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The Fierz-Pauli Lagrangian for massive particles with spin s = n + 1/2, n integer, is examined in the
limit of vanishing mass. A considerable simplification occurs. The potential h is a Reita-Schwinger spinor-
tensor of tensorial rank n. The "spinor-trace" h', defined by h„& =y"h„„& does not vanish, and neither
does h" =(h')'; but h"' does vanish. The wave equation admits a gauge group, h ~ h + sym grad g,
with g' = 0. The most interesting feature is that the source t need not be divergence free, only the
traceless part of p "t„„must vanish. This weaker condition on t turns out to be sufficient to guarantee that
only helicities + s are transmitted between sources.

I. INTRODUCTION

'This paper complements our study' of massless
fields with higher, integer spins and demonstrates
that the main results have close analogs in the
case of half-integral spins. The motivation for
our work will not be repeated here.

It is remarkable that the sources of massless
fields with spins ~~ need not be conserved. As
in the case of integer spins we find that only the
traceless part of the divergence needs to vanish.
("Traceless" here refers to the spinor trace, see
below. ) Again it turns out that this condition is
sufficient to guarantee that real quanta have hel-
icities +s only.

We follow the procedure of Singh and Hagen, '
constructing the Fierz-Pauli Lagrangian in terms
of Rarita-Schwinger tensor-splnors P, tP ' (n=s
-»}and doublets of tensor-spinors P ', P"-', . . . ;
all of these are traceless in the sense that
y"P„„»...= 0. In this paper the term "trace" is
always used in this sense; trace P= P', P„'»...
=—y~P„„»... , summation on the spinor index being
implied.

II. LAGRANGIAN FOR THE MASSIVE CASE

The most general Lagrangian for the free,
massive field, invariant under the extended Poin-
care group, is

Euler-Lagrange equations are, for k=n, n—

gP, (n p'ii»+ p p, yk+1+ ptpg-1+ ~& y»)

(2.2)

The variations (5g»)""'" are symmetric and trace-
less and may be replaced by uy"y" '' ', where u is
a Dirac spinor. The left-hand side of (2.2) be-
comes

~[n P4'(y)+ [P»„/(k+ I))P 's4"'(y)

+ p~~y pP '(y)+ ma»p»(y)], (2.3)

ky»(yo)»-! -2 ... ]y»sl(~y) (2 5}

with coefficients a=(k —I)/2(k+1) and b=(k —I)
(k —I —1)/4(k+ 1) determined by the constraints
y'SP(y)=0=y SP'(y). The vanishing of (2.3)
is equivalent to, for l k- n,

where' e„now stands for differentiation with re-
spect to y" and g»(y) is the polynomial

(2.4)

The statement trace g»= 0 is equivalent to y .Bp»(y)
=0. Equation (2.2) is satisfied for all traceless,
symmetric 5P if and only if (2.3) vanishes for all
y, u such that 5""y„y„=0,uy 'y=O.

The expansion of g» by spin content, in the frame
p=O, is given by

0»(y)= g[(y')» '-~y yy. (y'}» ' '

~ = g CP'n»PP'+ (P 'P, P 0»+ H c )

+ my»o, y»], (2.1)

y p (n y4l+ p ylH l, l+pty» l, l);+m& y-»I& 0

(2.6)

where P, P ' are symmetric, traceless, Dirac-
Rarita-Schwinger tensor-spinors, tP fpr k &

yg —2
is a pair of such objects; n„,n„„P,o,o„,are
real numbers; ~, P~, o~ for k-n -2 are Hermi-
tian 2 x 2 matrices and p, is a 2 x 1 matrix. All
spinor and tensor indices are contracted, p„= is/—-
sx", p=-y"p„, and p p» means p"g»„.... The

with

n», , = n»(l+ 1)/(k+ 1),

P», , = P»(k+ l+ 2)(k —I)/2k(k+ 1) . (2.7)

'The problem is to choose the parameters
n„,P», o» in such a way that (2.6) is equivalent
to (y,p, —m}P"'"=0 and P»' = 0 for l & k& g. We
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n rz —1
ne&

p n, ,z+ 0'

p z

P' z

Q„,)z + 0'„„

z

normalize 0„=-1; then n must be unity, and the
following determinants must be nonzero' and in-
dependent of s =- y,p, /m, l = n —1, n —2, . . . , :

systematic investigation to determine all solutions
to the problem. Instead we shall follow Singh and
Hagen and specialize by requiring that the 2x 1
matrix P„,be an eigenvector of the matrix n„,.
It is easy to see that this produces a great sim
plification in the limit m - 0; in this case only

P, P ' and one of the two components of g" ' re-
main coupled. 1he coupling scheme of Singh and
Hageg. ' is. illustrated as follows:

n nl n2 n 3 n 4
1 1

Q) )z + 0')

(2.8)

/m /m
f

m

$t! 2
ptl

"3
fall

4 ~ ~

n —1
z .-1

g+1 Bz 0 0

2n —1

When E = n —1 we have a 2 x 2 determinant and
find that it is necessary and sufficient that

n „,/&r„, = n/(n+ 1),

~
P„~'/o„, = 2n'/(n+ 1)(2n+ 1) .

When E = g —2 we have a 4 x 4 determinant,

(2.9)

The vertical couplings vanish in the limit m -0.
With the restriction that P„, be an eigenvector

of n„, one easily completes the an.alysis an.d finds
a solution that is unique up to equivalence and
given by

n„=1, n„,= (2n+1)/2, P„=n,

fl 0)
(, p.

(0 I) (oP
This gives the following Lagrangian for m= 0:

~=7"P0"+ (n+ I/2)0" 'P'P ' O' '6"-

(2.10)

where AB/a„, = —4n'/(n+ 1)(2n+ 1). In order that
this be nonzero and independent of z it is neces-
sary and sufficient that the following conditions
hold:

tr(nt(Tc) = 0,
(n —1}(PeacP) =(n+ l)(P cneP}

= -[2n(n+ 1)'/(2n+ 1)]o„,Detn

= [(2n —1)(n —1)'/2n2(2n+ 1)]v„,Deto .

(2.11)

Here p is the 2x 1 matrix p, , n, o are the 2

x 2 matrices n„„o„,and

+ [nP" 'p tP+ (n+ 1)g" 'p g '+H. c.].
(2.12)

Here 0', tjt" ', 0, are Rarita-Schwinger
tensor-spinors of rank n, n —1, n —2 (we have
dropped the subscript on tP,

' since the other com-
ponent no longer appears).

III. MASSLESS FIELDS

When m= 0 the Fierz-Pauli program fails in.

the sense that the field equations no longer imply
the subsidiary conditions g"' ' = 0 for I &k &n.
When the parameters are as determined above,
the algebraic equations (2.6) reduce to, for I &n,

(I + 1)g"' '+ n(n + 1)P" ' '= 0,
(n+ 1)(n+ I + l)(n —1 —I)p ' ' 2n(l + 1)p ' ' = 0.

These conditions do not determine the para-
meters n„, P, o'„„e,uniquely. As pointed
out by Singh and Hagen, ' we are free to choose
our basis in each of the two-dimensional sub-
spaces defined by each of the doublets
P ', tP ', . . . ; in other words n„„P„,, o„need
to be determined up to an equivalence transforma-
tion only. Nevertheless, real ambiguities seem
to remain. We have not carried out a completely

This shows that the wave equation possesses a
family of "gauge" solutions (solutions not subject
to wave equations), each determined by its P' com-
ponent and having tP" "=0. We shall introduce a
notation that allows us to write these gauge solu-
tions in a simple and familiar form.

Let h be the symmetric Rarita-Schwinger spin-
or-tensor field of rank n determined by P", P ',
tjI" ' as follows
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it"=h —ag yh' —h g 5h",

g" '=d(h' —f:Q yh"),

i'" 2=eh", h'" = 0.

(3.1)

h=gpg, g =0. (3.2)

Notation. The sums Q, and 5, include all un-
equal permutations of the tensor indices, thus

Q~, has n terms and 5~, has n(n —1)/2 terms. ' The
coefficients a, b, c are found by verifying that
trace/"=trace/ '= 0; we find a=5 =1/2(n+ 1), c
= 1/2n. The parameters d, e will now be adjusted
so that the gauge solutions discussed above take
the form

IV. THE PROPAGATOR

Let Eq. (3.4) be abbreviated byLh=t. The solu-
tion is determined up to a gauge field h, and there
exists (for each set of boundary conditions) an
operator G such that the general solution takes
the form h=Gt+h. The only acceptable form for
G is

G = (1/p')A, (4.1)

where A is a symmetri'c, first-order, differential
operator. The requirement onA is that (LA —P')t = 0
for every source t that satisfies t'"= 0 and con-
dition (3.5); this means that (AL —P')h must be
a gauge field for every h.

The equation Ih=t, Eq. (3.4), may be written
as BL,h=t with

We express the Lagrangian (2. 12) in terms of h

and require invariance under h -h++~, pg for ('
= 0 and find that this determines d = —n/(n+ 1), e
= (n 1)/2.

Having thus fixed the relationship between g",
iP ', P' ' and h, we write down the final form of
the free Lagrangian for massless, spin-s =yg

+ 2 fields:

LP =fh -Q Ph',

Bh=h —.'g yh .' g 5h-—,1, 1B'h=h- —gyh ——
1 2'

(4.2)

(4.3)

(4 4)

2= hPh+ nh'Ph' —an(n —1)h"Ph"

—n(h'p ~ h+ H. c.)
+ 2n(n —1)(h"p ~ h'+ H. c.) . (3.3)

This suggests the following ansatz for A:

Ah = P'B 'h + a P P (B 'h)' .

Then

To this we next add an interaction term h ~ t+ t .h,
where t is an external source. Since h"'=0, there
is no loss of generality in requiring t'" =0. The
Euler-Lagrange equations are now

P'h+gyPh ,'+5gh —gyP h-QPh
2 1 1

(AL-P')h=+P&,

g
=—p'h'+ o.(2p h —2ph'-g ph") .

The field ~PP$ is a gauge field if and only if $
=0, and this condition fixes n=-1 and

+Q ~p h'+'Q (rp+pr)h"=t. (3.4)
Ah=P'B 'h+ —g Ph'.

jl
(4.5)

One can easily check that the left side of (3.4)
vanishes when h is replaced by the gauge field
(3.2); hence (3.4) is gauge invariant. A concom-
ittant of this fact is that the traceless part of the
divergence of the left side of (3.4) vanishes iden-
tically. Consistency therefore requires that the
traceless part of P ~ t vanish; that is, the source
must satisfy the following condition:

p t=(1/2n) gyp't'+P lip t"):
1 2

(3.5)

Thus it is seen that, as in the case of integer
spins, the source need not be exactly divergence
free. It is remarkable that (3.5) suffices (with
t"'= 0) to guarantee that all transmitted quanta
have helicities +s = +(n+ ~). To show this we first
determine the propagator.

The operator (4. 1), with A a,s in (4.5) will be called
the propagator of the field h.

V. HEI.ICITY THEOREM

It turns out (as in the integral spin case) that
the only quanta exchanged between different parts
of the source are massless quanta with helicities
kS.

Theorem. If the source t satisfies t'" =0 and
condition (3.5), and A is given by (4.5), and P'=0,
then. the only contributions to t A ~ t come from
the helicity components ~s (both positive and neg-
ative energies) of t.

I'roof. We first show that, when p'=0, t A ~ t
v' 'V Yre«ces «t A t with t effectively divergence free,

~his reduces the problem to one of two dimensions
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andthenA ~ t is traceless; that is, of helicity+s.
Let us put

It is possible to choose $, g so that /= 0; for ex-
ample by taking q to be any solution of

(5 I)

with $ and q to be determined. It is required that
t A ~ (t —t) =0; that is, and g to be any solution of

(5.3)

p ( — fit —
Pauli2n

(5.4)

This holds for all t satisfying the constraints if
and only if the second factor is traceless, which is
the case if we take

)II 0 gll — tl (5.2)
V'

[This also gives (t t)'" =-nfl" =0 as we should
V'

expect if t is a source. ] Next, we calculate

V'

Adopting (5.2), (5.3), (5.4) we have P ~ t= 0 and
t A ~ t=t A ~ t=t A t.

To complete the proof, choose a coordinate sys-
tem in which p, =p, =O. Then the index summations
in t-A -t run effectiveLy over the values 1,2 only.
When the indices are interpreted this way one finds
that the trace of A ~ t vanishes, therefore only the
traceless part of t contributes to t A t.
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