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A momentum-space subtraction scheme for massive quantum electrodynamics is proposed which respects

gauge invariance, in contrast to ordinary normal-product techniques. As a consequence the dependence of
Green's functions on the ghost mass becomes very simple and formally gauge-invariant normal products of
degree up to four, when subtracted according to the proposed scheme, are automatically gauge invariant. As
an application we discuss the proof of the Adler-Bardeen theorem. Zero-mass limits can be taken for Green's

functions after the integration over intermediate states has been carried out.

I. INTRODUCTION

The gauge invariance of massive quantum elec-
trodynamics has been analyzed by Lowenstein and
Schroer' (LS) using normal-product methods. The
effective Lagrangian in this model is

Z „=~(y~a $ —(M c)$g —-—,'B„Ap'A"

+—,
' (m' +a)A„A" + eely" gAq

y-,'[1 —(m' +a)/m, '] (B„A")'

=2+8 t,

8, = ~2 $y "W„g M$g. ———,'B~A„B"A"

+ 2m'A A" +—'(1 —mm/m 2)(ap")

In order to obtain a renormalizable theory, a
non-negative parameter mo' has been introduced
so that the free vector-meson propagator becomes

g„„k„&„
k'- m'+i6 m' k'- m' yi6 a'- m ' yi6

Green's functions now depend on ~0' and describe
an indefinite-metric Hilbert space with ghost par-
ticles of mass mo':

(Cl+m, ')ap" = p .
Observables of the theory are those quantities

which commute with a+" and are independent of
the ghost mass ~0 Lowenstein and Schroer have
given two criteria for checking gauge invariance,
which will also be adopted here. As shown by LS
the first criterion is satisfied by all formally
gauge-invariant normal products, e.g. , normal
products made up of equal numbers of f and $
fields, plus combinations of I"„„, (B„-ieA„)]),
(a&+ieA&)$. These normal products commute with
apl

The second criterion states the mo' independence

of observables, and the whole Bogolubov-Parasiuk-
Hepp-Zimmermann (BPHZ) machinery ' is neces-
sary to establish it.

It turns 'out' that Zimmermann's normal products
do not automatically satisfy the second criterion,
which means that the usual BPHZ subtraction pre-
scription destroys gauge invariance. mo'-indepen-
dent normal products are then constructed by
taking linear combinations of normal products with

the same quantum numbers and dimensions.
This process becomes rather cumbersome for

Green's functions with many normal products;
besides this, one would like to maintain gauge in-
variance at every step as e.g. in the case of Pauli-
Villars regularization. It is thus comforting that
by modifying the BPHZ subtraction procedure it is
possible to define normal products, ~ automatically
satisfying the second gauge criterion.

The crucial point to be observed is the following:
in order to show mo' independence one has to study
the normal products &4[(ap") ]. Since A„ is coupled
to $y&g, one is led to apply the equation of motion
of the fermion fields in the normal product
&,[As~gyp)], where A. is a scalar field with free
propagator i/(k'- m,m+ie). As is well known, an-
isotropies appear in the equation of motion of the
above trilinear normal product, which in turn in-
troduce the unwanted mo' dependence.

This paper is divided as follows: in Sec. II we
define the subtraction operators; in Sec. III the
infrared convergence proof is developed (the ultra-
violet case is entirely analogous to Ref. 12).
Finally, Sec. IV is a discussion of the application
of the scheme in the proof of the Adler-Bardeen
theorem, and the statement of the existence of the
zero-mass limit.

H. SUBTRACTION OPERATOR

Going through the derivation of the second gauge
criterion of LS, one observes that anisotropies
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arise because the BPHZ scheme' uses Taylor
operators in the external momenta P& of the graph
y, aroundP„"=0, such that one has

t'&» [p»f(p», k», M)j.pit'l»-~[f(p», k», M)j. (4)

In contradistinction the mass ~ is left untouched.
In order to eliminate anisotropies and avoid infra-
red divergences, one has to show that it is possible
to devise a subtraction scheme in which the sub-
traction operators &», y&y act also on masses' such
that the following conditions hold:

(a) For any divergent one-particle-irreducible
(1PI) graph y, one must have besides (4) also

»,»„»[M»f(P», k», M»}] =M»»", "»„' „'[f(P», k», M»}j,

where ~~ is the mass associated with an internal
fermion, which does not belong to a closed fermion
loop.

(b) If an internal fermion line fq belongs to a set
8 of internal fermion lines forming a closed fer-
mion loop, then all masses I» associated with
lines belonging to 8 have to be subtracted with the
same operator at the same point.

Be 3ides this we will use only Taylor operators

in order to preserve certain product structures,
when a fermion fine is reduced to a point. The
subtraction scheme of Ref. 6 does not have this
property and would again lead to ani. sotropies.

With this in mind we propose the following sub-
traction scheme. The subtracted integrand for 1PI
graph I' is defined by a modified version of Zim-
mermann's forest formula.

&„,(p, k, M) =&r Q „I(-»»~»)fr (U)
tJC+ yeti

where Sz is the set of I"- forests (families of 1PI
nontrivial nonoverlapping subgraphs of I"), and
p =p„.. . ,p„=basis for external momenta;
& =&». .. , && =basis for internal momenta;~=~„...,~,=set of fermion masses associated
with internal fermion lines (they have been labelled
for subtraction purposes}.

S& is a substitution operator shifting from the
variables of ~&U to those of yE. U if yz~. S~ in
addition sets all masses ~» equal to M, and makes
the replacement%, -~- p, m2 M, w, -M- p.,
where the ur„ i =1, 2, 3 are defined after Eq. (I).

Up to here everything is standard. See e.g. Ref.
6. The Taylor operators 7& are defined as follows:

5(y) =4- -,'y a

QPP Q

where &» is the number of &-type (fermion mass)
counterterms of y, and», & =1,2, 3 are mass pa-
rameters defined as follows:

(1) The vector-meson mass m is put equal to m
=~,+p when it appears in the transverse part of
the propagator (2}; the masses m and mo in the
longitudinal part do not participate in the subtrac-
tion scheme.

(2) The fermion masses M, are treated as fol-
lows

(a) M w„ if either M, does not belong to a closed
divergent fermion loop, or M» belongs to a closed

fermion loop which has at le@st one internal vec-
tor-meson line (Fig. 1).

(b) For the two undecorated divergent closed
fermion loop graphs y, and y, of Fig. 2, we set

jf ~&~y, M» —K 3&1 +p.

d M e y ln T
7 we set M» =~3 +p(o)

2t 2

in &&, C&y2 we set M, =m2.

Thus the masses of y, are treated differently

FIG. 1. Graphs with closed fermion loops'», where
the masses M» associated with L» are set at M» =0 in
the subtraction procedure.

FIG. 2. Graphs y~ and yz satisfy normalization condi-
tions atp» =0 and ~» =p.
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according to the forest to which y, belongs. We in-
dicate this by a shift operator S defined as follows:

If M&K y2 has been identified with , +~ and if
C~y„ then before applying 7 ~ we act with S:

S(wrm+ p,) =w~. (8)

In (S) we incorporate S into Sr, whenever y&ya.
(8) The counterterm c multiplies N,[+]. To

allow smooth zero-mass limits the counterterms
a and c enforce the normalization conditions

II(m2) =0,

~(p)I& „=0,
(9a)

(9b)

III. CONVERGENCE PROOF

In order to state the infrared-finiteness criterion
let us repeat some definitions of Ref. 6.

Let u„.. . , u„&„... , v„bet a set of linearly
independent elements of Z(1'), the space of linear
forms in P and & with S(u, v)/S&& 0. Furthermore
let C be a I'-forest, complete with respect to S
the subspace of 8(&) spanned by&„. .. , &,. Then
we have to show that~

deg„A r (C) +4a & 0, (10)

where 11(p') and &(p) are the nontrivial parts of
the two-vector-meson and two-fermion vertex
functions.

If 6 is any formal product of the basic fields and
their derivatives of degree ~ ~ 4, where ~ =opera-
tor dimension of 8 +number of mass parameters
M in 8, then normal-product Green's functions
containing an arbitrary product of Nq [6,] are de-
fined similarly.

(1) The degree function &(y) for a subgraph y is
given by

~(y) =4 —~E„B —
¹

-—Q (4 —&,).
FjEy

(2) The classification for subgraphs given above
must be taken into account, i.e., bilinear inser-
tions in the fermion field in y, or y, leave the sub-
traction scheme unchanged. The shift operators
8 must also be used in the case of bilinear fermion
insertions in y„of course.

It is now straightforward to check that this sub-
traction scheme yields automatically gauge-in-
variant normal products, if they are formally
gauge-invariant. This is a consequence of the
fact that we have done a maximum number of sub-
tractions at P =0 and N =0. The price we pay is
the nontriviality in showing the infrared (and ultra-
violet} absolute convergence of our renormalized
Feynman integrals. We will do this by following
the method and notation of Ref. 6 as closely as
possible and refer the reader to that publication
for details.

where deg„A denotes the lower degree in u of B.
To establish (10) we need the following power-

counting lemmas:
Lemma l.

degupm7' ~ - degas&~~y (11)

deg„vt'& &deg„~ F„-s(y), y llS (12}

deg„T„Y' & deg„F„, yfS (12)

deg. ~ (1 —&„)~„&deg. ~„+~(y)+1, y]'S. (14)

The proof of Lemma 1 is entirely analogous to
the proof of Lemma 3.2 of Ref. 6, where the def-
initions of y lls, AS and Fz can be found.

Lemma Z. Let ~ be a maximal element of C
properly contained in yDI . Then the following
inequalities hold:

deg„, F o- s(y)+1-M(y), y ll
S (18)

deg„ 1'„&*—M(y) +1, (1S)

deg„S v~F„& +-M(&)+1, (17)

deg„S (1 —7~)F~ & *—M(A) +1,
deg„~p r„F~& 5(A)+1-M(A), X llS

deg „~~S„(1—v~) Fz & & (A.) ~ 1 -M(A. ) - 5,
~]S, rlls, (20)

(18)

(19)

where
& ifMy 40,- * means (21)
=0 if M(y) =0,

M(y} =4X Z [I' of independent loops of &(C)],
X.c t. , X.L:y

} llS (22)

As in the case of Lemmas 3.3 and 3.4 of Ref. 6,
the proof of Lemma 2 is by induction. (15) and (1S)
hold for minimal y, since

deg Ip~x ~y deg Ip)'~'YI),

- &(r) ™(y)-s(r)+1-M(r), r lls

deg„lr& 0& *-M(y)+1,
(2S)

(2S)

where &(y) is the infrared superficial divergence,
generalized to include the parameters m. '

We now verify (17)-(20) using the inductive hy-

pothesiss'.

1, if ~ =y, of Fig. 2

0, if ~&y, .~
~

~

%e notice that

degI„pr~r ~&(1 —7i)ly
,
deg»yw-y(1 Tx)I~ 1-, if ~-=y~.

(24)
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d eg „,~.~1; 6(~)& a'l M(~)+1, ~ ll s
deg„Srv 1'„&deg„v~F&, & pI deg„Y'„&*a"-M(&)+1, X fS

(2'r)

deg S (1 y }y & gas)as)as) as) M(g) +]

deg. pr. rSp~l'~- degup~. &~1'~ - ""'6(»+1-M(~}~ (26)

deg„~r„ySr(1 —~„)1'&,& r24~deg„&x„~(] —v~)Y~-6 & a" deg, l"r+6(r)+1- & & a" M-(r)+~(r)+1-6, ~ fS,
(29)

where the condition r l) S is necessary in order to
remove S& in the first step.

To complete the inductive proof, we easily es-
tablish (15) and (16), using (19), (20), and

M(r) =M(r) + Q M(r„) .
maximdTW C

7+fEX

C onsequently,

deg„Rr +4a& r'r l -M(f'}+1+4a&0

since

(32}

It is straightforward to verify the infrared cri-
terion (10) using Lemmas (1) and (2):

deg„r, &b6' —M(r)+ 1
deg„(1 —7 r) 1'r &&"~ if res02)(15)(16)

~I

~ —M(I'}+ 1 if 1'
ll S . (31)

theorem. ' %e immediately see that no "decora-
tion" of the fundamental fermion triangle loop will
contribute to the anomaly, since there will always
be internal photon lines present and consequently
the fermion masses of the triangle loop will be
subtracted at zero. '0

Other possible contributions come from the
graph of Fig. 3, which is proportional to

d III 8 p q k —k-p —q d'~~@ k+p+q

where ll„„a(&„... , &,) is the full four-photon ver-
tex function and e"s~&~(& +P +g), arises from the
triangle. The anomaly is calculated from

4a& M(1 ). (33)

The ultraviolet criterion

deg„Br (c)+4a&0 (34}

follows immediately from the theorem of Ref. 12.

IV. DISCUSSION: THE ADLER-BARDEEN THEOREM

AND THE ZERO-MASS LIMIT

As an example of the usefulness of the present
scheme consider the proof of the Adler-Bardeen

To get a nonzero contribution, exactly one de-
rivative has to act on &„~&, but

=0

from gauge invariance.
The px esent scheme also has smooth I,m- 0

limits [in the Landau gauge, m 2 = rr, m2 (see p,ef.
11)]although not graph by graph. Since in this
case we lose (26}, the zero-mass limit can only
be taken on Green's functions (after the integra-
tions have been carried out), so that the normali-
zation conditions for the zero-mass case,

ll(0) =~(0) =o,
are satisfied.

(36)
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