a2V .2
3 J (55)

6-t= ~i+ 62+ ~3 (44
I

was defined with the following properties:
(a) 8„, (distribution) =8„, (function)(p40). The

local values off the world line are the same.
Therefore calculations of Larmor radiation, for
example, are the same. The energy tensor for
a small but continuous charge distribution with
the same total charge would nearly equal 0„,
off the world line.

(b) The self-energy tensor 8, is rigorously
conserved; 8 ~ 8, =0, whatever the acceleration
of the charge. Applied to the static case of a

The tensor 83 describes the asymptotic radiation.
The properties of the tensor have been described
fully by Teitelboim. '

(e) The Lorentz-Dirac equation follows from
differential energy-momentum conservation

s '(&y~~+ s6x~+ admix+ ~re~)=0.

This is the solution to the self-stress problem
for a moving particle.

(f} The integral for the total momentum of a
system of charged particles interacting electro-
magnetically exists and is finite for any spacelike
plane o. It is given by (64) in terms of T, but
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can equally well be computed with T' of Eq. (66)
in which the 8, contributions are omitted.

The question of the uniqueness of 8„, must be
considered. Is it possible to find a different
definition of 8„„analternative to (44), with
acceptable properties'P It will be recalled that
when the definitions of 8, and 8, were given in
Eqs. (41) and (35) by the addition of symmetrizing
terms, concentrated on the world line, to 8 Ky
and 8 .K„only the simplest possibilities were
set down. Would it be possible therefore to find
a different but still physically acceptable 8„,by
adding to (44) a new term, concentrated on the
world line, of the form

r
e' ~~de(symmetric tensor) 5(x —z)?

We are not at the moment considering changes in
8„,which would modify its functional form off
the world line and which would therefore violate
property (a).

The tensor 8„, is a physical quantity with di-
mensions, and the dimension of (symmetric
tensor) in the integrand of the proposed addition
would have to be L '. We suppose that (symmetric
tensor) is built up from the metric tensor g(L')
and the various geometrical vectors in the theory,
which, except for the three simplest have L
v(I.'), a(I. '), 8(L '), a(L '), etc. If the point
particle had spin or a multipole structure there
would be other possibilities. If we remember that
for a free particle, a=ci=ii=0, etc. it is easy to
see that the available scalars, v'=-1, v. a=0,
v ~ 8(L '), a2(L '), etc. , cannot be used to increase
the dimension of a term. There are no physical
constants, available within classical electro-
magnetism, of dimension L. Since 0 is purely
el.ectromagnetic, it cannot depend on the mass of
the particle, so that in classical theory e'/m(L)
is excluded (the argument would not hold in quan-
tum electrodynamics). Neither v nor z can be
used since they depend on arbitrary origins. The
remaining independent nonzero possibilities for
(symmetric tensor) are numerical combinations
of

(v, a) and (v, 8).

The two possible symmetric tensors that survive
the dimensional analysis may be excluded if we
insist on the existence of a normal-independent
momentum integral over a plane, that is, if we
insist on the existence of a momentum independent
of n over the set of planes o that pass through a
fixed point z(v') on the world line. Since 8 ~ 8„,
=0 off the world line, two integrals of the form

P= —J) n. 8,tdV

= —8' a+, v

With the additional term the momentum would
depend on the tilt of the plane. The same happens
with (v, 8). Another way of putting the objection:
If we had the new terms in 8„„Eq.(47) would
not produce an equation of motion, not simply
not the Lorentz-Dirac equation, but no equation
at all. The analysis similar to that in (49), (50),
and (51) would produce a plane-dependent relation
inconsistent with any world line [case of (v, 8)],
or any world line except that of a free particle
[case of (v, a)). Otherwise 8'T =0 could not be
satisfied.

Therefore if we retain the form of 8„,off the
world line, stay within the classical electro-
dynamics of a spinless point particle, and insist
on the existence of momentum, the distribution
form of 8„, is uniquely determined to be (44).

If we drop the requirement (a) there are other
possibilities. P ryce's tensor'

9( }
2(a 8) RR

price g~ p pc

satisfies
P

8 8„„,= ~, d~-,'e2(amv-d)5(x-z)=8 8„„ (91}

so that it yieMs the Lorentz-Dirac equation from
(47). But as Viiiarroel' has noted, it does not
produce the Larmor formula. This is not an in-
superable objection. Equation (91}is sufficient
to effect the same response in particles as the
previous theory. The distinction is this: Suppose
we had a black electromagnetic absorber in the
asymptotic field of a radiating particle. In both
theories the absorber would suffer the sa.me
momentum change. Do we want a theory in which
the same momentum flow is present when the
absorber is not there? Equation (44) provides
such a theory and Pryce's does not. Pure,
mechanistic electrodynamics cannot decide, but
the physical picture in the former case is helpful
and intuitive. The sucess of the idea of photons
gives further support to the picture of an asymp-
totic electromagnetic field with "real" momentum.

I

would be the same by Gauss's theorem if we have
a suitable definition of 8„,.

If we consider the case of an additional term
with (v, a), the new integral over a plane would
differ from the oM by

e'
t d x, dv 5(x - z)(n av+ n va) 5(- n [x- z(r')])

4

5f= e2 dt(n av+ n va) -n v
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IX. WIDER CONTEXT e' ( , 1 e'
dV ~V' —, 8(Z —r)=

16m I, z' 2E (92)

In point particle electrodynamics, the closed
theory of the electromagnetic interaction of
charged par ticles, Maxwell's equations together
with the causal boundary condition, determine
the electromagnetic field tensor E in terms of
the electric current j. The current is a function
of the particle world lines, which in classical
physics are supposed to be observable. The field
tensor E is observable to the extent that it appears
in the Lorentz-Dirac equation which restricts
the particles' world lines. In this theory, the
energy tensor T, given by (61) or (63}, appears
at an unobservable level. The condition

—g 8(x} n6V - — 8(p —e.)n 8dV .
&a

The distribution theory definition of the integrals
of 8, and 8 is not of this form. We have seen in
Sec. VI. that

P, = — n g, dV = —&e'a 0—
4Q

n 8,8(p- a)dV,

P, = — n 8,dV =Oe- n 8,8(p —c)dV.
dfy Jg

With the theory in the form given in the previous
sections we cannot therefore interpret 8'"(x) as a
measurable density of a physical quantity localized
at the point x. To highlight this point consider the
integral (85) for finite E. As a function, for r 40,
e'/8mx4 is positive-definite, but

T= 8 (K«, + 8) =0

entails that the particle world lines obey Lorentz-
Dirac equations. But T itself is not observable.

Despite some paradoxes, we are accustomed,
from experience in continuous electromagnetism,
to thinking of the components of 8(x) as "real"
densities, 8'" as a four-momentum density,
8'~ as a momentum flux. The notion certainly
seems to be consistent and usable for plane waves
and for the radiation tensor 0, of a single particle.
But the idea cannot be confirmed within electro-
dynamics. The motion of a particle in a detection
apparatus may be found to satisfy a Lorentz-
Dirac equation, but it will provide no confirmation
that, say, 800 is an energy density.

Although the question is "metaphysical" from
the point of view of pure electrodynamics, it is
nonetheless of interest to consider to what extent
the 8""(x) can be taken to be "real" densities.
One of the senses in which "real" can be under-
stood would require that the total momentum
could be added up, bit by bit, as an experimental
approximation to a niemann integral

with the definition (52) and (53").
We will consider how the theory might be

changed so it includes genuine densities but
leaves the verifiable results of electrodynamics
unaltered.

Let us consider one situation where a change
seems called for: the case of a single point charge
at rest. Off the world line 8"=E'/8m =e'/8wr'.
The fact that the integral

d V 8(r —a) 8"= e'/2 e (93)

diverges as e -0 seems consistent with the infinite
amount of work that has to be done to compress
an initially widely distributed charge to a point.
However, one does not in practice make point
charges this way, and infinite energy for a point
charge is inconsistent with the fact that charged
particles are not infinitely massive in gravitational
fields. It is also inconsistent with the result (60'),
Py 0, or, on a mo re intuitive leve l, the fact that
8 ~ 8, =0 allows the self-field to follow the particle
without the application of any force.

The last two inconsistencies would be resolved
for charged point particles if we dropped the term
8, from 8„,. Such a change would not alter any
force relationships in particle electrodynamics
because

8 8,=8 (8...—8,)=8 8;...
and it would not alter total momentum integrals
because Py 0 We were always free to drop
once it was seen to be decoupled from the rest Of

the system. The point now is that it appears neces-
sary to drop it in order that we should have any
hope of interpreting the residual 8' as a genuine
physical density.

If we do drop 8, for a point particle we loSe the
positive definiteness of the energy density [look
at the integrand in Eq. (90) ]. We also lose the
connection (2) between the field tensor E and the
energy tensor 6}. One would expect corresponding
changes to be needed in the energy tensor due to
continuous charges, if only because the fields out-
side a spherically symmetric charge distribution
are the same as those of a point charge. These
changes would presumably involve relocating the
work of compression (93) of a finite charge.

The total momentum integral (64) for a system
of point charges in electromagnetic interaction
must be taken into account if we want to try to un-
derstand localization. For the case of two charges,
A and B, (64) has the form
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P =- n T'dV

A, B
mv 'T' —3e a 7'

int(AB ) (A) ~ (B ) (B ) ~ (A) &

which is of the same form as (10) and (87), be-
tween a spacelike plane Oo with normal no and the
plane o with normal. n, we get

+ dr ', e'—a'v—
~
dVn e„,(„B). (64)

A,

If we integrate the equation

left index p. , the first term makes no contribu-
tion since 8„~ E, ~"=0; and if one calculates a
surface integral taking the scalar product with the
normal on the left, the first term makes no con-
tribution:

dV~ 8 K &"=0

[see Eq. (57) j. This suggests that we drop the
first term in (35) and use the unsymmetrical en-
ergy tensor

T"= drv(mv ——,e'a) 6(x —z)

sty

t t(AB) i t(AB)
"(yo Cf

+P e, +e,.,
The condition

(95)

0 0 gnt(AB)
&O

6 B
BeB (A)( B) vB

~BO

A
dr„e„F(B)(z„) v„,

AO

e ~ T"=0 (divergence on the left) (96)

entails the Lorentz-Dirac equations, and the total
momentum P satisfies

e

(

P= — dVn T" (scalar product on the left).

provided that the world lines are straight in the
remote past so that 6„t-x ' at sufficiently large
spatial distances. Then from (64),

In this formulation the momentum

P=mv- 3e a2 2

(97)

(98)
AP =P(v) —P((z, ) = 0

gives

g(evv ——,e'e = — d de —,e ev2 2 2

A, B A, B "&BO

is located at the particle, and the remaining terms
in T" could be interpreted as physical densities
since their integrals are Riemann integrals.

We would speak of the new particle energy ten-
sor

+ d7'BeBF(~)(zB) vB
BO

K", „= ' drvp&(x —z) (99)

T'= p J drmvv&(x —z)+ g e,

+g e, +e, , (66)

According to Eq. (35),

e,""=e~,""—
J

dr ,'e'v "a"6(x-—z) . (35)

If one takes the divergence with respect to the

A
+ «~egF(B)(zg) ' vg (94)

AO

The change in the sum of the particle "momenta"
mv —3 e'a equals the negative of the radiated
momentum between the planes plus the four-vec-
tor work done by the Lorentz force of each parti-
cle on the other (between the planes).

Equation (64) is suggestive, but only suggestive,
of a form of the theory which would contain "real"
densities. Equation (64) arises from

as describing flows of momentum P along the
world lines z. Since

e ~ K," „= drp6(x —z)

the Lorentz-Dirac equations, the consequences
of (96), would take the form

P + 3 e'a'v - eI' v = 0 .

This is, effectively, the form of the theory used
by Teitelboim' in his derivation of the Lorentz-
Dirac equation. Various forms of the theory with
particle momentum different from mv were noticed
by Pryce. 4

Note added in proof. Since this paper was writ-
ten, two relevant references have come to the
author's attention. In Phys. Rev. Lett. 12, 375
(1964), Rohrlich gave a solution to the self-energy
problem. The essence of his solution is that the
Lorentz-Dirac equation follows from an expression
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of the form 8 ~ (Kp„»+8n) =0. The tensor 8n is in-
tegrable; it has the form of the cross term in an
electromagnetic energy tensor with the field tensor
decomposed as I' =E+J+~ E-EE»+E-~ E+
=a(FasT +&»v). He does not discuss the unique-
ness question. From the point of view of the pres-
ent paper it is difficult to justify the unphysical
division of the field tensor, or the use of the cross
term.

In a set of lecture notes on the geometry of basic
physics in flat space-time, Princeton, 1975 (un-

published), Z. Milnor quotes a distribution theory
expression for 8 (identical with that used in the

present paper), and shows that the Lorentz-Dirac
equation implies 8 '(K~„»+8}=0. He also uses the
integral notation [as in (52}]for the value of dis-
tributions on test functions —he describes them as
"fake" integrals —but does not discuss their limits.
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